首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The presence of bat species is commonly determined by placing acoustic bat detectors that record bat echolocation calls in the habitat they are likely to use. Detection rates are affected by variables including type of detection unit used. We compared detection rates of long-tailed bat (Chalinolobus tuberculatus) echolocation calls between two types of automated bat detectors: Wildlife Acoustics SMZC Zero Crossing Bat Recorders (ZC), and Frequency Compression Automated Bat Monitoring units (FC) produced by New Zealand’s Department of Conservation. Units were placed in locations where bats were known to be present, but not all detected bats. The median number of bat passes recorded by FC units over 10 nights was 20 compared with a median of 3 bat passes for ZC units. ZC units also detected bats over significantly fewer nights than FC units. These results suggest FC units are more sensitive and therefore better to use where long-tailed bats are expected to be at low abundance or only present infrequently. Because of inconsistencies in detection rates, we recommend the use of only one model of the detector within a monitoring project. Our data also suggests that surveys should take place over long periods to maximise likelihood of detecting bats, if present.  相似文献   

2.
Passive acoustic methods are increasingly used in biodiversity research and monitoring programs because they are cost‐effective and permit the collection of large datasets. However, the accuracy of the results depends on the bioacoustic characteristics of the focal taxa and their habitat use. In particular, this applies to bats which exhibit distinct activity patterns in three‐dimensionally structured habitats such as forests. We assessed the performance of 21 acoustic sampling schemes with three temporal sampling patterns and seven sampling designs. Acoustic sampling was performed in 32 forest plots, each containing three microhabitats: forest ground, canopy, and forest gap. We compared bat activity, species richness, and sampling effort using species accumulation curves fitted with the clench equation. In addition, we estimated the sampling costs to undertake the best sampling schemes. We recorded a total of 145,433 echolocation call sequences of 16 bat species. Our results indicated that to generate the best outcome, it was necessary to sample all three microhabitats of a given forest location simultaneously throughout the entire night. Sampling only the forest gaps and the forest ground simultaneously was the second best choice and proved to be a viable alternative when the number of available detectors is limited. When assessing bat species richness at the 1‐km2 scale, the implementation of these sampling schemes at three to four forest locations yielded highest labor cost‐benefit ratios but increasing equipment costs. Our study illustrates that multiple passive acoustic sampling schemes require testing based on the target taxa and habitat complexity and should be performed with reference to cost‐benefit ratios. Choosing a standardized and replicated sampling scheme is particularly important to optimize the level of precision in inventories, especially when rare or elusive species are expected.  相似文献   

3.
Abstract: We compared bat activity levels in the Coastal Plain of South Carolina among 5 habitat types: forested riparian areas, clearcuts, young pine plantations, mature pine plantations, and pine savannas. We used time-expansion radio-microphones and integrated detectors to simultaneously monitor bat activity at 3 heights (30, 10, 2 m) in each habitat type. Variation in vegetative clutter among sampling heights and among habitat types allowed us to examine the differential effect of forest vegetation on the spatial activity patterns of clutter-adapted and open-adapted bat species. Moreover, monitoring activity at 30, 10, and 2 m permitted us to also compare bat activity above and below the forest canopy. We detected calls of 5 species or species groups: eastern red/Seminole bats (Lasiurus borealis/L. seminolus), eastern pipistrelles (Pipistrellus subflavus), evening bats (Nycticeius humeralis), big brown bats (Eptesicus fuscus), and hoary bats (Lasiurus cinerius). At 2 and 10 m, bat activity was concentrated in riparian areas, whereas we detected relatively low levels of bat activity in upland habitats at those heights. Activity was more evenly distributed across the landscape at 30 m. Bat activity levels above the forest canopy were almost 3 times greater than within or below the canopy. We detected significantly greater activity levels of 2 open-adapted species (hoary and big brown bats) above rather than within or below the forest canopy. However, activity levels of 2 clutter-adapted species (eastern red/Seminole bats and eastern pipistrelles) did not differ above, within, or below the forest canopy. Despite classification as a clutter-adapted species, evening bat activity was greater above rather than within or below the forest canopy. We believe our results highlight the importance of riparian areas as foraging habitat for bats in pine-dominated landscapes in the southeastern United States. Although acoustical surveys conducted below forest canopies can provide useful information about species composition and relative activity levels of bats that forage in cluttered environments, our results showing activity above canopy suggest that such data may not accurately reflect relative activity of bats adapted to forage in more open conditions, and therefore may provide an inaccurate picture of bat community assemblage and foraging habitat use.  相似文献   

