首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Modern agricultural technology and the introduction of new high-yielding varieties are largely eliminating the wide range of crop genetic diversity that has evolved during the five to ten thousand years since food plants were first domesticated. Related wild species are also on the decline because of new land use policies. These gene pools (or what is left of them) are generally spoken of as genetic resources, and are vitally needed in the creation of new crop varieties by plant breeders. Wild species and land races often furnish genes conferring resistance to diseases and pests and adaptation to environmental stresses which cannot be found in the modern crop varieties.
The study of genetic diversity of crops, its storage in gene banks or in natural reserves, its evaluation and enhancement, are briefly described. The genetic resources work of the Food and Agriculture Organisation of the United Nations (FAO) and other international agencies such as the International Board for Plant Genetic Resources (IBPGR) is outlined.  相似文献   

2.
Abstract Plant genetic resources play an important role in the improvement of cultivated plants. To characterize and evaluate the ecological and reproductive features of wild soybean ( Glycine soja Sieb. et Zucc.), which is the most probable ancestor of cultivated soybean ( G. max (L) Merr.), the breeding system and genetic diversity of G. soja were investigated. The extent of natural cross-pollination of G. soja was estimated in four populations along the Omono River in Akita Prefecture, Japan by examining allozyme variation. Although it has been previously believed that G. soja is autogamous, as is cultivated soybean, the mean multilocus outcrossing rate ( t m) estimate was 13%. These values are much higher than the outcrossing rate previously reported for both G. soja and G. max . Frequent visits by honeybees and carpenter bees to flowers were also observed, which supported this conjecture. Furthermore, to evaluate the genetic variation of G. soja as a genetic resource, the genetic structure of 447 populations over Japan were analyzed. Wild soybean populations had a higher degree of variation of isozyme loci. The G ST coefficient of gene differentian values among the sites within the district were particularly high, revealing that the isozyme genotype was greatly different among site populations and homogeneous within the sites. The genetic differentiation among nine districts was observed in the allele frequencies of a few loci, indicating that geographic isolation in the wild soybean population was effectively created through the distance between the districts. The difference in the allele frequency among the districts may be produced under genetic drift. Finally, the importance of the preservation of natural plant populations and the habitats of wild progenitors (i.e. the in situ conservation of plant genetic resources) was emphasized.  相似文献   

3.
The use of AFLPs to examine genetic relatedness in barley   总被引:7,自引:0,他引:7  
The generation of AFLPs in spring barley cultivars provided genetic information relating to the development of the crop in the UK since 1953. Principal co-ordinate (PCO) analysis of genetic similarities (gs) confirmed the marked contrast in the cultivars used in the 1970s and 1980s. The earliest cultivars, many derived from Proctor, were succeeded by tall-strawed, disease-resistant types with high yield but poor malting potential. In the 1980s they were in turn replaced by short-strawed cultivars with excellent yield and good malting quality, which originated from Triumph. A PCO plot of gs provided insight into the effects of selection for disease resistance and the antagonism between malting quality and particular resistance genes. The analysis of gs was more useful than pedigrees and estimates of kinship in revealing the genetic relationship between cultivars. Theoretical considerations for maximising the efficiency of an AFLP genotyping programme are discussed in the context of the number of primer pairs required to distinguish genotypes at varying levels of similarity.  相似文献   

4.
Synthetic hexaploid wheat (Triticum turgidum x Aegilops tauschii) was created to explore for novel genes from T. turgidum and Ae. tauschii that can be used for common wheat improvement. In the present paper, research advances on the utilization of synthetic hexaploid wheat for wheat genetic improvement in China are reviewed. Over 200 synthetic hexaploid wheat (SHW) accessions from the International Maize and Wheat Improvement Centre (CIMMYT) were introduced into China since 1995. Four cultivars derived from these, Chuanmai 38, Chuanmai 42, Chuanmai 43 and Chuanmai 47, have been released in China. Of these, Chuanmai 42, with large kernels and resistance to stripe rust, had the highest average yield (〉 6 t/ha) among all cultivars over two years in Sichuan provincial yield trials, outyielding the commercial check cultivar Chuanmai 107 by 22,7%. Meanwhile, by either artificial chromosome doubling via colchicine treatment or spontaneous chromosome doubling via a union of unreduced gametes (2n) from T. turgidum-Ae, tauschii hybrids, new SHW lines were produced in China. Mitotic-like meiosis might be the cytological mechanism of spontaneous chromosome doubling. SHW lines with genes for spontaneous chromosome doubling may be useful for producing new SHW-alien amphidiploids and double haploid in wheat genetic improvement.  相似文献   

