首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The presence and distribution of galanin-immunoreactivity was examined in the uterine cervix and paracervical autonomic ganglia of the female rat. Some animals were treated with capsaicin to determine if galanin-immunoreactivity was present in small-diameter primary afferent nerves. Other animals were treated with the noradrenergic neurotoxin 6-hydroxydopamine to ascertain if galanin-immunoreactivity was present in sympathetic noradrenergic nerves. Galanin-immunoreactive nerve fibers were sparse in the cervical myometrium and vasculature, but numerous in the paracervical ganglion where they appeared to innervate principal neurons. Immunoreactivity was also present in dorsal root ganglia, dorsal horn of spinal cord, and inferior mesenteric ganglia. Capsaicin treatment resulted in a marked reduction of galanin-immunoreactivity in the spinal cord dorsal horn, but not in the dorsal root ganglia, paracervical ganglia, or cervix (although there was a substantial reduction of substance P-, neurokinin A-, and calcitonin gene-related peptide-immunoreactivity in the dorsal horn, dorsal root ganglia, and uterine cervix). 6-Hydroxydopamine treatment did not cause any appreciable change in the galanin-immunoreactivity in any tissues. We conclude that galanin-like immunoreactivity is expressed in nerve fibers innervating the paracervical ganglia and uterine cervix of the female rat. This immunoreactivity is probably present in afferent nerves and could play a role in neuroendocrine reflexes and in reproductive function.  相似文献   

2.
Nerves containing the calcium-binding protein calretinin have been reported in several organs but not in female reproductive organs and associated ganglia. This study was undertaken to determine if nerves associated with the uterus contain calretinin and the source(s) of calretinin-synthesizing nerves in the rat (are they sensory, efferent, or both?). Calretinin-immunoreactive nerves were present in the uterine horns and cervix where they were associated with arteries, uterine smooth muscle, glands, and the epithelium. Calretinin-immunoreactive terminals were apposed to neurons in the paracervical ganglia; in addition, some postganglionic neurons in this ganglion were calretinin positive. Calretinin perikarya were present in the lumbosacral dorsal root ganglia, no-dose ganglia, and lumbosacral spinal cord. Retrograde axonal tracing, utilizing Fluorogold injected into the uterus or paracervical parasympathetic ganglia, revealed calretinin-positive/Fluorogold-labeled neurons in the dorsal root and nodose ganglia. Also, capsaicin treatment substantially reduced the calretinin-positive fibers in the uterus and pelvic ganglia, thus indicating the sensory nature of these fibers. The presence of calretinin immunoreactivity identifies a subset of nerves that are involved in innervation of the pelvic viscera and have origins from lumbosacral dorsal root ganglia and vagal nodose ganglia. Though the exact function of calretinin in these nerves is not currently known, calretinin is likely to play a role in calcium regulation and their function.  相似文献   

3.
R Kurkowski  W Kummer  C Heym 《Peptides》1990,11(1):13-20
Double-labeling immunofluorescence of guinea pig tracheobronchial lymph nodes revealed complete coincidence of SP and CGRP immunoreactivities in perivascular nerves and axons of the medullary lymphatic tissue. Additional dynorphin A or cholecystokinin immunoreactivity was seen only in some of the medullary fibers. Ultrastructurally, all SP-immunoreactive axons were unmyelinated and displayed vesicle-containing varicosities. Retrograde neuronal tracing combined with immunohistochemistry revealed a sensory origin from dorsal root ganglia of SP/CGRP-immunoreactive fibers ramifying within paratracheal lymph nodes, and an additional neuronal population being devoid of SP/CGRP immunoreactivity. The findings provide evidence for several types of sensory nerve fibers innervating lymph nodes.  相似文献   

