首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the in vitro effects of a commercial β-glucan preparation, EcoActiva™, on the respiratory burst activity of head-kidney macrophages isolated from pink snapper (Pagrus auratus), a marine fish cultured in Australia. Macrophages incubated with EcoActiva™ displayed morphological characteristics of activation, and were stimulated to produce superoxide. Pre-incubation with low levels of EcoActiva™ significantly increased the response to phorbol myristate acetate (PMA) and lipopolysaccharide (LPS), indicating that EcoActiva™ could prime these macrophages. Co-culturing macrophages with both LPS and PMA, or EcoActiva™ and PMA, increased burst activity compared with the response to PMA alone, however, this increase was additive and not synergistic. These results suggest that EcoActiva™ is able to stimulate non-specific immunity in snapper through increased respiratory burst activity of macrophages, an important component of the host defence network.  相似文献   

2.
The effect of LPS on the respiratory burst in resident rat peritoneal macrophages has been examined. Rat macrophages secreted high levels of both O2- and H2O2 in response to triggering with phorbol esters, opsonized zymosan, and immune complexes. After culture in vitro with LPS these macrophages exhibited a marked diminution in their capacity to secrete high levels of respiratory burst products. The LPS-mediated loss of secretory activity was apparent after 2 hr of exposure to LPS and was inhibitable by polymyxin B in a dose-dependent fashion. The effect was not selective for any triggering agent type as inhibition of secretory activity occurred after triggering with PMA, zymosan and immune complexes. PGE2 added at levels secreted by the macrophages in response to LPS also inhibited respiratory burst product secretion. In addition, indomethacin prevented the LPS-mediated inhibition of secretion. Because the inhibition of secretion was common to all triggering agents tested, this suggested that the basis for the impaired secretion was at a level other than the receptor for the triggering agent. Both LPS and PGE2 treatment of the macrophages increased the Km of the oxidase for NADPH (1.7- to 2.3-fold) without affecting significantly the Vmax of the enzyme. These data suggest that stimulation of rat peritoneal macrophages by LPS results in an impaired ability to secrete respiratory burst products as a result of a PGE2-mediated decrease in NADPH oxidase affinity and that this alteration is independent of alterations in tumoricidal activity.  相似文献   

3.
This study investigated the effects of prolonged administration of a commercial beta-glucan based immunostimulant preparation, EcoActiva, in the form of a feed supplement, on non-specific immune parameters and the growth rate of snapper (Pagrus auratus). Fish held at a temperature representing either summer or winter conditions, were sampled periodically and assayed for head kidney macrophage activity via in vitro superoxide production, and classical and alternative complement activity. Fish were also weighed monthly and the growth rate determined. Fish fed on a diet supplemented with EcoActiva and held at the winter temperature had a significant enhancement of macrophage superoxide anion production upon stimulation with phorbol myristate acetate (PMA), and this increased activity was maintained throughout the trial. Macrophage activity in fish fed the supplemented diet and held at the summer temperature was also increased. However, EcoActiva failed to increase either classical or alternate complement activity. Most significantly EcoActiva resulted in an increase in growth rates of the fish held at the winter temperature as compared to the control fish, although no difference was seen between the groups held at the summer temperature. These results suggest that routine incorporation of beta-glucan preparations like EcoActivaduring winter may enhance macrophage function and growth rates at a time of increased disease susceptibility and little or no growth.  相似文献   

4.
Murine resident peritoneal macrophages (RPM) generate superoxide (O2-) in response to stimulation with PMA or zymosan. Murine bone marrow-derived macrophages (BMM) generate O2- in response to zymosan but not PMA. However, the ability to generate O2- in response to PMA could be induced in BMM by pre-exposing the cells to certain cytokines, including granulocyte-macrophage CSF (GM-CSF), tumor necrosis factor-alpha (TNF-alpha), IFN-gamma, and, to a lesser extent, IL-1 alpha. Bacterial LPS also induced the ability to respond to PMA. These same agents were also shown to prime RPM for enhanced PMA-induced respiratory burst. In contrast to GM-CSF, CSF-1 did not enhance the ability of BMM or RPM to generate O2- in response to PMA. Pretreatment with GM-CSF or TNF-alpha did not significantly affect the zymosan-induced release of O2- by BMM. These results suggest that unprimed BMM have a deficiency in the PMA-dependent signaling pathway that is corrected by exposure to selected cytokines. The results also raise the possibility that the basal ability of tissue macrophages to generate a respiratory burst in response to PMA may be a reflection of in vivo exposure to cytokines.  相似文献   