5.
中国水稻遗传育种历程与展望   总被引:8,自引:0,他引:8  
吴比  胡伟  邢永忠 《遗传》2018,40(10):841-857
我国的水稻育种经历了矮化育种、杂种优势利用和绿色超级稻培育3次飞跃,其间伴随矮化育种(第一次绿色革命)、三系杂交稻培育、二系杂交稻培育、亚种间杂种优势利用、理想株型育种和绿色超级稻培育等6个重要历程。育种目标从唯产量是举到高抗、优质和高产并重,育种理念从高产优质逐步提升为“少投入,多产出,保护环境”。水稻功能基因组研究为第二次绿色革命准备了大量的有重要利用价值的基因,水稻育种正迈向设计育种的新时代。基因组选择技术和转基因技术将为培育“少打农药,少施化肥,节水抗旱,优质高产” 绿色超级稻保驾护航。本文对我国水稻遗传育种的发展历程进行了概括,指出了各种育种方法和育种技术的优缺点,系统介绍了水稻细胞质雄性不育和光温敏雄性核不育以及籼粳杂种不育的分子机制的研究进展,综述了水稻株型、穗型、粒形和养分高效利用相关的重要功能基因,阐明了产量与开花期联动的关系,凸显了我国水稻基础研究在国际上的重要地位。特别指出,近年来,我国水稻生产方式发生了或正在发生巨大变革,育种理念也要与时俱进。未来,杂交育种技术要与现代育种技术紧密结合,选育水稻品种不仅要满足市场需求,而且更要具备绿色健康的特点,同时还要适应新耕作制度和新耕作方法。  相似文献   

6.
Genetic diversity and conservation and utilization of plant genetic resources   总被引:17,自引:0,他引:17  
Biodiversity refers to variation within the living world, while genetic diversity represents the heritable variation within and between populations of organisms, and in the context of this paper, among plant species. This pool of genetic variation within an inter-mating population is the basis for selection as well as for plant improvement. Thus, conservation of this plant genetic diversity is essential for present and future human well-being. During recent years, there has been increasing awareness of the importance of adopting a holistic view of biodiversity, including agricultural biodiversity, conservation for sustainable utilization and development. These principles have been enshrined in the Convention on Biological Diversity and the Global Plan of Action of the Food and Agriculture Organization of the United Nations. The emphasis is now to understand the distribution and extent of genetic diversity available to humans in plant species, so that the genetic diversity can be safely conserved and efficiently used. It is generally recognized that plant genetic diversity changes in time and space. The extent and distribution of genetic diversity in a plant species depends on its evolution and breeding system, ecological and geographical factors, past bottlenecks, and often by many human factors. Much of the large amount of diversity of a species may be found within individual populations, or partitioned among a number of different populations.A better understanding of genetic diversity and its distribution is essential for its conservation and use. It will help us in determining what to conserve as well as where to conserve, and will improve our understanding of the taxonomy and origin and evolution of plant species of interest. Knowledge of both these topics is essential for collecting and use of any plant species and its wild relatives. In order to mange conserved germplasm better, there is also a need to understand the genetic diversity that is present in collections. This will help us to rationalize collections and develop and adopt better protocols for regeneration of germplasm seed. Through improved characterization and development of core collections based on genetic diversity information, it will be possible to exploit the available resources in more valuable ways.  相似文献   