4.
The uterine cervix is highly innervated by the sensory nerves containing neuropeptides which change during pregnancy and are regulated, in part, by estrogen. These neuropeptides act as transmitters both in the spinal cord and cervix. The present study was undertaken to determine the expression pattern of the neuropeptide pituitary adenylate cyclase activating peptide (PACAP) in the cervix and its nerves during pregnancy and the influence of estrogen on this expression using immunohistochemistry, radioimmunoassay and RT-PCR. PACAP immunoreactivity was detected in nerves in the cervix, lumbosacral (L6-S1) dorsal root ganglia (DRG) and spinal cord. PACAP immunoreactivity was highest at day 15 of pregnancy in the cervix and dorsal spinal cord, but then decreased over the last trimester of pregnancy. However, levels of PACAP mRNA increased in the L6-S1 DRG at late pregnancy relative to early pregnancy. DRG of ovariectomized rats treated with estrogen showed increased PACAP mRNA synthesis in a dose-related manner, an effect partially blocked by the estrogen receptor (ER) antagonist ICI 182,780. We postulate that synthesis of PACAP in L6-S1 DRG and utilization in the cervix and spinal cord increase over pregnancy and this synthesis is the under influence of the estrogen-ER system. Since PACAP is expressed by sensory nerves and may have roles in nociception and vascular function, collectively, these data are consistent with the hypothesis that sensory nerve-derived neuronal factors innervate the cervix and play a role in cervical ripening.  相似文献   

5.
The distribution and ontogeny of four neuropeptides in developing chick lumbosacral sensory and sympathetic ganglia were studied using immunohistochemical techniques. Antibodies to two of these peptides, substance P (SP) and calcitonin gene-related peptide (CGRP), stained small neurons in the medial part of the dorsal root ganglia from embryonic Day 5 and Day 10, respectively, whereas neurons in the lateral part of the ganglia were negative; this distribution persisted throughout development. Both sets of neurons apparently send fibers to the dorsal horn of the spinal cord: SP to laminae I and II, and CGRP to lamina I, suggesting that the SP- and CGRP-positive sensory neurons are nociceptive or thermoreceptive. This correlation between the presence of SP or CGRP in a neuron and a particular functional modality thus provides evidence for a functional distinction between the mediodorsal and ventrolateral zones that are apparent during the development of chick dorsal root ganglia. Moreover, this study suggests that the type of neuron that develops within the dorsal root ganglion correlates with its position within the ganglion. In contrast to SP and CGRP, somatostatin (SOM) and vasoactive intestinal polypeptide (VIP) immunoreactivities were not seen in the lumbosacral sensory ganglia at any stage during development. However, both were present in sympathetic ganglia: SOM from embryonic Day 4.5 and VIP from embryonic Day 10. VIP immunoreactivity persisted throughout development in a large number of sympathetic neurons, but the number of cells with SOM immunoreactivity decreased from embryonic Day 10 onward. SOM therefore appears to be present only transiently in most chick lumbosacral sympathetic cells.  相似文献   

6.
With the use of an antiserum generated in rabbits against synthetic human calcitonin gene-related peptide (CGRP) the distribution of CGRP-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system. A detailed stereotaxic atlas of CGRP-like neurons was prepared. CGRP-like immunoreactivity was widely distributed in the rat central nervous system. CGRP positive cell bodies were observed in the preoptic area and hypothalamus (medial preoptic, periventricular, anterior hypothalamic nuclei, perifornical area, medial forebrain bundle), premamillary nucleus, amygdala medialis, hippocampus and dentate gyrus, central gray and the ventromedial nucleus of the thalamus. In the midbrain a large cluster of cells was contained in the peripeduncular area ventral to the medial geniculate body. In the hindbrain cholinergic motor nuclei (III, IV, V, VI, VII XII) contained CGRP-immunoreactivity. Cell bodies were also observed in the ventral tegmental nucleus, the parabrachial nuclei, superior olive and nucleus ambiguus. The ventral horn cells of the spinal cord, the trigeminal and dorsal root ganglia also contained CGRP-immunoreactivity. Dense accumulations of fibers were observed in the amydala centralis, caudal portion of the caudate putamen, sensory trigeminal area, substantia gelatinosa, dorsal horn of the spinal cord (laminae I and II). Other areas containing CGRP-immunoreactive fibers are the septal area, nucleus of the stria terminalis, preoptic and hypothalamic nuclei (e.g., medial preoptic, periventricular, dorsomedial, median eminence), medial forebrain bundle, central gray, medial geniculate body, peripeduncular area, interpeduncular nucleus, cochlear nucleus, parabrachial nuclei, superior olive, nucleus tractus solitarii, and in the confines of clusters of cell bodies. Some fibers were also noted in the anterior and posterior pituitary and the sensory ganglia. As with other newly described brain neuropeptides it can only be conjectured that CGRP has a neuroregulatory action on a variety of functions throughout the brain and spinal cord.  相似文献   