5.
The biochemical mechanism(s) underlying the priming of the macrophage for an enhanced PMA-induced respiratory burst is not understood. Because the cellular receptor for PMA is thought to be protein kinase C (PKC), we have investigated the effects of priming agents on cellular PKC levels. Sonicates from unprimed bone marrow-derived macrophages (BMM) were found to contain PKC activity (309 +/- 51 pmol 32P-incorporated/mg/min; mean +/- SE, n = 17) as measured by the phospholipid-, diacylglycerol-, and calcium-dependent phosphorylation of histone. Exposure of BMM to priming agents such as TNF-alpha, LPS, and granulocyte/macrophage-CSF resulted in a significant increase in both histone-phosphorylating activity and levels of immunoreactive PKC protein in these cells. A minimum of 6-h exposure, with an increasing effect up to 48 h, was required for a detectable increase in PKC level. The activity from primed BMM, like that of the untreated cells, was predominantly cytosolic. The kinetics and concentration dependence of the priming agent-induced increase in the PKC content of BMM closely paralleled the enhancing effects of these agents on the PMA-stimulated respiratory burst. Furthermore, CSF-1, a cytokine that does not prime BMM, failed to increase PKC activity. We propose that the exposure of BMM to priming agents leads to an increase in the expression of a stimulatory isozyme(s) of PKC, resulting in an enhanced ability to mount a respiratory burst in response to stimulation with PMA.  相似文献   

6.
The phorbol myristate acetate (PMA) stimulated nutrophil respiratory burst has been considered to simply involve the activation of protein kinase C (PKC). However, the PLD activity was also increased by 10‐fold in human neutrophils stimulated with 100 nM PMA. Unexpectedly, U73122, an inhibitor of phospholipase C, was found to significantly inhibit PMA‐stimulated respiratory burst in human neutrophils. U73122 at the concentrations, which were sufficient to inhibit the respiratory burst completely, caused partial inhibition of the PLD activity but no inhibition on PKC translocation and activation, suggesting that PLD activity is also required in PMA‐stimulated respiratory burst. Using 1‐butanol, a PLD substrate, to block phosphatidic acid (PA) generation, the PMA‐stimulated neutrophil respiratory burst was also partially inhibited, further indicating that PLD activation, possibly its hydrolytic product PA and diacylglycerol (DAG), is involved in PMA‐stimulated respiratory burst. Since GF109203X, an inhibitor of PKC that could completely inhibit the respiratory burst in PMA‐stimulated neutrophils, also caused certain suppression of PLD activation, it may suggest that PLD activation in PMA‐stimulated neutrophils might be, to some extent, PKC dependent. To further study whether PLD contributes to the PMA stimulated respiratory burst through itself or its hydrolytic product, 1,2‐dioctanoyl‐sn‐glycerol, an analogue of DAG , was used to prime cells at low concentration, and it reversed the inhibition of PMA‐stimulated respiratory burst by U73122. The results indicate that U73122 may act as an inhibitor of PLD, and PLD activation is required in PMA‐stimulated respiratory burst.  相似文献   

7.
Expression of c-fos mRNA was investigated in fresh, normal peritoneal macrophages (M phi), which are terminally differentiated, nonproliferating cells. The levels of c-fos mRNA were dramatically increased by stimulation with phorbol myristate acetate (PMA), calcium ionophore, or 1-oleoyl-2-acetoyl glycerol (OAG). Induction of c-fos mRNA by all the above agents followed similar kinetics, with a peak of mRNA 30 min after stimulation. These results demonstrate that c-fos mRNA can be augmented in fresh, terminally differentiated cells. Since the stimuli increasing c-fos mRNA are direct or indirect activators of protein kinase C, our data suggest that in M phi c-fos mRNA is controlled by protein kinase C activation. PMA, calcium ionophore, and OAG were biologically active in M phi. PMA and calcium ionophore induced respiratory burst and tumoricidal activity, respectively, whereas OAG and PMA were chemotactic for M phi. Interferons beta and gamma, potent M phi activators eliciting tumoricidal activity, did not alter the levels of c-fos mRNA. These results indicate that c-fos mRNA augmentation is a stimulus-specific rather than a function-specific response connected to activation of protein kinase C.  相似文献   