7.
中国野生稻遗传资源的保护及其在育种中的利用   总被引:15,自引:0,他引:15  
我国有三种野生稻,即普通野生稻(Oryza rufipogon)、药用野生稻(O.officinalis)和瘤粒野生稻(O.meyeriana)。这三种野生稻均被列为国家二级保护植物(渐危种)。调查结果表明,野生稻由于其自然群落大量丧失而濒危,濒危程度为普通野生稻>药用野生稻>瘤粒野生稻。造成濒危的主要原因是人为的破坏活动。人类的经济活动导致了野生稻生境丧失、生境质量不断恶化、栖息地越来越少;人类的活动也导致了外来种的入侵。目前,对野生稻的保护措施主要有就地保护(原地保护或原位保护)和迁地保护(易地保护或异位保护)。易地保护包括以种子保存的种质厍、以种茎保存的种质圃和以器官培养物作为材料的超低温保存。野生稻具有许多优良特性,如特强的耐寒性、高的抗病虫性、优质蛋白质含量高、功能叶片耐衰老的特异性、特强的再生性、良好的繁茂性及生长优势等等,这些优良特性已被广泛用于水稻常规育种和杂交育种中,并取得了巨大的社会效益和经济效益。有关野生稻生物技术方面的研究,如花药培养、原生质培养、体细胞杂交和基因工程等方面已取得了较大的进展。野生稻将在水稻育种中发挥越来越重要的作用。  相似文献   

8.
Challenges in the conservation and sustainable use of genetic resources   总被引:2,自引:0,他引:2  
The meeting on 'Genetic Resources in the Face of New Environmental, Economic and Social Challenges' held in Montpellier (France) from 20-22 September 2011 brought together about 200 participants active in research and management of the genetic diversity of plant, animal, fungal and microbial species. Attendees had the rare opportunity to hear about agronomy, botany, microbiology, mycology, the social sciences and zoology in the same conference. The research teams presented the results of about 50 projects funded by the French Foundation for Research on Biodiversity to preserve genetic diversity carried out in Africa, Asia, Europe and the Americas. These projects aimed to better understand and manage genetic resources in a rapidly changing world (e.g. structural changes in the agricultural industry, the need for climate change mitigation and adaptation, the challenge of achieving food security despite the growing world population and changing dietary habits, the opportunities provided by the many new molecular biology tools, the problems caused by widespread scientific budget cuts). The meeting also hosted some roundtables open to all participants which provided a forum to establish a much needed dialogue between policy-makers, managers and researchers.  相似文献   

9.
Impact of selection and breeding on the genetic diversity in Douglas-fir   总被引:3,自引:0,他引:3  
Genetic changes following domestication of Douglas-fir were studied using isozyme data derived from two generations of seed orchards and their 49 wild progenitor populations. In addition, the breeding, production, and infusion populations used in the seed orchards were compared to their wild counterparts. Several parameters of gene diversity were measured (number of alleles per locus N a, per cent of polymorphic loci PLP, and expected heterozygosity H, and population divergence D). These measures were similar or higher in the domesticated populations compared to their natural progenitors, indicating that early selection and breeding of a highly polymorphic species does not significantly reduce genetic variation. The two generations of seed orchards also did not differ, indicating that genetic variation may remain stable over future generations of forest plantations. Interestingly, compared to the natural populations, heterozygosity was higher in the seed orchards, probably due to pooling of widely distributed natural populations; however, rare localized or private alleles seemed to be less frequent in the domesticated populations. Differentiation values were not significant between the first generation orchards and the natural populations, but significant differences were observed between the second generation orchards and the wild progenitor populations, probably due to the interbreeding that forms the advanced generation seed orchards.  相似文献   

10.
小麦抗旱种质资源的遗传多样性   总被引:24,自引:0,他引:24  
在雨养和灌水条件下,田间栽培小麦抗旱材料。根据结实器官建成与物候期、生育期的对应关系,通过供试材料产量构成因素的旱、水表现,分析在各因素形成时期的抗旱性。分别以抗旱系数和抗旱指数作为评价抗旱性的指标,通过聚类分析供试材料的遗传多样性。结果发现有些材料表现为全生育期抗旱,而有些材料只在苗期、拔节期、开花期和灌浆期等一个或几个生育时期表现抗旱;有的材料表现为抗旱高产,但有的材料产量水平较低;同时还发现部分抗旱种质资源在灌水条件下有较大的增产潜力。  相似文献   