7.
The presence of calcitonin-gene related peptide (CGRP)-like immunoreactivity (-LI) in sensory neurons was established by immunohistochemistry and radioimmunoassay (RIA) in combination with high performance liquid chromatography (HPLC). CGRP-immunoreactive (-IR) nerve fibres were present in many peripheral organs including heart, ureter, uterus and gall bladder of guinea-pig and man. The distribution of CGRP-IR nerves in the dorsal horn of the spinal cord, of positive cell bodies in thoracic spinal and nodose ganglia and nerves in peripheral organs was closely related to that of substance P-LI. Double staining experiments revealed that in most cases peripheral CGRP-IR nerve terminals also contained SP-LI. However, different localization of SP- and CGRP-IR neurons was observed in the nucleus of the solitary tract as well as in the ventral horn of the spinal cord. In the heart, CGRP-IR nerves were associated with myocardial cells (mainly atria), coronary vessels, local parasympathetic ganglia as well as with the epi- and endocardia. Three to 4-fold higher levels of native CGRP-LI were observed in the atria than in the ventricles of the heart. HPLC analysis revealed that the major peak of CGRP-LI in the heart of rat and man had the same retention times as the synthetic equivalents. Systemic capsaicin pretreatment and adult guinea-pigs caused a loss of CGRP-IR terminals in the dorsal horn of the spinal cord as well as in peripheral organs including the heart. After capsaicin treatment, the content of CGRP-IR was reduced by 70% in the heart and by 60% in the dorsal part of the spinal cord. In superfusion experiments with slices from the rat spinal cord, a release of CGRP-LI was induced by 60 mM K+ and 3 microM capsaicin in a calcium-dependent manner.  相似文献   

8.
This study describes the immunocytochemical distribution of five neuropeptides (calcitonin gene-related peptide [CGRP], enkephalin, galanin, somatostatin, and substance P), three neuronal markers (neurofilament triplet proteins, neuron-specific enolase [NSE], and protein gene product 9.5), and two synaptic-vesicle-associated proteins (synapsin I and synaptophysin) in the spinal cord and dorsal root ganglia of adult and newborn dogs. CGRP and substance P were the only peptides detectable at birth in the spinal cord; they were present within a small number of immunoreactive fibers concentrated in laminae I-II. CGRP immunoreactivity was also observed in motoneurons and in dorsal root ganglion cells. In adult animals, all peptides under study were localized to varicose fibers forming rich plexuses within laminae I-III and, to a lesser extent, lamina X and the intermediolateral cell columns. Some dorsal root ganglion neurons were CGRP- and/or substance P-immunoreactive. The other antigens were present in the spinal cord and dorsal root ganglia of both adult and newborn animals, with the exception of NSE, which, at birth, was not detectable in spinal cord neurons. Moreover, synapsin I/synaptophysin immunoreactivity, at birth, was restricted to laminae I-II, while in adult dogs, immunostaining was observed in terminal-like elements throughout the spinal neuropil. These results suggest that in the dog spinal cord and dorsal root ganglia, peptide-containing pathways complete their development during postnatal life, together with the full expression of NSE and synapsin I/synaptophysin immunoreactivities. In adulthood, peptide distribution is similar to that described in other mammals, although a relative absence of immunoreactive cell bodies was observed in the spinal cord.  相似文献   

