首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of Chloroethylthiamin (CET), a structural analog of thiamin, on thiamin pyrophosphokinase (TPKase) activity of the supernatant of rat isolated enterocytes was compared with that on thiamin intestinal transport by rat everted jejunal sacs. Thiamin- thiazol-2(14C) was used as a substrate both for TPKase activity and for thiamin serosal transport and uptake. CET strongly inhibited TPKase activity of isolated enterocytes: at molar concentrations 10 or 100 times higher than labeled thiamin, the inhibition was 57 and 100% respectively. The inhibition was of the competitive type, with a Ki = 15 microM. At a molar concentration 10 times higher than labeled thiamin, CET lowered the thiamin serosal transport by 60%, and the sac wall content of free and phosphorylated thiamin by 54 and 42% respectively. At the 1:10 thiamin: CET molar ratio, the extent of the reductions of TPKase activity (57%) and of phosphorylated thiamin content of intestinal sac walls (42%) were of the same order. This indicates a relationship between the two events. Moreover, since TPKase activity inhibition alone resulted in the lowering of labeled thiamin serosal transport, thiamin phosphorylation and transport are probably two strictly related processes.  相似文献   

2.
Activation of membrane-associated thiamin triphosphatase from rat brain requires a divalent cation (Mg2+, Ca2+, or Mn2+). The optimum concentration of Mg2+ necessary for maximal enzyme activity varies with substrate concentration; conversely, the maximal rate of hydrolysis attainbale by increasing thiamin triphosphate concentration is directly proportional to [Mg2+] for all levels of Mg2+ below that of the substrate. Under appropriate conditions, the Km of the thiamin triphosphatase for Mg2+ and for thiamin triphosphate are shown to be identical. Dissociation constants (Kd) for the binding of Mg2+ to thiamin triphosphate, thiamin diphosphate, and thiamin were determined; kinetic data re-expressed in terms of [Mg2+-thiamin triphosphate] conform to simple single substrate predictions, suggesting that the true enzyme substrate may be the Mg2+-thiamin triphosphate complex. Excess free Mg2+ inhibits thiamin triphosphatase activity competitively while excess free thiamin triphosphate in concentrations up to 10 times Km has no effect on the membrane-bound enzyme.  相似文献   

3.
ATP:thiamin pyrophosphotransferase (TPT: EC 2.7.6.2) was purified 5 900-fold from 48 h dark-grown soybean [ Glycine max (L.), Merr. cv. Ransom II] seedling axes. TPT activity was monitored during purification by measuring the formation of thiamin pyrophosphate (TPP) from [2-14C]-thiamin at optimal pH (7.3). Although other nucleoside triophosphates were active as pyrophosphate donors (apparent Kms from 21 to 138 m M ), GTP was the preferred nucleotide with an apparent Km of 0.021 m M . TPT activity was extremely sensitive to TPP formation, suggesting product feedback inhibition of TPT activity in vivo. Sulfhydryl, H+ and Mg2+ concentrations, either independently or in concert, were found to affect TPT activity.  相似文献   

4.
This study examines thiamin transport in isolated rat hepatocytes and its relationship to thiamin phosphorylation. In an Na+ medium, [35S]thiamin, 3 microM, was accumulated rapidly by the cells, and a near study state intra-/extracellular distribution ratio of 3 was attained in 1 min. However, the uptake of radioactivity continued to increase with time owing principally to the accumulation of [35S]thiamin pyrophosphate (TPP). In a choline, Li+ or K+ medium, the steady state intra-/extracellular distribution ratio of [35S]thiamin was decreased to less than or equal to 1.1. Accordingly, the rate of formation of [35S]TPP also decreased. Ouabain and uncouplers of oxidative phosphorylation significantly lowered the distribution ratio of intra-/extracellular [35S]thiamin. These data indicate that thiamin transport in liver is concentrative, Na+-dependent, and dependent on biological energy. Additionally, they suggest that thiamin transport plays a significant role in governing the rate of synthesis of TPP. Neither pyrithiamin, an inhibitor of thiamin pyrophosphokinase nor o-benzoylthiamin disulfide, a permeable thiamin analog, affected the distribution ratio of intra-/extracellular [35S]thiamin, but preferentially inhibited the phosphorylation of [35S]thiamin. By contrast, amprolium primarily inhibited uptake. These data suggest that thiamin transport and phosphorylation can be differentiated by the action of appropriate inhibitors.  相似文献   