4.
Abstract

The temporal and spatial activity patterns of long‐tailed bats (Chalinolobus tuberculatus) were assessed between January and July 1995 by automatic monitoring of echolocation calls, radio‐telemetry and direct observation at Hanging Rock, South Canterbury. Automatic bat detection units recorded 8728 bat passes and 933 feeding buzzes during 272 nights of sampling. In addition, five radio‐tagged post‐lactating female bats were each followed for an average of 13.0 ± 3.2 (SE) days. Home range size averaged 471.4 ± 50.9 ha (95% median minimum convex polygons) but core areas of activity (50% of fixes) were 54.4 ± 5.4 ha (11.6 ± 3.1% of the home range size). Patterns of activity varied in relation to time of year, time of night, temperature, invertebrate activity and habitat. Between January and March, long‐tailed bats consistently emerged from day roosts at sunset and flew throughout the night, with peaks of activity shortly after sunset and before sunrise. After the beginning of April, long‐tailed bats no longer flew throughout the night, but they had one peak of activity between the first and third hour after sunset. Both automatic monitoring and radio‐telemetry showed extensive use by long‐tailed bats of river and riparian habitats. Radio‐tagged bats avoided foraging over open farmland, and repeatedly returned to the same sites on consecutive nights.  相似文献   

5.
Fatalities of migratory bats, many of which use low frequency (<35 kHz; LowF) echolocation calls, have become a primary environmental concern associated with wind energy development. Accordingly, strategies to improve compatibility between wind energy development and conservation of bat populations are needed. We combined results of continuous echolocation and meteorological monitoring at multiple stations to model conditions that explained presence of LowF bats at a wind energy facility in southern California. We used a site occupancy approach to model nightly LowF bat presence while accounting for variation in detection probability among echolocation detectors and heights. However, we transposed the spatial and temporal axes of the conventional detection history matrix such that occupancy represented proportion of nights, rather than monitoring points, on which LowF bats were detected. Detectors at 22 m and 52 m above ground had greater detection probabilities for LowF bats than detectors at 2 m above ground. Occupancy of LowF bats was associated with lower nightly wind speeds and higher nightly temperatures, mirroring results from other wind energy facilities. Nevertheless, we found that building separate models for each season and considering solutions with multiple covariates resulted in better fitting models. We suggest that use of multiple environmental variables to predict bat presence could improve efficiency of turbine operational mitigations (e.g., changes to cut-in speeds) over those based solely on wind speed. Increased mitigation efficiencies could lead to greater use of mitigations at wind energy facilities with benefits to bat populations. © 2011 The Wildlife Society.  相似文献   

6.
Aim Urbanization is a dominant demographic trend throughout the world that involves massive habitat alterations. Understanding how urbanization affects biota is a crucial prerequisite for development and application of effective species conservation programmes. Our study focuses on Neotropical high flying aerial insectivorous bats, an ecologically important, but so far seriously understudied group of vertebrates. Location Panama. Methods Using acoustic monitoring, we assessed and compared species occurrence, composition and activity of aerial insectivorous bats at three site categories located on the isthmus in Panama: forest, urban areas and a forest–town interface. Results In 2 years of field work, we recorded 44,744 bat passes over the microphone and identified a total of 25 aerial insectivorous bat species. Species richness was highest in the forest, decreased towards the forest–town interface and was lowest at the urban sites, while dominance (Berger‐Parker‐Index) increased from the forest to the urban sites. Overall, general bat activity (passes min?1) was highest at the forest–town interface and lowest at the urban sites. Multivariate analysis suggests compositional differences in species occurrence and activity among site categories with mainly molossid species occurring in urban areas. Main conclusions Our results clearly demonstrate species‐specific differences between high flying aerial insectivorous bats concerning their adaptability and vulnerability to urban areas. Our results suggest that a suite of morphological traits including species mobility determine persistence of aerial insectivorous species in cities. Our results underline the necessity for detailed assessments of species‐specific habitat requirements and dynamics of species occurrence and activity over time to develop meaningful conservation tools targeted at aerial insectivorous bats.  相似文献   