9.
ATP, an intracellular energy source, is released from cells during tissue stress, damage, or inflammation. The P2X subtype of the ATP receptor is expressed in rat dorsal root ganglion (DRG) cells, spinal cord dorsal horn, and axons in peripheral tissues. ATP binding to P2X receptors on nociceptors generates signals that can be interpreted as pain from damaged tissue. We have hypothesized that tissue stress or damage in the uterine cervix during late pregnancy and parturition can lead to ATP release and sensory signaling via P2X receptors. Consequently, we have examined sensory pathways from the cervix in nonpregnant and pregnant rats for the presence of purinoceptors. Antiserum against the P2X3-receptor subtype showed P2X3- receptor immunoreactivity in axon-like structures of the cervix, in small and medium-sized neurons in the L6/S1 DRG, and in lamina II of the L6/S1 spinal cord segments. Retrograde tracing confirmed the projections of axons of P2X3-receptor-immunoreactive DRG neurons to the cervix. Some P2X3-receptor-positive DRG neurons also expressed estrogen receptor- immunoreactivity and expressed the phosphorylated form of cyclic AMP response-element-binding protein at parturition. Western blots showed a trend toward increases of P2X3-receptor protein between pregnancy (day 10) and parturition (day 22–23) in the cervix, but no significant changes in the DRG or spinal cord. Since serum estrogen rises over pregnancy, estrogen may influence purinoceptors in these DRG neurons. We suggest that receptors responsive to ATP are expressed in uterine cervical afferent nerves that transmit sensory information to the spinal cord at parturition.  相似文献   

10.
11.
Intraocular co-grafts of rat fetal spinal cord and dorsal root ganglia were used to examine the enhanced survival, growth, and differentiation of sensory neurons by nerve growth factor. E14 lumbar spinal segments were implanted into the anterior eye chamber of capsaicin-pretreated rats. Two weeks later, an E14 dorsal root ganglion was implanted beside the spinal cord graft. Nerve growth factor or vehicle was injected weekly for 4 weeks into the anterior eye chamber. Co-grafts were examined weekly and, at 6 weeks, processed for calcitonin gene-related peptide (CGRP) immunofluorescence. No differences in overall size were determined for the grafts. Co-grafts treated with nerve growth factor contained many more CGRP neurons (19.4 cells/20 microm) that were significantly larger (mean 764 microm2) than neurons from control co-grafts (8.6 cells/20 microm; mean 373 microm2). In co-grafts treated with nerve growth factor, CGRP-immunoreactive fibers were extensive in the dorsal root ganglion, adjacent iris, and spinal cord compared to control co-grafts. A few CGRP-positive motoneurons were observed in the spinal cord, but no differences in number or size of motoneurons were found. The current report demonstrates that spinal cord and dorsal root ganglia can be co-grafted in oculo for long periods of time. Many dorsal root ganglion neurons survive and send peripheral processes into the iris and central processes into the spinal cord under the influence of exogenous nerve growth factor. The intraocular graft paradigm can be of use to further examine the role of neurotrophic factors in regulating or modulating dorsal root ganglion and spinal cord neurons.  相似文献   

12.
Martin-Schild, S., J. E. Zadina, A. A. Gerall, S. Vigh and A. J. Kastin. Localization of endomorphin-2-like immunoreactivity in the rat medulla and spinal cord. Peptides 18(10) 1641–1649, 1997.—Endomorphin-1 (Tyr-Pro-Trp-Phe-NH2) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) are endogenous ligands that have greater affinity and selectivity for the μ-opiate receptor than any other known mammalian peptide. A polyclonal antiserum, screened for specificity to endomorphin-2 by immunodot-blot assay and preabsorption controls, was used for localization of this peptide. Immunocytochemistry performed on the brainstem, spinal cord, and sensory ganglia of rats by the avidin–biotin–peroxidase method revealed a continuous dense aggregation of endomorphin-2-like immunoreactive varicose fibers in the superficial laminae of the dorsal horn of the medulla and spinal cord. Immunoreactive fibers were detected in the dorsal root as well as within the dorsal root ganglia. The results suggest that endomorphin-2 is synthesized in primary sensory neurons in ganglia, transported to the superficial dorsal horn, and released near neurons expressing μ receptors. Its distribution appears to represent a functional unit likely to be associated with modulation of nociceptive stimuli.  相似文献   