5.
In an attempt to obtain a potent inhibitor for thiamin transport of Saccharomyces cerivisiae three novel thiamin derivatives having an arylazido substituent in the thiazole moiety have been synthesized. The derivatives prepared were 4-azidobenzoylthiamin (ABT), 4-azidobenzoylthiamin disulfide (ABTD), and 4-azido-2-nitrobenzoylthiamin disulfide (ANBTD). Among the newly prepared photoreactive azidobenzoyl derivatives of thiamin, ANBTD showed the strongest competitive inhibition with an apparent Ki of 7.9 nM against thiamin uptake by S. cerevisiae IFO-2375. The Ki values for ABT, 4-azido-2-nitrobenzoylthiamin (ANBT), and ABTD were 187 nM, 83 nM, and 15 nM, respectively. When exposed to visible light, ANBTD inactivated in a time- and concentration-dependent manner the uptake of [14C]thiamin by yeast protoplasts as well as intact cells. Remaining activities of the thiamin uptake by the intact cells were 71.9%, 27.3%, 40.1%, and 15.0% after visible light irradiation for 15 min in the presence of 1 microM ABT, ANBT, ABTD, and ANBTD, respectively. The inactivation by ANBTD (0.05 microM) was partially prevented by previous addition of an excessive amount of thiamin (5 microM). Furthermore, it was found that ANBTD (0.5 microM) irreversibly inactivated 70.6% of the thiamin-binding activity of the membrane fraction from S. cerevisiae IFO-2375. These results suggest that ANBTD can inhibit yeast thiamin transport by photoinactivation of membrane-bound thiamin-binding protein in the plasma membrane which may be a functional component involved in the thiamin transport system of S. cerevisiae.  相似文献   

6.
Hepatocyte susceptibility to glyoxal is dependent on cell thiamin content   总被引:1,自引:0,他引:1  
Glyoxal, a reactive dicarbonyl, is detoxified primarily by the glyoxalase system utilizing glutathione (GSH) and by the aldo-keto reductase enzymes which utilizes NAD[P]H as the co-factor. Thiamin (Vitamin B(1)) is an essential coenzyme for transketolase (TK) that is part of the pentose phosphate pathway which helps maintain cellular NADPH levels. NADPH plays an intracellular role in regenerating glutathione (GSH) from oxidized GSH (GSSG), thereby increasing the antioxidant defenses of the cell. In this study we have focused on the prevention of glyoxal toxicity by supplementation with thiamin (3mM). Thiamin was cytoprotective and restored NADPH levels, glyoxal detoxification and mitochondrial membrane potential. Hepatocyte reactive oxygen species (ROS) formation, lipid peroxidation and GSH oxidation were decreased. Furthermore, hepatocytes were made thiamin deficient with oxythiamin (3mM) as measured by the decreased hepatocyte TK activity. Under thiamin deficient conditions a non-toxic dose of glyoxal (2mM) became cytotoxic and glyoxal metabolism decreased; while ROS formation, lipid peroxidation and GSH oxidation was increased.  相似文献   

7.
Neither exit nor counterflow efflux of thiamin, taken up previously by an active transport, were found in Saccharomyces cerevisiae, in either the wild type or a mutant with a lower rate of thiamin phosphorylation. Complete inhibition of thiamin phosphorylation by oxythiamin did not lead to any release of thiamin taken up by the cell.  相似文献   

8.
The distribution of thiamine, thiamine phosphoesters, and the thiamine pyrophosphate synthetizing [thiamine-pyrophosphokinase (TPKase)] as well as hydrolyzing [thiamine pyrophosphatase (TPPase) and thiamine monophosphatase (TMPase)] enzymes was determined in neuronal and glial enriched fractions prepared from rat brain. Nucleoside diphosphatases [inosine diphosphatase (IDPase) and uridine diphosphatase (UDPase)] and nucleoside monophosphatases [uridine monophosphatase (UMPase) and inosine monophosphatase (IMPase)] were also determined. Thiamine and thiamine mono- and pyrophosphate were present in neuronal enriched fractions at concentrations 2.8, 3.6, and 4.6 times higher than in glial fractions. TMPase was found only in glial enriched fractions, whereas the levels of TPKase, UMPase, IMPase, IDPase, UDPase, and TPPase were 2.0-, 2.2-, 1.3-, 2.8-, 3.7-, and 20.8-fold higher in neuronal than in glial fractions.  相似文献   