8.
This study investigated the respiratory burst responses of rat resident peritoneal macrophages and of peritoneal macrophages stimulated 5 days previously with viable spores of the fish infecting microsporidian Microgemma caulleryi. Nitric oxide production by resident macrophages and prestimulated macrophages in response to viable microsporidian spores was significantly lower than in response to Escherichia coli lipopolysaccharide (LPS) (nitrite concentration in medium 57 +/- 1 microM for resident macrophages stimulated with LPS versus 31 +/- 1 microM for resident macrophages stimulated with microsporidian spores and 36 +/- 4 microM for M. caulleryi prestimulated macrophages; P < 0.05). Extracellular release of reactive oxygen species (ROS) by resident macrophages in response to microsporidian spores was similar to that in response to Kluyveromyces lactis yeast cells and to that in response to phorbol myristate (a stimulator of protein C kinase). Intracellular ROS production by resident macrophages in response to microsporidian spores was similar to that produced in response to yeast cells. Both extracellular ROS production and intracellular ROS production (in response to all stimuli) were significantly lower after in vivo prestimulation of macrophages with microsporidian spores. These results demonstrate that microsporidian spores of species other than those that habitually infect mammals are capable of modulating the respiratory burst of rat peritoneal macrophages. Such modulation may contribute to avoidance by the microsporidian of cytotoxic responses associated with the respiratory burst.  相似文献   

9.
Rat peritoneal macrophages stimulated with lipopolysaccharide (LPS) and Phorbol myristate acetate (PMA) generated increased levels of superoxide anions (O2ú-) by 122% as compared to those stimulated with PMA alone. However, Nitric oxide (NO) synthase inhibitors-n-monomethyl arginine (nMMA) or spermine-HCI lowered the enhanced levels of O2ú- released by LPS treated macrophages. The Superoxide dismutase (SOD) activity in LPS treated macrophages was 51% lower than that observed in resident cells. NO synthase inhibitors prevented the loss of SOD activity in LPS treated cells. Exogenously added SOD during sensitization of cells with LPS also inactivated the enzyme. This inactivation of SOD is inhibited by Nitric oxide synthase inhibitors. PMA alone did not affect SOD activity. NO synthase inhibitors also did not affect PMA activated superoxide anion generation in macrophages. These studies indicate that nitric oxide generated by LPS treated macrophages can inactivate SOD activity.  相似文献   

10.
Activated T cells are known to stimulate macrophage oxidative metabolism and antimicrobial activity through release of interferon-gamma (IFN-gamma). In contrast, the role of nonactivated T cells in regulating macrophage effector functions is less well defined. We have previously reported that a low molecular weight soluble factor derived from resident (nonactivated) thymocytes enhances macrophage receptor-mediated phagocytosis. In the present study, we examined the capacity of resident murine thymocytes to stimulate the respiratory burst and microbicidal activity of peritoneal macrophages. Macrophages cultured for 1-2 days with cell-free thymocyte supernatant (TS) released two to three times more H2O2 in response to PMA or opsonized zymosan than did control macrophages. The H2O2-stimulating factor in TS was distinguished from IFN-gamma by its heat stability (100 degrees C, 20 min), approximate MW of 2400 Da (gel filtration high-pressure liquid chromatography), and absence of interferon activity in both antiviral and enzyme-linked immunosorbent assays. TS-treated macrophages, however, did not exhibit a greater capacity to kill or inhibit the intracellular growth of Toxoplasma gondii, indicating that the thymocyte factor did not fully activate macrophage microbicidal mechanisms. These data suggest that thymocytes can increase the respiratory burst capacity of macrophages in the absence of antigen-specific immune responses.  相似文献   

