首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrastructural differentiation in the shoot apex of growing vegetative buds of Salix was studied, and some micrographs analysed morphometrically. The distribution of inorganic phospahte (P;) was analysed cytochemically. A distinct histological zona–tion was observed in the apex. The relative volumes of nuclei and plastids were significantly higher in the central tunica zone than in the peripheral one. The corpus differed from the central tunica zone by significantly lower volume density of nuclei and higher of vacuoles and mitochondria. During differentiation of the rib meristem vacuole volume increased significantly, while the relative volumes of nuclei, mitochondria, nucleoli, and heterochromatin decreased. It was not possible to decide whether the vacuoles originate from ER or GERL. Morphogenesis of chloroplasts with large starch grains and grana from proplastids was evident in the rib meristem; dedifferentiation to S–plastids was found in the protophloem. Prolamellar bodies were observed in the procambium plastids. The protophloem was characterized by P–protein and spiny vesicles. Pi was found in the nucleoli of most epidermis cells, several procambium cells, and a few chlorencyma cells, but never in the tunica of the growing apical and developing lateral buds. Pi also occurred in some plasmalemma–somes and occasionally in the walls in connection with plasmodesmata.  相似文献   

2.
This report presents a combined investigation of ultrastructural and enzymatic changes in the procambium from late winter to early spring. In January the procambial cells of dormant Salix buds have a convoluted plasma membrane with many plasmalemmasomes, numerous lipid bodies, large stacks of rough ER and plastids surrounded by smooth ER profiles. Several small lysosomes show activity of ATPase and acid phosphatases. In addition ER, nuclear envelopes, dictyosomes, and thylakoids have ATPase activity, and ER and plasmalemma, and nuclei also show acid phosphatase activity. In February metabolism seems to increase as indicated by lysosomes with membranous formations, dilated ER, nuclear envelopes, spiny vesicles, and polysomes. ATPase activity occurs in plasmalemma and vacuoles, and acid phosphatases in the middle lamella region of walls, in plasmalemma, vacuoles, ER, and nuclei. At the end of March, when growth starts inside the buds, but before they break, the stacks of rough ER disappear, and the vacuoles coalesce. Most of the lipid bodies have disappeared and the plastids have accumulated starch. Cell division and differentiation of procambial cells to protophloem and protoxylem have started. The distribution of ATPase increases; activity is found in walls and plasmalemma, and only a few small vacuoles still have ATPase and acid phosphatase activity. Notable is the appearance of ATPase in mitochondrial cristae and nucleoli and the occurrence of rather high levels also in endomembranes and dictyosomes.  相似文献   

3.
Ultrastructural changes during zygotic and somatic embryogenesis in pearl millet (Pennisetum glaucum [L.] R. Br.) were quantified using morphometric techniques. The total area per cell profile and the cell volume percentage of the whole cell, endoplasmic reticulum (ER), Golgi bodies, mitochondria, nuclei, lipids, plastids, starch grains and vacuoles were measured and comparisons made between three zygotic and three somatic embryo developmental stages. All measurements were taken from scutellar or scutellar-derived cells. Zygotic embryogenesis was characterized by increases in cell size, lipids, plastids, starch, Golgi bodies, mitochondria and ER. Somatic embryogenesis was characterized by two phases of cell development: (1) the dedifferentiation of scutellar cells involving a reduction in cell and vacuole size and an increase in cell activity during somatic proembryoid formation and (2) the development of somatic embryos in which most cell organelle quantities returned to values found in late coleoptile or mature predesiccation zygotic stages. In summary, although their developmental pathways differed, the scutella of somatic embryos displayed cellular variations which were within the ranges observed for later stages of zygotic embryogenesis.  相似文献   

4.
Summary Our investigations on Canna indica L. indicate that the pollen of this species is polymorphic: there are two types of pollen — a larger type and a comparatively smaller type. Transmission electron microscopy (TEM) revealed the presence of small vacuoles containing tannic substances in the generative cell (GC) of the larger grains: the GC of the mature grain contained a higher quantity of tannins than the GC of the immature grain. Mitochondria, lipid bodies, rough endoplasmic reticulum (RER) and microtubular bundles were present in the cytoplasm of the GC. Numerous mitochondria, lipid bodies and plastids were also present in the vegetative cell (VC), with the mitochondria clustered around the vegetative nucleus. The plastids were observed to be associated with the RER cisterns. During the maturation process, the number of starch grains contained in the plastids decreased.  相似文献   