9.
The physiological function for thiaminase II, a thiamin-degrading enzyme, has eluded investigators for more than 50 years. Here, we demonstrate that this enzyme is involved in the regeneration of the thiamin pyrimidine rather than in thiamin degradation, and we identify a new pathway involved in the salvage of base-degraded forms of thiamin. This pathway is widely distributed among bacteria, archaea and eukaryotes. In this pathway, thiamin hydrolysis products such as N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine (formylaminopyrimidine; 15) are transported into the cell using the ThiXYZ transport system, deformylated by the ylmB-encoded amidohydrolase and hydrolyzed to 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP; 6)-an intermediate on the de novo thiamin biosynthetic pathway. To our knowledge this is the first example of a thiamin salvage pathway involving thiamin analogs generated by degradation of one of the heterocyclic rings of the cofactor.  相似文献   

10.
An enzyme system catalyzing the synthesis of thiamin triphosphate consists of an enzyme (protein-bound thiamin diphosphate:ATP phosphoryltransferase), thiamin diphosphate bound to a macromolecule as substrate, ATP, Mg2+, and a low molecular weight cofactor. This system was established by combining a purified enzyme and an essentially pure, macromolecule-bound substrate prepared from rat livers. This macromolecule was found to be a protein, and the transphosphorylation of thiamin diphosphate to thiamin triphosphate with ATP and enzyme was shown to occur on this macromolecule which binds thiamin diphosphate. Free thiamin, thiamin monophosphate, thiamin diphosphate, and thiamin triphosphate have no effect on this reaction. Thus, the overall reaction is: thiamin diphosphate-protein + ATP in equilibrium thiamin triphosphate-protein + ADP. So-called thiamin diphosphate:ATP phosphoryltransferase (EC 2.7.4.15) activity was not detected in rat brain or liver. The enzyme was extracted from acetone powder of a crude mitochondrial fraction of bovine brain cortex and purified to homogeneity with a 0.6% yield after DEAE-cellulose chromatography, a first gel filtration, hydroxylapatite chromatography, chromatofocusing, and a second gel filtration. The purified enzyme showed a single protein band on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Its molecular weight was estimated to be 103,000. The pH optimum was 7.5, and the Km was determined to be 6 X 10(-4) M for ATP. ATP was found to be the most effective phosphate donor among the nucleoside triphosphates. Amino acid analysis of the purified enzyme revealed an abundance of glutaminyl, glutamyl, and aspartyl residues. Sulfhydryl reagents inhibited the enzyme reaction. Metals such as Fe2+, Zn2+, Pb2+, and Cu2+ strongly inhibited the activity. The enzyme was unstable, and glycerol (20%) and dithiothreitol (1.0 mM) were found to preserve the enzyme activity.  相似文献   

11.
The ion activities in the lateral spaces of the unilateral preparation of the gallbladder of Rana catesbiana were measured by double-barrelled ion-selective microelectrodes. The bladders were bathed in a saline solution with a low osmolarity (62 mOsm) containing, in mM: 27 Na+, 27 Cl-, 2 K+, 1 Ca++, 4 HCO3-. Working at reduced osmolarities had the advantage of an increased volume transport and of widened intercellular spaces. The reference barrel recorded an electrical potential of +2.7 mV in the spaces; they contained a solution similar to the external solution. The electrodes recorded a Na+ concentration of 27 mM, a K+ concentration of 1.7 mM, a Ca++ concentration of 0.69 mM and a Cl- concentration of 28.5 mM. In the spaces there was a lower resistance between the tip of the electrode and the serosal bath than that recorded with the tip in the lumen, and injection of fluorescent dye (11 A diameter) via the electrodes did not stain the cells. The concentrations in the secretion were similar to those in the spaces. The intracellular compartment had an apparent K+ concentration of 95 mM, and the concentrations of Na+ and Cl- were both about 5 mM. These data indicate that when the gallbladder is bathed with hypotonic solutions and is transporting fluid at approximately three or four times the normal rate, there are no significant osmotic gradients between the lumen and the lateral spaces. It is suggested that transcellular transport of water is implemented by a combination of high osmotic permeabilities across both mucosal and serosal cell membranes and low reflection coefficients (for K+ salts) at the serosal cell membranes.  相似文献   