11.
新中国成立以来水稻单位面积产量提高为三倍以上,本文对于1949~1960、1961~1975、1976~1990三个阶段水稻育种工作中新的遗传资源所起的关键作用作了分析,强调指出在种质资源的收集、整理、研究利用方面开展国际合作的必要性。  相似文献   

12.
黄河、长江流域棉区棉花抗病品种的AFLP分析   总被引:6,自引:1,他引:6  
选取黄河流域棉区的72个抗病品种和长江流域棉区的29个抗病品种,利用AFLP技术对其进行了遗传多样性分析。结果20对具有多态性的AFLP引物组合在黄河流域棉区的72个品种和长江流域棉区的29个品种上分别扩增出200条和127条多态性带,利用SPSS(11.0)软件计算得到品种之间的平均欧氏距离为4.356(黄河流域棉区)和4.391(长江流域棉区)。在阈值取15.2时,可以将黄河流域棉区的72个品种划分为4个类群(the Huanghe valley groups,abbreviate HVGs),即HVG1、HVG2、HVG3和HVG4,分别包括27、19、10和16个品种;长江流域棉区的29个品种被划分为4个类群(the Changjiang valley groups,CVGs),即CVG1、CVG2、CVG3和CVG4,分别包括14、4、5、和6个品种。通过比较两棉区品种成对欧式距离的最大值、最小值、平均值及成对欧氏距离的区间分布和累积百分率,表明来自黄河、长江流域两棉区的品种遗传多样性水平相近。  相似文献   

13.
中国肉牛分子与基因修饰育种研究进展   总被引:1,自引:0,他引:1  
佟彬  张立  李光鹏 《遗传》2017,39(11):984-1015
随着世界肉牛产业科技的快速发展,我国肉牛产业的整体水平得到明显提高并取得丰硕成果。肉牛育种技术实现了由常规杂交育种向分子标记辅助育种、全基因组选择育种和基因组修饰育种的技术跨越,揭示出大量与生长发育、肉质品质、繁殖与疾病等相关的候选基因与分子标记,并逐步应用于肉牛育种实践。与生长发育性状相关的基因或分子标记主要集中在生长激素基因、生肌调节因子家族、肌肉生长抑制因子和胰岛素样生长因子等;参与肉质形成的基因主要集中在脂肪酸运输与沉积相关信号通路、钙蛋白酶信号通路、生肌调节因子家族与肌肉生长抑制因子等;繁殖性状相关基因或分子标记主要集中在GnRH-FSHR-LH、生长分化因子9、催乳素受体和FoxO1等;抗病相关基因主要有MHC基因家族、TOLL样受体4基因等。目前,利用精准基因编辑技术已培育出促生长发育与提高肉品质的肉牛育种新材料。本文总结了近年来我国在肉牛分子与基因组修饰育种领域取得的研究进展,以期为我国肉牛遗传育种技术研究提供参考和借鉴。  相似文献   

14.
The sustainable deployment of resistant crop varieties is a critical issue for the implementation of biotechnology in crop pest management. Feeding, biomass accumulation, and mortality were evaluated for susceptible, insecticide‐resistant, and Bacillus thuringiensis (Bt) Cry 3A‐selected Colorado potato beetle (Leptinotarsa decemlineata Say) (Coleoptera, Chrysomelidae) larvae fed on: cultivated potato, a Solanum chacoense line expressing leptine glycoalkaloids, a transformed line expressing Bt toxin, or the leptine line transformed to express Bt toxin. Larvae selected for resistance to Bt‐Cry3A performed better on Bt foliage, but not as well on the leptine foliage, compared to susceptible or insecticide‐resistant larvae. Neither leptine nor Bt toxin completely inhibited the feeding and growth of 3rd and 4th instars of all three strains of Colorado potato beetle. However, for all three strains of Colorado potato beetle on leptine + Bt foliage, feeding was almost zero, growth was zero or negative, and mortality was near 100%.  相似文献   