5.
 The ultrastructure of the vascular cambium of Robinia pseudoacacia L. was examined in trunk tissues collected over a 2 1/2 year period. During dormancy, fusiform cells are densely cytoplasmic with many small vacuoles and centrally located nuclei. Mitochondria are round to oval in sectional view. The plastids are variable in shape, have few internal membranes, and generally lack starch grains. The plasmalemma is smooth in outline. Proteinaceous material occurs in the vacuoles and many lipid droplets are scattered throughout the ground substance. Smooth tubular ER, often highly dilated, predominates, but short segments of rough ER are also present. Abundant free ribosomes are evenly distributed throughout the ground substance and the dictyosomes are inactive. Microtubules are parietal and have various orientations. During reactivation, the plasmalemma becomes irregular in outline and begins to form invaginations. Concurrently, the proteinaceous material disappears, the vacuoles begin to fuse, polysomes appear, and the dictyosomes begin to produce vesicles. During the period of cambial activity, fusiform cells are highly vacuolate, and the nuclei are centrally located. The mitochondria are round, oval, or elongate. Now the plastids contain phytoferritin, starch grains, or both. Many large invaginations of the plasmalemma intrude into the vacuole, pushing the tonoplast inward and pinching off into the vacuole, which lacks proteinaceous material. Lipid droplets are scarce. Most ER is rough, and ribosomes are generally aggregated as polysomes. Dictyosomes are actively producing vesicles. During the transition to dormancy, the fusiform cells gradually assume the appearance typical of the dormant cambium.  相似文献   

6.
Helgi Öpik 《Planta》1971,102(1):61-71
Summary The ultrastructure of coleoptile cells of ungerminated rice grains has been examined following fixation in glutaraldehyde and osmium tetroxide. In many respects the cell structure resembles that reported for other dormant seed tissues: the cells contain protein bodies and lipid droplets, mitochondria and plastids show little internal structure but cytoplasm invaginates into many plastids; golgi cisternae cannot be discerned. Rough ER is present as cisternae surrounding protein bodies, as occasional regions of parallel layers, and in concentric whorls where it alternates with smooth paired membranes of an unknown nature. The ribosomes on the ER are at least partly arranged into regular rows. Various crystalline, presumably proteinaceous, inclusions lie in the groundplasm, plastids and nuclei.  相似文献   

7.
本文研究了榧树(Torreya grandis)成熟植株在季节生长中营养苗端的超微结构变化。各区域细胞的主要区别特征为:顶端原始细胞与亚顶端细胞相接的细胞壁较厚,液泡多分布于细胞游离面,质体中淀粉粒较小;亚顶端细胞壁较厚,液泡较大,质体中淀粉粒较大而多;周缘区细胞质体多不具淀粉粒,液泡也较小,胞间连丝丰富;肋状区细胞被大量的含淀粉质体及液泡占据了大部分空间,胞间连丝丰富。在季节变化的四个时期中,各区域细胞的亚显微结构特征亦不相同。休眠期各区细胞淀粉质体较发达,细胞壁较厚,液泡大;叶扩展期淀粉质体减少或消失;芽鳞形成期出现大量小液泡;新的顶芽形成期液泡增加,核糖体含量较高。讨论了各区域细胞核形态与其细胞活跃性的关系。  相似文献   

8.
Summary A study of pollen development in wheat was made using transmission electron microscopy (TEM). Microspores contain undifferentiated plastids and mitochondria that are dividing. Vacuolation occurs, probably due to the coalescence of small vacuoles budded off the endoplasmic reticulum (ER). As the pollen grain is formed and matures, the ER becomes distended with deposits of granular storage material. Mitochondria proliferate and become filled with cristae. Similarly, plastids divide and accumulate starch. The exine wall is deposited at a rapid rate throughout development, and the precursors appear to be synthesized in the tapetum. Tapetal cells become binucleate during the meiosis stage, and Ubisch bodies form on the plasma membrane surface that faces the locule. Tapetal plastids become surrounded by an electron-translucent halo. Rough ER is associated with the halo around the plastids and with the plasma membrane. We hypothesize that the sporopollenin precursors for both the Ubisch bodies and exine pollen wall are synthesized in the tapetal plastids and are transported to the tapetal cell surface via the ER. The microspore plastids appear to be involved in activities other than precursor synthesis: plastid proliferation in young microspores, and starch synthesis later in development. Plants treated with the chemical hybridizing agent RH0007 show a pattern of development similar to that shown by untreated control plants through the meiosis stage. In the young microspore stage the exine wall is deposited irregularly and is thinner than that of control plants. In many cases the microspores are seen to have wavy contours. With the onset of vacuolation, microspores become plasmolyzed and abort. The tapetal cells in RH0007-treated locules divide normally through the meiosis stage. Less sporopollenin is deposited in the Ubisch bodies, and the pattern is less regular than that of the control. In many cases, the tapetal cells expand into the locule. At the base of one of the locules treated with a dosage of RH0007 that causes 95% male sterility, several microspores survived and developed into pollen grains that were sterile. The conditions at the base of the locule may have reduced the osmotic stress on the microspores, allowing them to survive. Preliminary work showed that the extractable quantity of carotenoids in RHOOO7-treated anthers was slightly greater than in controls. We concluded that RH0007 appears to interfere with the polymerization of carotenoid precursors into the exine wall and Ubisch bodies, rather than interfering with the synthesis of the precursors.  相似文献   