13.
14.
用HRP追踪法与免疫细胞化学法观察了大鼠直肠内P物质(SP)、降钙素基因相关肽(CGRP)和血管活性肠肽(VIP)三种肽能神经的支配与来源。结果显示:(1)直肠GCRP和VIP肽能神经起源于盆丛副交感神经节(PSG)。(2)直肠感觉神经纤维来自骶2-4节段双侧背根神经节(S2-4-DRG)SP能或CGRP能神经元。(3)感觉神经元的中枢突进入骶髓2-3节段后角并形成较粗大的外侧束,其中大部分传入纤维经后角外侧缘走行,终止于侧角区中间外侧核交感神经元胞体周围。其余部分传入纤维延伸到骶髓2-3节段灰质第Ⅱ、Ⅲ层和灰质后连合核(中央自主神经核),进入中间外侧核的传入纤维与后连合核也有联系。上述结果提示,支配直肠的VIP能神经元参与了直肠肌运动的调节;SP和CGRP能神经元可能与直肠的运动、感觉调节有关。  相似文献   

15.

Background

The complex neuronal circuitry of the dorsal horn of the spinal cord is as yet poorly understood. However, defining the circuits underlying the transmission of information from primary afferents to higher levels is critical to our understanding of sensory processing. In this study, we have examined phosphodiesterase 1C (Pde1c) BAC transgenic mice in which a green fluorescent protein (GFP) reporter gene reflects Pde1c expression in sensory neuron subpopulations in the dorsal root ganglia and spinal cord.

Results

Using double labeling immunofluorescence, we demonstrate GFP expression in specific subpopulations of primary sensory neurons and a distinct neuronal expression pattern within the spinal cord dorsal horn. In the dorsal root ganglia, their distribution is restricted to those subpopulations of primary sensory neurons that give rise to unmyelinated C fibers (neurofilament 200 negative). A small proportion of both non-peptidergic (IB4-binding) and peptidergic (CGRP immunoreactive) subclasses expressed GFP. However, GFP expression was more common in the non-peptidergic than the peptidergic subclass. GFP was also expressed in a subpopulation of the primary sensory neurons immunoreactive for the vanilloid receptor TRPV1 and the ATP-gated ion channel P2X3. In the spinal cord dorsal horn, GFP positive neurons were largely restricted to lamina I and to a lesser extent lamina II, but surprisingly did not coexpress markers for key neuronal populations present in the superficial dorsal horn.

Conclusion

The expression of GFP in subclasses of nociceptors and also in dorsal horn regions densely innervated by nociceptors suggests that Pde1c marks a unique subpopulation of nociceptive sensory neurons.  相似文献   

16.
The mechanism of pancreatitis-induced pain is unknown. In other tissues, inflammation activates transient receptor potential vanilloid 1 (TRPV1) on sensory nerves to liberate CGRP and substance P (SP) in peripheral tissues and the dorsal horn to cause neurogenic inflammation and pain, respectively. We evaluated the contribution of TRPV1, CGRP, and SP to pancreatic pain in rats. TRPV1, CGRP, and SP were coexpressed in nerve fibers of the pancreas. Injection of the TRPV1 agonist capsaicin into the pancreatic duct induced endocytosis of the neurokinin 1 receptor in spinal neurons in the dorsal horn (T10), indicative of SP release upon stimulation of pancreatic sensory nerves. Induction of necrotizing pancreatitis by treatment with L-arginine caused a 12-fold increase in the number of spinal neurons expressing the proto-oncogene c-fos in laminae I and II of L1, suggesting activation of nociceptive pathways. L-arginine also caused a threefold increase in spontaneous abdominal contractions detected by electromyography, suggestive of referred pain. Systemic administration of the TRPV1 antagonist capsazepine inhibited c-fos expression by 2.5-fold and abdominal contractions by 4-fold. Intrathecal, but not systemic, administration of antagonists of CGRP (CGRP(8-37)) and SP (SR140333) receptors attenuated c-fos expression in spinal neurons by twofold. Thus necrotizing pancreatitis activates TRPV1 on pancreatic sensory nerves to release SP and CGRP in the dorsal horn, resulting in nociception. Antagonism of TRPV1, SP, and CGRP receptors may suppress pancreatitis pain.  相似文献   