7.
Pollinator morphology can play an important role in structuring plant–pollinator relationships and a pollinator's morphology may be associated with aspects of its diet. We examined the relationship between morphology and the partitioning of flower‐based food resources for five species of flower‐visiting Cuban bats: Artibeus jamaicensis, Brachyphylla nana, Erophylla sezekorni, Monophyllus redmani and Phyllonycteris poeyi. We analyzed cranial traits and body size to assess differences among species with respect to morphological specializations. We also collected dietary data from guano and used acoustic monitoring to assess bat activity at flowers. We found evidence that bats partition floral resources, but we found no direct evidence that plants were limiting resources for the bats. Morphological similarity among bat species did not predict dietary overlap. Rather it was associated with phylogenic relationships among some species. Species with different morphological specialization for flower‐visiting consumed resources and visited food plants at different frequencies.  相似文献   

8.
Bats vocalize during flight as part of the sensory modality called echolocation, but very little is known about whether flying bats consistently call. Occasional vocal silence during flight when bats approach prey or conspecifics has been documented for relatively few species and situations. Bats flying alone in clutter‐free airspace are not known to forgo vocalization, yet prior observations suggested possible silent behavior in certain, unexpected situations. Determining when, why, and where silent behavior occurs in bats will help evaluate major assumptions of a primary monitoring method for bats used in ecological research, management, and conservation. In this study, we recorded flight activity of Hawaiian hoary bats (Lasiurus cinereus semotus) under seminatural conditions using both thermal video cameras and acoustic detectors. Simultaneous video and audio recordings from 20 nights of observation at 10 sites were analyzed for correspondence between detection methods, with a focus on video observations in three distance categories for which accompanying vocalizations were detected. Comparison of video and audio detections revealed that a high proportion of Hawaiian hoary bats “seen” on video were not simultaneously “heard.” On average, only about one in three visual detections within a night had an accompanying call detection, but this varied greatly among nights. Bats flying on curved flight paths and individuals nearer the cameras were more likely to be detected by both methods. Feeding and social calls were detected, but no clear pattern emerged from the small number of observations involving closely interacting bats. These results may indicate that flying Hawaiian hoary bats often forgo echolocation, or do not always vocalize in a way that is detectable with common sampling and monitoring methods. Possible reasons for the low correspondence between visual and acoustic detections range from methodological to biological and include a number of biases associated with the propagation and detection of sound, cryptic foraging strategies, or conspecific presence. Silent flight behavior may be more prevalent in echolocating bats than previously appreciated, has profound implications for ecological research, and deserves further characterization and study.  相似文献   

9.
Emerging technologies based on the detection of electro‐magnetic energy offer promising opportunities for sampling biodiversity. We exploit their potential by showing here how they can be used in bat point counts—a novel method to sample flying bats—to overcome shortcomings of traditional sampling methods, and to maximize sampling coverage and taxonomic resolution of this elusive taxon with minimal sampling bias. We conducted bat point counts with a sampling rig combining a thermal scope to detect bats, an ultrasound recorder to obtain echolocation calls, and a near‐infrared camera to capture bat morphology. We identified bats with a dedicated identification key combining acoustic and morphological features, and compared bat point counts with the standard bat sampling methods of mist‐netting and automated ultrasound recording in three oil palm plantation sites in Indonesia, over nine survey nights. Based on rarefaction and extrapolation sampling curves, bat point counts were similarly effective but more time‐efficient than the established methods for sampling the oil palm species pool in our study. Point counts sampled species that tend to avoid nets and those that are not echolocating, and thus cannot be detected acoustically. We identified some bat sonotypes with near‐infrared imagery, and bat point counts revealed strong sampling biases in previous studies using capture‐based methods, suggesting similar biases in other regions might exist. Our method should be tested in a wider range of habitats and regions to assess its performance. However, while capture‐based methods allow to identify bats with absolute and internal morphometry, and unattended ultrasound recorders can effectively sample echolocating bats, bat point counts are a promising, non‐invasive, and potentially competitive new tool for sampling all flying bats without bias and observing their behavior in the wild.  相似文献   