9.
竹节参雌配子体发育的研究   总被引:2,自引:0,他引:2  
本文报道了竹节参(Panax japonicus C.A.Mey)雌配子体(胚囊)的发育过程。竹节参大孢子母细胞减数分裂产生线形排列的大孢子四分体。胚囊发育属蓼型,由合点端大孢子发育而成。游离核胚囊时期,胚囊珠孔端的细胞器种类和数量都较胚囊合点端多;胚囊合点端相邻的珠被细胞中有含淀粉粒的小质体,与胚囊珠孔端相邻的退化中的非功能大孢子中则有含淀粉粒的大质体和大类脂体。成熟胚囊中,反足细胞较早退化;极核融合成次生核;卵细胞高度液泡化,细胞器数量较少;助细胞则有丰富的细胞器和发达的丝状器。PAS反应表明,受精前的成熟胚囊中积累淀粉粒。次生核受精后,很快分裂产生胚乳游离核,到几十至数百个核时形成胚乳细胞。卵细胞受精后则要经过较长的休眠期。  相似文献   

10.
In the liverwort Sphaerocarpus donnellii Aust., the behavior of the cell constituents, especially of mitochondria and plastids, was studied by electron microscopy during the development of the egg and its preceding cells. A degeneration and elimination of mitochondria and plastids was not found in any of the developmental stages. In all growth phases of the archegonium, the plastids may deposit starch which becomes especially frequent in the maturing egg cell. No indications have been observed that new mitochondria or plastids generate from the nuclear evaginations, which often penetrate deeply into the cytoplasm of the maturing and fully developed eggs. A quantitative investigation based on general micrographs elucidates the numerical aspects of the cell constituents during oögenesis. With the increase of cell volume, the numbers of dictyosomes, mitochondria, plastids, and lipid bodies increase. From the stages of the mother cell of the axial row up to that of the mature egg, the cell volume enlarges about 8 times and the nucleus volume about 15 times. Simultaneously, the numbers of mitochondria and plastids increase up to 8 to 15 times. On the basis of these findings, mitochondria and plastids with three-dimensional narrow constrictions are interpreted as divisional stages.  相似文献   

11.
Corm tissue of Isoetes muricata Dur. was fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. Very young secondary sieve elements can be distinguished from contiguous cambial cells by their distinctive plastids and by the presence of crystalline and/or fibrillar proteinaceous material in dilated cisternae of rough endoplasmic reticulum (ER). At maturity, the sieve elements are lined by the plasmalemma and a parietal, anastomosing network of smooth ER. Degenerate nuclei persist in all mature sieve elements. In addition, mature sieve elments contain plastids and mitochondria. Sieve-area pores are present in all walls. The lateral meristem of I. muricata consists of 2–3 layers of cells year-round. Judging from numerous collections made between October 1972 and July 1975, new sieve-element differentiation precedes cambial activity by about a month. Early in May, 1–2 cells immediately adjacent to already mature sieve elements differentiate directly into sieve elements without prior division. In early June, at about the time sieve-element differentiation is completed, cambial division begins. Division is sporadic, not uniform throughout the meristem. Dormancy callose accumulates in the secondary sieve elements in late October, and is removed in early May, at about the same time new sieve-element differentiation begins. Cells of the dormant cambium are characterized by the presence of numerous small vacuoles and large quantities of storage materials, including lipid droplets, starch grains, and tannin. By contrast, active cambial cells contain few large vacuoles with little or no tannin, and they have little storage material.  相似文献   