11.
The activity of nitric oxide synthase (NOS) during the respiratory burst in phorbol-1,2-myristate-1,3-acetate (PMA) stimulated macrophages has been the topic of much debate in the literature. To help clarify the role of NOS, we have examined the chemiluminescence arising from peroxynitrite production, nitrite/nitrate and nitric oxide production, and oxygen consumption during the respiratory burst in PMA-stimulated macrophages. The Griess reaction was used to measure nitrite/nitrate, spin trapping with N-methyl D-glucamine dithiocarbamate (MGD)2-Fe2+ was used to quantify nitric oxide, and the spin probe 2,2,6,6-tetramethylpiperidine-N-oxyl-4-ol (TEMPOL) was used to measure oxygen consumption. Oxygen free radical production (hydroxyl and superoxide free radicals) was also investigated using the spin trap 5,5-dimethyl-1-pyroline-1-oxide (DMPO). The chemiluminescence emitted by the PMA-stimulated macrophages and nitrite/nitrate in the culture system were both found to increase. However, the rate of nitric oxide release remained constant, indicating that the activity of NOS is not enhanced during the respiratory burst in PMA stimulated macrophages.  相似文献   

12.
Epizootic ulcerative syndrome (EUS) is one of the most destructive diseases of fresh and brackish water farmed and wild fish in the Asia-Pacific region. The in vitro germination and growth of the propagules of the EUS pathogen, Aphanomyces invadans (= A. piscicida), were assessed in the presence of the head-kidney macrophages, serum, and serum heated to inactivate complement proteins, of three EUS-susceptible and one resistant fish species. The susceptible species were: striped snakehead (Channa striata), giant gourami (Osphronemus gouramy) and silver barb [Barbodes (= Puntius) gonionotus], and the resistant species was Nile tilapia (Oreochromis niloticus). Fish of all species were acclimatised to either low temperature (20 degrees C +/- 1.6) at which EUS is known to occur, or to high temperature (32 degrees C +/- 5.0) at which EUS does not occur, except for giant gouramis which were only studied at low temperature. The respiratory burst of the macrophages was assessed in the presence of A. invadans or the stimulant phorbol myristate acetate (PMA), and compared to that of controls. Anti-A. invadans antibody concentrations were assessed in all species except silver barbs. All assays were carried out at the same temperature, regardless of the temperature that the fish were kept at. Macrophages of all species other than snakeheads inhibited fungal germination at both temperatures, though only silver barb and gourami macrophages could inhibit germling growth. PMA increased the respiratory burst in nearly all cases. The respiratory burst in the presence of A. invadans was consistently lower than that of controls, though the difference was only significant in the case of snakeheads. The respiratory burst of all macrophage treatments was higher at a low temperature. Except in the case of PMA-stimulated macrophages, regressions between respiratory burst and inhibitory action were only found in susceptible species, suggesting that the respiratory burst is important in those species, but is unable to prevent the proliferation of A. invadans. Serum inhibited fungal germination in all cases other than low temperature tilapia, indicating that the EUS resistance of tilapia is not due to the serum. Inhibition of germling growth by serum only occurred in silver barbs and gourami. Heated serum did not inhibit germination in any case except that of high temperature snakehead, and in fact stimulated germination in the case of tilapia. Heating serum did not affect the growth inhibiting activity of silver barbs and gouramis, but it stimulated growth in some groups. At high temperatures snakeheads had high anti-A. invadans antibody concentrations, which may explain the inhibitory activity of their heated serum. A role for complement and antibodies in defence against A. invadans in susceptible species is suggested.  相似文献   