10.
Diverse species assemblages theoretically partition along multiple resource axes to maintain niche separation between all species. Temporal partitioning has received less attention than spatial or dietary partitioning but may facilitate niche separation when species overlap along other resource axes. We conducted a broad‐scale acoustic study of the diverse and heterogeneous Great Smoky Mountains National Park in the Appalachian Mountains. Between 2015 and 2016, we deployed acoustic bat detectors at 50 sites (for a total of 322 survey nights). We examined spatiotemporal patterns of bat activity (by phonic group: Low, Mid, and Myotis) to test the hypothesis that bats partition both space and time. Myotis and Low bats were the most spatially and temporally dissimilar, while Mid bats were more general in their resource use. Low bats were active in early successional openings or low‐elevation forests, near water, and early in the evening. Mid bats were similarly active in all land cover classes, regardless of distance from water, throughout the night. Myotis avoided early successional openings and were active in forested land cover classes, near water, and throughout the night. Myotis and Mid bats did not alter their spatial activity patterns from 2015 to 2016, while Low bats did. We observed disparate temporal activity peaks between phonic groups that varied between years and by land cover class. The temporal separation between phonic groups relaxed from 2015 to 2016, possibly related to changes in the relative abundance of bats or changes in insect abundance or diversity. Temporal separation was more pronounced in the land cover classes that saw greater overall bat activity. These findings support the hypothesis that niche separation in diverse assemblages may occur along multiple resource axes and adds to the growing body of evidence that bats partition their temporal activity.  相似文献   

11.
Anthropogenic habitat modification often has a profound negative impact on the flora and fauna of an ecosystem. In parts of the Middle East, ephemeral rivers (wadis) are characterised by stands of acacia trees. Green, flourishing assemblages of these trees are in decline in several countries, most likely due to human-induced water stress and habitat changes. We examined the importance of healthy acacia stands for bats and their arthropod prey in comparison to other natural and artificial habitats available in the Arava desert of Israel. We assessed bat activity and species richness through acoustic monitoring for entire nights and concurrently collected arthropods using light and pit traps. Dense green stands of acacia trees were the most important natural desert habitat for insectivorous bats. Irrigated gardens and parks in villages and fields of date palms had high arthropod levels but only village sites rivalled acacia trees in bat activity level. We confirmed up to 13 bat species around a single patch of acacia trees; one of the richest sites in any natural desert habitat in Israel. Some bat species utilised artificial sites; others were found almost exclusively in natural habitats. Two rare species (Barbastella leucomelas and Nycteris thebaica) were identified solely around acacia trees. We provide strong evidence that acacia trees are of unique importance to the community of insectivorous desert-dwelling bats, and that the health of the trees is crucial to their value as a foraging resource. Consequently, conservation efforts for acacia habitats, and in particular for the green more densely packed stands of trees, need to increase to protect this vital habitat for an entire community of protected bats.  相似文献   

12.
Land‐use change has resulted in rangeland loss and degradation globally. These changes include conversion of native grasslands for row‐crop agriculture as well as degradation of remaining rangeland due to fragmentation and changing disturbance regimes. Understanding how these and other factors influence wildlife use of rangelands is important for conservation and management of wildlife populations. We investigated bat habitat associations in a working rangeland in southeastern North Dakota. We used Petterson d500x acoustic detectors to systematically sample bat activity across the study area on a 1‐km point grid. We identified calls using Sonobat autoclassification software. We detected five species using this working rangeland, which included Lasionycteris noctivagans (2,722 detections), Lasiurus cinereus (2,055 detections), Eptesicus fuscus (749 detections), Lasiurus borealis (62 detections), and Myotis lucifugus (1 detection). We developed generalized linear mixed‐effects models for the four most frequently detected species based on their ecology. The activity of three bat species increased with higher tree cover. While the scale of selection varied between the four species, all three investigated scales were explanatory for at least one bat species. The broad importance of trees to bats in rangelands may put their conservation needs at odds with those of obligate grassland species. Focusing rangeland bat conservation on areas that were treed prior to European settlement, such as riparian forests, can provide important areas for bat conservation while minimizing negative impacts on grassland species.  相似文献   

13.
Bats have important ecological roles in ecosystems, but many species are threatened because of anthropogenic impacts. Tanzania has limited information on how bats respond to habitat modification. This makes it difficult to anticipate which bat species are at risk. Bat activity and species richness were assessed in five land‐use types: forest and banana–coffee (upland habitats), rice paddy, riverine and sisal estate (lowland habitats). Mist nets, harp traps and bat detectors were used to sample bats. Species richness differed between habitats. Bat activity levels were higher in lowland habitats than upland habitats. Riverine and rice paddy habitats were shown to have an important role as foraging sites for many insectivorous bats as bat species richness and activity were generally higher than other habitats. Fruit‐eating bats preferred riverine and banana–coffee habitats. We recommend using organic manure as alternatives to chemical fertilisers, and pesticide use should be avoided in rice paddies. Riparian vegetation along rivers and water bodies should be maintained as important faunal nesting, roosting and/or foraging grounds. The requirement that farming practices be at least 60 m from the river should be strictly enforced. These recommendations will help in the conservation of bats and their habitats in modified agricultural landscapes.  相似文献   