12.
Summary During imbibition ofPhoenix dactylifera embryos, all cotyledon cells show the same changes: protein and lipid bodies degrade, smooth endoplasmic reticulum (ER) increases in amount, and dictyosomes appear. At germination, the distal portion of the cotyledon expands to form the haustorium. At this time, epithelial cells have a dense cytoplasm with many extremely small vacuoles. Many ribosomes are present along with ER, dictyosomes, and mitochondria. The parenchyma cells have large vacuoles and a small amount of peripheral cytoplasm. Between 2 and 6 weeks after germination, epithelial cells still retain the dense cytoplasm and many organelles appear: glyoxysomes, large lipid bodies, amyloplasts, large osmiophilic bodies, and abundant rough and smooth ER which appear to merge into the plasmalemma. A thin electron-transparent inner wall layer with many small internal projections is added to the cell walls. Starch grains appear first in the subsurface and internal parenchyma and subsequently in the epithelium. Lipid bodies, glyoxysomes, protein, and osmiophilic bodies occur in the epithelial and subepithelial cell layers but not in the internal parenchyma. At 8 weeks after germination, the cytoplasm becomes electron transparent, vacuolation occurs, lipid bodies and osmiophilic bodies degrade, and the endomembranes disassemble. After 10 weeks, the cells are empty. These data support the hypothesis that the major functions of the haustorium are absorption and storage.  相似文献   

13.
The ultrastructure of cells of the vegetative shoot apices is described for Chenopodium album, Kalanchoë blossfeldiana and K. laxiflora, Bryophyllum daigremontianum, Nicotiana rustica, and N. tabacum (Maryland Mammoth), and Ginkgo biloba. A less intensive study was made of the last three listed. The structures and organelles usually associated with meristematic cells were observed: dictyosomes, plastids (in various stages of development), mitochondria, endoplasmic reticulum (ER), vacuoles, lipid droplets, and plasmalemma. In addition, spherosome-like structures were observed in all zones of the shoot apices. Also, multivesicular bodies were observed in C. album and B. daigremontianum. Ribosome density is greater in cells of the flank meristem. Proplastids, plastids with prolamellar bodies, or grana have a differential distribution in the apex, characteristic for a particular species. Confirmation could not be given to the concept that vacuoles arise as a series of local dilations in long extensions of the so called "smooth ER." The tonoplast and ER are distinguishable at the time of inception of a vacuole, although the tonoplast may arise from the ER. Rapid growth of a vacuole and/or fusion with other vacuoles may result in irregularly shaped prevacuoles. No vacuoles were observed to originate from cisternae of dictyosomes in the species studied.  相似文献   

14.
荇菜花蜜腺的发育研究   总被引:1,自引:0,他引:1  
荇菜花蜜腺的发育过程可分为:起源期、生长期、分泌期以及泌蜜停止期等4个时期。荇菜的5枚花蜜腺均起源于子房基部的表皮及表皮内的2-4层细胞。这些细胞经反分化后分别成为蜜腺的原分泌表皮及原泌蜜组织,两部分细胞径不断地分裂分化,最冬成为成熟蜜腺。在蜜腺发育过程中,蜜腺的分泌表皮及蜜腺组织内的内质网、质体、线粒体、液泡等细胞器结构均发生了有规律的变化,内质网在蜜腺分泌期最为发达,且产生大量的分泌小泡。质体  相似文献   

15.
We launched imbibed seeds of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on cellular differentiation in root caps. The influence of microgravity varied with different stages of cellular differentiation. Overall, microgravity tended to 1) increase relative volumes of hyaloplasm and lipid bodies, 2) decrease the relative volumes of plastids, mitochondria, dictyosomes, and the vacuome, and 3) exert no influence on the relative volume of nuclei in cells comprising the root cap. The reduced allocation of dictyosomal volume in peripheral cells of flight-grown seedlings correlated positively with their secretion of significantly less mucilage than peripheral cells of Earth-grown seedlings. These results indicate that 1) microgravity alters the patterns of cellular differentiation and structures of all cell types comprising the root cap, and 2) the influence of microgravity on cellular differentiation in root caps of Zea mays is organelle specific.  相似文献   