17.
Immunohistochemical and radioimmunoassay studies revealed that both CGRP- and SP-like immunoreactivity in the caudal spinal trigeminal nucleus and tract, the substantia gelatinosa and the dorsal cervical spinal cord as well as in cell bodies of the trigeminal ganglion and the spinal dorsal root ganglion is markedly depleted by capsaicin which is known to cause degeneration of a certain number of primary sensory neurons. Higher brain areas and the ventral spinal cord were not affected by capsaicin treatment. Furthermore CGRP and substance P-like immunoreactivity were shown to be colocalized in the above areas and to coexist in cell bodies of the trigeminal ganglion and the spinal dorsal root ganglia. It is suggested that CGRP, like substance P, may have a neuromodulatory role on nociception and peripheral cardiovascular reflexes.  相似文献   

18.
Rat spinal cord, dorsal root ganglia and skin were investigated employing immunohistochemical technique with specific antisera to neurokinin A and substance P. Neurokinin A-like immunoreactivity was detected in the spinal dorsal horn and skin with a similar distribution pattern as that of substance P-like immunoreactivity. After dorsal root transection a parallel decrease of neurokinin A and substance P-like immunoreactivity was observed in the dorsal horn. Using colchicine pretreatment a population of neurokinin A positive cell bodies was seen in the dorsal root ganglia, and by comparison of consecutive sections of the same cells stained for substance P it was revealed that these neurons also display substance P-like immunoreactivity. However, substance P-, but not neurokinin A-, immunoreactive cells were also observed. It is concluded that neurokinin A- and substance P-like immunoreactivity coexist in a population of rat primary sensory neurons.  相似文献   

19.
Summary Rat spinal cord, dorsal root ganglia and skin were investigated employing immunohistochemical technique with specific antisera to neurokinin A and substance P. Neurokinin A-like immunoreactivity was detected in the spinal dorsal horn and skin with a similar distribution pattern as that of substance P-like immunoreactivity. After dorsal root transection a parallell decrease of neurokinin A and substance P-like immunoreactivity was observed in the dorsal horn. Using colchicine pretreatment a population of neurokinin A positive cell bodies was seen in the dorsal root ganglia, and by comparison of consecutive sections of the same cells stained for substance P it was revealed that these neurons also display substance P-like immunoreactivity. However, substance P-, but not neurokinin A-, immunoreactive cells were also observed. It is concluded that neurokinin A- and substance P-like immunoreactivity coexist in a population of rat primary sensory neurons.  相似文献   

20.
Summary The mutilated foot rat is a mutant with autosomal recessive sensory neuropathy and frequent mutilation of the hindlimbs. Decreased numbers of dorsal root ganglion cells and diminished sensitivity to painful stimuli are characteristics of these animals. By use of immunocytochemistry, changes in the distributions of peptides involved in sensory and/or autonomic regulation, i.e. calcitonin generelated peptide (CGRP), tachykinins, enkephalin and neuropeptide Y in spinal cord, dorsal root ganglia and skin of these animals, were studied. In comparison with normal litter-mate controls, the dorsal horn of mutilated foot rats contained substantially fewer CGRP and tachykinin-immunoreactive fibres but more fibres immunoreactive for enkephalin. Many enkephalin-immunoreactive cell bodies were also found in the dorsal horn of the mutants, by contrast none were visible in control animals. Neuropeptide Y immunoreactivity was, however, unchanged in the spinal cord of the mutants. In the dorsal root ganglia of the mutants, the number of CGRPor tachykinin-immunoreactive cells and their proportion to total neuronal numbers were significantly less in comparison with normal controls. The diameter range of CGRP- and tachykinin-immunoreactive cells shifted from small (15–25 m) to medium size (25–45 m) as revealed by frequency distribution histograms. The skin from the affected foreand hindlimbs of the mutant rats, in keeping with fewer CGRP- and tachykinin-immunoreactive cells in the dorsal root ganglia, contained substantially less fibres immunoreactive for CGRP and tachykinins; a difference that was not seen in skin of unaffected areas (whiskers and snout). By contrast, neuropeptide Y-immunoreactive fibres showed a normal distribution around blood vessels and sweat glands of mutilated foot rats. The data suggest that diminished pain perception in the mutilated foot rat is related to loss of peptide-containing sensory neurones. Furthermore, the intraspinal increase of enkephalinergic neurones in the dorsal horn, concomitant with the decreased number of primary sensory neurones, may also play a contributory rôle in reducing pain thresholds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号