14.
Strategic conservation efforts for cryptic species, especially bats, are hindered by limited understanding of distribution and population trends. Integrating long‐term encounter surveys with multi‐season occupancy models provides a solution whereby inferences about changing occupancy probabilities and latent changes in abundance can be supported. When harnessed to a Bayesian inferential paradigm, this modeling framework offers flexibility for conservation programs that need to update prior model‐based understanding about at‐risk species with new data. This scenario is exemplified by a bat monitoring program in the Pacific Northwestern United States in which results from 8 years of surveys from 2003 to 2010 require updating with new data from 2016 to 2018. The new data were collected after the arrival of bat white‐nose syndrome and expansion of wind power generation, stressors expected to cause population declines in at least two vulnerable species, little brown bat (Myotis lucifugus) and the hoary bat (Lasiurus cinereus). We used multi‐season occupancy models with empirically informed prior distributions drawn from previous occupancy results (2003–2010) to assess evidence of contemporary decline in these two species. Empirically informed priors provided the bridge across the two monitoring periods and increased precision of parameter posterior distributions, but did not alter inferences relative to use of vague priors. We found evidence of region‐wide summertime decline for the hoary bat ( = 0.86 ± 0.10) since 2010, but no evidence of decline for the little brown bat ( = 1.1 ± 0.10). White‐nose syndrome was documented in the region in 2016 and may not yet have caused regional impact to the little brown bat. However, our discovery of hoary bat decline is consistent with the hypothesis that the longer duration and greater geographic extent of the wind energy stressor (collision and barotrauma) have impacted the species. These hypotheses can be evaluated and updated over time within our framework of pre–post impact monitoring and modeling. Our approach provides the foundation for a strategic evidence‐based conservation system and contributes to a growing preponderance of evidence from multiple lines of inquiry that bat species are declining.  相似文献   

15.
16.
Bat boxes frequently form part of hollow‐bearing tree offsets; however, their effectiveness is poorly documented. We investigated the effectiveness of a bat box program designed to partially offset tree hollow loss from clearing for a coal mine. During the first year of monitoring, we detected bats in 5% of 1,308 box checks. Only 3 of 13 local tree cavity‐roosting bat species/species groups used boxes and occupancy was not strongly associated with modeled box and site attributes. In the second year, we tested two hypotheses that may explain the relatively low box use: (1) solar exposure of boxes was inadequate for heterothermic bats and (2) available box designs were of low suitability. Relocating boxes to increase solar exposure did not increase use, or enhance the temperature profiles of relocated boxes. Introduction of a new box design led to 11 times higher use compared with existing designs for Nyctophilus spp. (long‐eared bat). Overall, our data suggest that the bat box program was ineffective due to few bat species using boxes, infrequent box use by three species, and rarity of maternity roosting. The knowledge gap of species‐specific box designs and roosting ecology limits the effectiveness of boxes to offset cleared hollow‐bearing trees. Lack of knowledge and the widespread use of bat boxes to offset lost tree hollows highlights the need to (1) rigorously protect hollow‐bearing trees and (2) advance our understanding of species‐specific roost ecology, box design preferences and mechanical hollow creation into trees, before artificial hollows can be considered a meaningful offset measure.  相似文献   

17.
It is commonly assumed that aerial insectivorous bats in the tropics respond to moonlight intensity by decreasing their foraging activity during bright nights due either to an increase in predation risk, or to a reduction in insect availability.The effect of moonlight on bat activity can be measured both between nights and within a single night. However, few studies have simultaneously used both approaches, and most authors generally compare bat activity with lunar phases. Our main aim was to evaluate how moonlight influences aerial insectivorous bat activity at different time scales: between nights and within the same night. Activity of five bat species was measured using autonomous ultrasound recording stations and moonlight intensity percentages retrieved from the Moontool program nightly throughout a 53-day sampling period. Only one species (Myotis riparius) responded negatively to moonlight, while two species (Pteronotus parnellii and Saccopteryx leptura) increased their foraging activity in moonlight. For Cormura brevirostris and S. bilineata, moonlight intensity did not affect activity level. Bat activity was greater for all species at the beginning of the night, independent of the presence of the moon, indicating that foraging just after the sunset is adaptive. Thus, bat response to the effect of moonlight intensity is more apparent between nights than within a single night and may depend on species-specific traits, such as flight speed, flexibility in habitat use and body size.  相似文献   