13.
Platelet-activating factor (PAF) is an early product of the inflammatory environment, influencing development and resolution of inflammation. Its production is greater in neutrophils and macrophages, which predominantly synthesize 1-alkyl sn-2 acetyl glycerophosphocholine (GPC) than in nongranulocytes (B cells and endothelial cells), which lack a respiratory burst and synthesize 1-acyl sn-2 acetyl GPC as their major PAF species. This study investigated whether the respiratory burst was responsible for the quantitative and qualitative differences in sn-2 acetyl GPC species generation by neutrophils and macrophages versus those cells lacking the NADPH oxidase complex. The myeloid cell line PLB-985 (capable of differentiation into neutrophils) was used to test this hypothesis, since these cells had previously been generated with a non-functional respiratory burst (X-CGD PLB-985). Differentiated PLB-985 cells underwent a large respiratory burst in response to PMA (phorbol ester), and smaller respiratory bursts in response to A23187 (calcium ionophore), and the bacterial polypeptide fMLP (receptor mediated activation). Concurrently, treated cells were assessed for production of 1-hexadecyl and 1-palmitoyl sn-2 acetyl GPC species by gas chromatography/mass spectrometry. Neither cell type generated these lipid species in response to PMA, but both cell types generated equal levels of sn-2 acetyl GPC in response to A23187, with five times more 1-hexadecyl than 1-palmitoyl species. Upon fMLP activation, X-CGD PLB-985 cells produced significantly less 1-hexadecyl and 1-palmitoyl sn-2 acetyl GPC in comparison to the wild-type PLB-985 cells. These findings suggest phagocytic oxidant production by NADPH oxidase is not essential for sn-2 acetyl GPC generation, but appears important for optimal production of PAF in response to some stimuli.  相似文献   

14.
The capacity of macrophage colony-stimulating factor (M-CSF) to enhance respiratory burst activity in peritoneal macrophages was measured. Macrophages incubated for 48 hr or more with concentrated L cell-conditioned medium as a source of M-CSF released two to three times as much O2- in response to PMA as did unexposed macrophages. Stimulation was noted at concentrations of colony-stimulating activity from 0.1 to 2000 U/ml and was maximal at 10 to 100 U/ml. Purified, endotoxin-free CSF enhanced secretion to a similar degree as unpurified L cell-conditioned medium. Release of O2- by M-CSF macrophages occurred over 60 min and was triggered by opsonized zymosan as well as PMA. H2O2 release was also enhanced in macrophages exposed to both unpurified and purified M-CSF. These data indicate that M-CSF enhances the capacity of mature macrophages to release oxygen reduction products, and they are consistent with reports that CSF can stimulate the release of other secretory products.  相似文献   

15.
We have investigated the effects of LPS and PMA on the expression of functional mannose receptors in rat bone marrow-derived macrophages. After 48 h of treatment with LPS (10 ng/ml) and PMA (100 nM), mannose receptor activity was reduced by 70 to 80%. The effect of these agents on receptor activity was not reversible, and activity continued to decline after the agents were removed. Pretreatment of cells with dexamethasone was effective in blocking the LPS/PMA-induced down-regulation. Serine protease inhibitors did not block the reduction in receptor activity, suggesting that proteolysis is not involved in receptor down-regulation. LPS/PMA treatment did not increase turnover of the receptor. Ligand uptake studies showed that the total capacity of the uptake system was reduced by 80%, although the Kuptake was unaffected. Binding of 125I-mannose-BSA to intact macrophages showed a 70% decrease in surface receptor activity after treatment with LPS/PMA. LPS/PMA treatment had no effect on total receptor synthesis as quantitated by immunoprecipitation of metabolically labeled receptor. However, binding of metabolically labeled receptor to mannose-Sepharose, and binding of 125I-mannose-BSA to immunoprecipitated receptor revealed that intracellular plus surface binding sites were reduced to approximately 30% after LPS/PMA treatment. These results suggest that LPS/PMA treatment of macrophages results in an inactivation of mannose receptors with no effect on receptor turnover or biosynthesis.  相似文献   