12.
Cytosolic adenylate kinase synthesis thiamin triphosphate (TTP) from thiamin diphosphate (TDP) in vitro by a reversible reaction: TDP + ADP Mg2+ in equilibrium TTP + AMP. The backward (TTP----TDP) reaction rate was 3-times faster than the forward (TDP----TTP) reaction rate when all the substrate concentrations were 0.1 mM. This property of TTP-synthesizing activity of the enzyme did not explain the fact that the [TTP]/[TDP] molar ratio determined in chicken white skeletal muscle is 5.0 (Miyoshi, K., Egi, Y., Shioda, T. and Kawasaki, T. (1990) J. Biochem. 108, 267-270). To solve this problem, we have studied the properties of TTP-synthesizing activity of the purified recombinant chicken cytosolic adenylate kinase preparation and the effect of adenine nucleotides, especially of ATP. The backward reaction of the TTP synthesis did not proceed in the presence of 8.8 mM ATP, a physiological concentration in chicken white skeletal muscle, while the forward reaction proceeded at a reduced rate. The [TTP]/[TDP] ratio found after a long incubation period was 3.0 and 0.7, respectively, in the presence and absence of 8.8 mM ATP. These results indicate that the high [TTP]/[TDP] molar ratio found in chicken white muscle was demonstrated in vitro by the purified chicken cytosolic adenylate kinase and support in vivo TTP synthesis by this enzyme.  相似文献   

13.
Affinity column chromatography coupled with thiamin monophosphate absorbs thiamin pyrophosphokinase activity in the crude extract of rat brain, and the enzyme can be eluted from the column by 0.01 mM thiamin with approximately 700-fold purification.  相似文献   

14.
The molecular characteristics of thiamin (T) transport were studied in the small intestinal and renal brush border membrane vesicles of rats, using [(3)H]T at high specific activity. The effects of various chemical modifiers (amino acid blockers) on T uptake were examined and their specificity assessed. Treatment with the carboxylic specific blockers 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate, (1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide hydrochloride and N-ethyl-5-phenylisoaxolium-3'-sulfonate (Woodward's Reagent K) and with the sulfhydryl specific blocker p-chloromercuribenzene sulfonate inhibited T transport in both types of vesicles. Phenylglyoxal, but not ninhydrin, both reagents for arginine residues, and diethylpyrocarbonate, a reagent for histidine residues, specifically decreased T transport only in renal and small intestinal vesicles respectively. Similarly 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole reacted, but not N-acetylimidazole, both of which are reagents for tyrosine residues. However, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole inhibition was aspecific. Acetylsalicylic acid, a reagent for lysine and serine residues, decreased T transport, but the lysine effect was aspecific. Acetylsalicylic acid serine blockage also eliminated T/H(+) exchange in small intestinal vesicles. Taken together, these results suggest that for T transport carboxylic and sulfhydryl groups and serine residues are essential in both renal and small intestinal brush border membrane vesicles. In addition, arginine and histidine residues are also essential respectively for renal and small intestinal transporters. Serine was essential for the T/H(+) antiport mechanism.  相似文献   

15.
The enzymatic properties of acid phosphatase (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) encoded by PHO3 gene in Saccharomyces cerevisiae, which is repressed by thiamin and has thiamin-binding activity at pH 5.0, were investigated to study physiological functions. The following results led to the conclusion that thiamin-repressible acid phosphatase physiologically catalyzes the hydrolysis of thiamin phosphates in the periplasmic space of S. cerevisiae, thus participating in utilization of the thiamin moiety of the phosphates by yeast cells: (a) thiamin-repressible acid phosphatase showed Km values of 1.6 and 1.7 microM at pH 5.0 for thiamin monophosphate and thiamin pyrophosphate, respectively. These Km values were 2-3 orders of magnitude lower than those (0.61 and 1.7 mM) for p-nitrophenyl phosphate; (b) thiamin exerted remarkable competitive inhibition in the hydrolysis of thiamin monophosphate (Ki 2.2 microM at pH 5.0), whereas the activity for p-nitrophenyl phosphate was slightly affected by thiamin; (c) the inhibitory effect of inorganic phosphate, which does not repress the thiamin-repressible enzyme, on the hydrolysis of thiamin monophosphate was much smaller than that of p-nitrophenyl phosphate. Moreover, the modification of thiamin-repressible acid phosphatase of S. cerevisiae with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide resulted in the complete loss of thiamin-binding activity and the Km value of the modified enzyme for thiamin monophosphate increased nearly to the value of the native enzyme for p-nitrophenyl phosphate. These results also indicate that the high affinity of the thiamin-repressible acid phosphatase for thiamin phosphates is due to the thiamin-binding properties of this enzyme.  相似文献   