18.
Land conversion and modification threatens many wildlife and plant species in the northern Great Plains, including bats. Our objective was to assess the association of bat species with landscape features in the northern Great Plains of North Dakota, USA, taking the first step towards understanding the habitat needs of bats in this region. We examined patterns of bat activity across different landscapes, identified those landscape features associated with high levels of bat activity, and determined which specific land features (i.e., vegetation and water types) were most commonly associated with each bat species. We used passive acoustic monitoring to measure bat activity at sites across North Dakota, and assessed detailed land characteristics at each site. We used nonmetric multidimensional scaling and multivariate regression tree analysis to examine relationships between bat activity and landscape variables. Bat foraging activity was influenced by structural landscape characteristics and the availability of specific water resources. High levels of bat activity were associated with riparian forested areas of varying structural complexity, ponds, and, to a lesser extent, open riparian lands. Individual bat species were influenced by land type and water resources differently. We identified big brown bats (Eptesicus fuscus) and little brown bats (Myotis lucifugus) as indicators of open riparian and pond landscapes, respectively. These results highlight the importance of prairie riparian landscapes and maintaining heterogeneity across the landscape for conservation and management of bat communities. Further, we identified ponds as an important landscape feature for little brown bats, a species of conservation concern, indicating that this specific feature should be a focus of conservation efforts on prairie wetlands. © 2019 The Wildlife Society.  相似文献   

19.
Artificial light at night (ALAN) is a rapidly intensifying form of environmental degradation that can impact wildlife by altering light‐mediated physiological processes that control a broad range of behaviors. Although nocturnal animals are most vulnerable, ALAN''s effects on North American bats have been surprisingly understudied. Most of what is known is based on decades‐old observations of bats around street lights with traditional lighting technologies that have been increasingly replaced by energy‐efficient broad‐spectrum lighting, rendering our understanding of the contemporary effects of ALAN on North American bats even less complete. We experimentally tested the effects of broad‐spectrum ALAN on presence/absence, foraging activity, and species composition in a Connecticut, USA bat community by illuminating foraging habitat with light‐emitting diode (LED) floodlights and comparing acoustic recordings between light and dark conditions. Lighting dramatically decreased presence and activity of little brown bats (Myotis lucifugus), which we detected on only 14% of light nights compared with 65% of dark (lights off) and 69% of control (lights removed) nights. Big brown bat (Eptesicus fuscus) activity on light nights averaged only half that of dark and control nights. Lighting did not affect presence/absence of silver‐haired bats (Lasionycteris noctivagans), but decreased their activity. There were no effects on eastern red bats (Lasiurus borealis) or hoary bats (L. cinereus), which have been described previously as light‐tolerant. Aversion to lighting by some species but not others caused a significant shift in community composition, thereby potentially altering competitive balances from natural conditions. Our results demonstrate that only a small degree of ALAN can represent a significant form of habitat degradation for some North American bats, including the endangered little brown bat. Research on the extent to which different lighting technologies, colors, and intensities affect these species is urgently needed and should be a priority in conservation planning for North America''s bats.  相似文献   

20.
Logging activities and the associated creation of roads and tracks can disturb and fragment forests, which may lead to a loss of forest‐dependent species and possibly favour nonforest generalists and edge species. The effects of such disturbance are poorly known for African insectivorous bats. We studied the activity patterns of insectivorous bats in a tropical African forest at Kibale National Park, Uganda, using an Anabat bat detector. The echolocation calls of the vespertilionid bat Neoromicia nana were the most frequently detected. This species was most active in the first 5 h after sunset with activity declining rapidly after midnight until sampling finished at 01:00 h. There was no difference in activity of N. nana levels between logged or undisturbed forest; however, this species exhibited higher levels of activity along the wide tracks running through the two forests than either 30 m off these tracks or along the narrow forest trails. The wing morphology and echolocation call of N. nana may be constraining it to flying in uncluttered space on the edge of the forest, penetrating mostly along wider tracks and roads. Further research (in particular radio‐telemetry) is required to test and validate these data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号