16.
17.
It has been reported in vitro that during the respiratory burst of phagocytic cells the superoxide anion production per cell shows a negative relation with the cell density. This process has been described as autoregulation. The aim of this work was to analyze the superoxide anion production in thioglycollate-elicited peritoneal macrophage exudates to evaluate the importance of the peritoneal cavity environment in the autoregulation process. 12-O-tetradecanoylphorbol-13-acetate (PMA) was used to stimulate the respiratory burst and superoxide anion production was measured evaluating the intracellular formazan deposits that precipitate as a result of nitro blue tetrazolium (NBT) reduction. We have demonstrated a negative correlation between superoxide anion production and cell density in the peritoneal cavity in macrophages challenged with PMA. The response of individual cells was analyzed by means of an image analyzer, measuring the amount of formazan per cell and cell-size changes during the process of activation. The results revealed that the decrease in individual cell response as a function of higher cell densities were due to a significant increase in the amount of basal reaction macrophages. Concomitantly, the number of reactive cells remained unchanged irrespective of the cell density of the population. A direct correlation between cell size and superoxide anion production was observed. This phenomenon was demonstrated in SENCAR and Balb/c strains. However, macrophages from SENCAR mice showed greater superoxide anion production than those from Balb/c.The differences between strains could be associated to the increased sensitivity to PMA tumor promotion of SENCAR mice. Based on this property, macrophages from SENCAR mice were stimulated with opsonized zymosan, a particulate stimulus that reflects the interaction macrophage-microorganism during the phagocytic process. This data will contribute to the knowledge of infection control. We conclude that variations in basal reaction cells modulates the macrophage activation response when excess macrophages are recruited to the peritoneum. This is demonstrated using different stimuli, thus suggesting that this response may be applied to a wide variety of stimuli-macrophage interactions. The differences between strains may be associated to the increased sensitivity to PMA tumor promotion of SENCAR mice.  相似文献   

18.
Luminol-enhanced chemiluminescence was measured in fresh whole human blood, or human neutrophils isolated from heparinized blood, human alveolar macrophages and rat alveolar macrophages stimulated with bacterial endotoxin (LPS). Tetraacetate esters of rooperol, a dicatechol showing anticytokine activity, added to cells simultaneously with LPS inhibited the respiratory burst. The effective concentrations of rooperol were in the range of 1-10 muM depending on cell type and corresponded well with inhibition of nitric oxide production by rat alveolar macrophages. Thus rooperol may reduce some effects of excessive phagocytic activity and inflammatory reaction but by quenching free radicals production may also diminish the resistance to bacterial infections.  相似文献   

19.
The influence of peplomycin (PLM) on the respiratory burst of peripheral blood polymorphonuclear leukocytes (PMN) was investigated. Short-term (5 min) treatment of human PMN with 0.1μg/ml to 100μg/ml of PLM increased phorbol myristate acetate (PMA)-and formyl-methionyl-leucyl-phenylalanine (FMLP)-induced luminol-dependent chemiluminescence. PMN, as well as alveolar macrophages from rabbits treated with 0.5 to 1.0 mg/kg of peplomycin per day for 5 days, generated more superoxide (O2-) than the cells from untreated rabbits. In both PLM-treated and untreated PMN, chemiluminescence induced by FMLP and PMA was decreased to less than 50% of the control by staurosporine, superoxide dismutase (SOD) and catalase. However, the peak intensity in PLM-untrcated PMN was decreased to about 30% of the control by genislein, while this agent induced a slight decrease in peak intensity in the PLM-treated PMN. Inositol triphosphate and diacyl glycerol levels were not clearly increased by PLM, but an increase of intracellular Ca and a shift of protein kinase C (PKC) to the membrane occurred in PMN within 1 min after PLM treatment. Western blotting revealed that the tyrosine phosphorylation of a 115 kDa protein was upregulated by 5 to 50μg/ml of PLM. While, PLM suppressed SOD activity in alveolar macrophages and PMN. These results seem to indicate that PLM increases the respiratory burst of PMN and macrophages both by way of direct PKC activation and by the upregulation of protein tyrosine phosphorylation. This increased reactive oxygen generation, together with the suppression of SOD activity seems to be tissue-impairing.  相似文献   

20.
We found that rat bone marrow-derived macrophages responded to opsonized zymosan by releasing superoxide anion. However, these cells were defective in the response to the potent oxidative burst activator phorbol myristate acetate (PMA). This result was observed whatever the concentration of agonist used and with different concentrations of cells. Since it is strongly suspected that protein kinase C (PKC) is involved in the transductional pathway induced by PMA in numerous cell types, and particularly in phagocytes, we studied PKC and we observed that it was functional in rat bone marrow-derived macrophages, but only present at a low level. Thus, we suggest that our results are consistent with the possibility that zymosan-induced respiratory burst may be independent of PKC and that these cells may not possess the minimal level of PKC required for responding to PMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号