16.
A mouse model of thiamin-responsive megaloblastic anemia (diabetes mellitus, deafness, megaloblastic anemia) lacking functional Slc19a2 has been generated and unexpectedly found to have a male-specific sterility phenotype. We describe here the characterization of the testis-specific effects of absence of the high-affinity thiamin transporter, Tht1. Null males were found to have hypoplastic testes secondary to germ cell depletion. Morphologic and expression analysis revealed that under conditions of standard thiamin intake, tissues affected in the syndrome (pancreatic beta-cell, hematopoietic cells, auditory nerve) maintained normal function but pachytene stage spermatocytes underwent apoptosis. Under conditions of thiamin challenge, the apoptotic cell loss extended to earlier stages of germ cells but spared Sertoli cells and Leydig cells. Injection of high-dose thiamin was effective in reversing the spermatogenic failure, suggesting that the absence of the thiamin carrier could be overcome by diffusion-mediated transport at supranormal thiamin concentrations. These observations demonstrated that male germ cells, particularly those with high thiamin transporter expression beyond the blood-testis barrier, were more susceptible to apoptosis triggered by intracellular thiamin deficiency than any other tissue type. The findings described here highlight an unexpected and critical role for thiamin transport and metabolism in spermatogenesis.  相似文献   

17.
We investigated the absorption and metabolism of the highly soluble quercetin glycoside alphaG-rutin, a glucose adduct of insoluble rutin, using the isolated mucosa of the rat stomach and intestines equipped with the Ussing chamber. alphaG-rutin and rutin appeared in the serosal sides of the gastric body and all the intestinal mucosa after the addition of alphaG-rutin (1 mM) to the mucosal fluid. The degree of alphaG-rutin appearance was much lower in the gastric fundus than in the other parts. Quercetin was not found in the mucosal fluid of any mucosal specimen. The concentrations (microM) of alphaG-rutin and rutin in the serosal fluid as a result of transport from the mucosal side increased time-dependently and linearly with mucosal alphaG-rutin concentration (1, 10 or 100 mM). The highest transport was shown in the ileal mucosa. These results indicate that alphaG-rutin is partly hydrolyzed to rutin through the intestine and absorbed as such.  相似文献   

18.
Adenosine, at 1 mM concentrations or above, was found to have a fungistatic effect on Saccharomyces cerevisiae. A substance with amethyst fluorescence was detected in the medium of adenosine-inhibited cultures of S. cerevisiae. This compound was isolated and physicochemically identified as anthranilic acid. Both the inhibition of growth and release of anthranilic acid induced by adenosine were abrogated by thiamin or by the pyrimidine portion of thiamin, 2-methyl-4-amino-5-hdroxymethyl-pyrimidine (hydroxymethyl-pyrimidine); the latter was found to restore intracellular thiamin content that had been reduced by adenosine. It was demonstrated that effects of thiamin and hydroxymethylpyrimidine on S. cerevisiae cultured with adenosine resulted from their inhibition of adenosine uptake by growing yeast cells.  相似文献   

19.
Melarsoprol is the main drug used for the treatment of late-stage sleeping sickness, although it causes severe side-effects such as encephalopathy and polyneuropathy leading to death in some patients. Recent data suggest that melarsoprol and its active metabolite melarsenoxide interfere with thiamin transport and metabolism in E. coli and yeast, but there are no data concerning their possible effects on thiamin metabolism in mammalian cells. We tested both drugs on thiamin transport in cultured mouse neuroblastoma cells using 14C-labeled thiamin. Melarsoprol, competitively inhibits high-affinity thiamin transport in mouse neuroblastoma cells with a Ki of 44 μmol/L. However, the active compound melarsenoxide has no inhibitory effect. This suggests that the side effects of melarsoprol treatment are unlikely to be due to inhibition of thiamin transport by melarsenoxide, its main metabolite in the brain.  相似文献   

20.
Thiamin (Vitamin B(1)) transport in Escherichia coli occurs by the superfamily of traffic ATPases in which the initial receptor is the periplasmic binding protein. We have cloned the periplasmic thiamin-binding protein (TBP) of the E. coli periplasmic thiamin transport system and purified the overexpressed protein to apparent homogeneity. A subsequent biochemical characterization demonstrates that TBP is a 34.205kDa monomer. TBP also contains one tightly bound thiamin species [thiamin, thiamin monophosphate (TMP), or thiamin diphosphate (TDP)] per monomer (K(D)=0.8 microM) when isolated under conditions that would remove any loosely bound ligands. We also demonstrate that thiamin is readily exchangeable in the presence of exogenous thiamin with a k(off)=0.12s(-1). The biochemical characteristics of the overexpressed, plasmid-derived TBP are indistinguishable from those determined for endogenous TBP purified from E. coli. The overexpression and purification of TBP that we present here allows the rapid isolation of large amounts of pure protein that are required for further mechanistic and structural studies and demonstrates a vast improvement over previously reported purifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号