16.
Electron microscopy was used to investigate early development of latex ducts in Mammillaria heyderi (Cactaceae). Numerous vesicles (secondary vacuoles) form from invaginations of the plasmalemma near sites of wall thinning, from endoplasmic reticulum (ER), and from vesiculate grana of degenerate plastids. Dictyosomes, though they occur in young duct cells, do not seem to be responsible for the formation of vesicles. Cytoplasmic vesicles may contain fibrillar, globular, or crystalline materials, or may be devoid of any type of particulate matter. They may be responsible for storage of numerous laticiferous components. Lysosomal materials could be stored in some vesicles and contribute to the degradation of the protoplast. Some nuclei contain condensed chromatin and are subject to deformation and collapse. Mitochondria and lipid bodies are common in young duct cells but ER is rare. When ducts form in young tissues, plastids in the lumen do not produce starch grains or extensive membranous networks. The plastids eventually degenerate to become a part of latex. If ducts form in older, established tissues having mature plastids, the plastids undergo extreme modification.  相似文献   

17.
Developing nucellar cells in Oenothera biennis L. present distinctpatterns of differentiation at the chalaza and around the embryosac. The cytoplasm of nucellar cells surrounding the tetradof megaspores displays cytolysomes, lipid bodies and membranesof smooth ER enveloping different cytoplasmic components. Concomitantto the differentiation of the embryo sac the nucellar cellsconstituting these ‘parietal layers’ undergo cytoplasmicdegeneration with shrinkage and flattening. In addition to theregular nucellar cells the chalaza at this stage presents threeother types: One with pycnotic nuclei, paramural bodies andcytoplasm filled with polymorphic vacuoles containing membranes,granular or flocculent material and multivesicular bodies. Asecond cell type shows swollen perinuclear cisternae aroundtheir pycnotic nuclei and large cytoplasmic vacuoles accumulatingtannins. The third type of cells is characterized by large numbersof starch grains and advanced disorganization of cytoplasmicorganelles; these cells probably become reservoirs after death. Oenothera biennis L., evening primrose, embryo sac, nucellus, cytolysomes, ultrastructure  相似文献   

18.
Ultrastructure of Jincheng juice sac of Citrus sinensis (L.) Osb. was continuously investigated from the initial cell to the stalk-bearing sac. The initial cell and cells formed globularstructure, as well as the uper cells of the column-structure were typical meristem cells with mitochondria, plastids, rough endoplasmic reticulum, rich ribosome without Golgi body in their dense cytoplasm. These meristem cells would differentiate into parenchyma ceils pro2 viding storage function. At the beginning of differentiation of the meristem cells, the number of small vacuoles increased and some Golgi bodies appeared. Small vacuoles gradually fused into a central vacuole. During the fusion of small vacuoles, the cytoplasm became thinned, but still contained mitochondria, plastids, Golgi bodies, end0plasmic reticulum and some chromplasts with lipid drops. Almost no organelle were ever observed in the parenchyma cells of juice sac from mature fruit.  相似文献   

19.
牡丹苗端由营养生长转向生殖生长过程中超微结构研究   总被引:2,自引:0,他引:2  
电镜观察了营养生长和生殖生长两个发育埋藏的牡丹(Paenia suffruticosa.)苗端。结果如下:(1)营养生长期,原套和原体的细胞壁厚薄不均,多有胞间连丝分布。两者细胞核内均在较多异染色质。细胞质内含许多质体、嗜锇细胞主少量的线粒体,内质网和高尔基体。质体无片层结构,部分质体有淀粉粒和脂滴。原体细胞的液泡化过程比原套细胞略高。原体下方扁平细胞的大部分空间被大量的淀粉质体和液泡占据,淀粉粒  相似文献   

20.
玉竹(Polygonatum simizui Kitag)小孢子在分裂前,质体极性分布导致分裂后形成的生殖细胞不含质体,而营养细胞包含了小孢子中全部的质体。生殖细胞发育至成熟花粉时期,及在花粉管中分裂形成的两个精细胞中始终不含质体。虽然生殖细胞和精细胞中都存在线粒体,但细胞质中无DNA类核。玉竹雄性质体的遗传为单亲母本型。在雄配子体发育过程中,营养细胞中的质体发生明显的变化。在早期的营养细胞质中,造粉质体增殖和活跃地合成淀粉。后期,脂体增加而造粉质体消失。接近成熟时花粉富含油滴。对百合科的不同属植物质体被排除的机理及花粉中贮藏的淀粉与脂体的转变进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号