15.
Breeding for improved productivity has been tremendously successful in the last half‐century, but needs to be even more efficient in the future. Hope based on contributions from molecular biology for improved yield potential seems to depend upon an improved knowledge of yield physiology. This knowledge may assist breeding either directly, recommending selection criteria, or indirectly identifying simpler traits that could be reliably mapped and selected for through marker‐assisted selection. Physiological traits associated with improved performance under water‐limited conditions, include phenology (that allows the crop to escape stresses) and those associated with improved water use, water use efficiency and partitioning. Undoubtedly, earliness has been the predominant trait improved for under Mediterranean conditions, and may not be a prospective trait for future breeding. Different traits that may confer the ability to the crop for capturing more water, such as deeper root systems or osmotic adjustment, may be unworkable in terms of their direct use in selection and surrogates would be needed. For instance, canopy temperature depression and discrimination against 13C may be used to assess improved ability to capture water (in these cases yield is positively related to discrimination against 13C in grains). Early vigour, which allows faster ground coverage, also increases the amount of water actually transpired by the canopy by reducing direct evaporation and presents substantial intraspecific variation, and selection for this trait may be successfully carried out either directly or through the use of vegetation indexes. Improved water use efficiency based on transpiration efficiency is largely restricted to conditions where additional water is not available. A constitutively low stomatal conductance or a high stomatal sensitivity may optimise the transpiration efficiency. In this context, discrimination against 13C is also a simple and reliable measure of water use efficiency, and in cases in which no major differences in capturing water is possible discrimination against 13C correlates negatively with yield. Substantial further improvements in partitioning may be limited in most cereals.  相似文献   

16.
Aims: The aim of this study is to investigate the pathogenic diversity and virulence groups among Pyrenophora teres f. teres isolates, sampled from Syria and Tunisia, and to identify the most effective source of resistance in barley that could be used in breeding programmes to control net blotch in both countries. Methods and Results: One hundred and four isolates of P. teres f. teres were collected from barley in different agroecological zones of Tunisia and Syria. Their virulence was evaluated using 14 barley genotypes as differential hosts. The upgma clustering identified high pathogenic variability; the isolates were clustered onto 20 pathotypes that were sheltered under three virulence groups, with high, intermediate and low disease scores. According to susceptibility/resistance frequencies and mean disease ratings, CI05401 cultivar ranked as the best differential when inoculated with the Syrian isolates. However, CI09214 cultivar was classified as the best effective source of resistance in Tunisia. Conclusions: All P. teres f. teres isolates were differentially pathogenic. CI09214 and CI05401 cultivars were released as the most effective sources of resistance in Syria and Tunisia. Significance and Impact of the Study: National and international barley breeding programmes that seek to develop resistance against P. teres f. teres in barley should strongly benefit from this study. This resistance cannot be achieved without the proper knowledge of the pathogen virulence spectrum and the sources of host resistance.  相似文献   

17.
李哲  张军涛 《生态学报》2001,21(5):716-720
在遗传算法(Genetic Algorithm)与误差反传(Back Propagation)网络结构模型相结合的基础上,设计了用遗传算法训练神经网络权重的新方法,并对吉林省梨树和德惠县的玉米进行了估产研究,同时与BP算法和灰色系统理论模型进行了比较.经检验,计算值与实际值接近,并优于灰色理论模型,具有良好的预测效果,从而为农作物估产提供了新方法.  相似文献   

18.
Late blight disease of potato caused by Phytophthora infestans poses a significant threat to potato production in Ethiopia. The development of new high yielding genotypes with adequate late blight disease resistance will provide a strong component of an integrated management strategy for farmers. The objective of this study was to determine late blight resistance and yield of potato clones under field condition in north‐western Ethiopia. Twenty‐four clones (17 from the International Potato Centre B3C2 population and seven widely grown cultivars) were evaluated at three locations. The experiment was laid in a randomized complete block design with two replications. Late blight resistance and yield‐related traits were determined. Results showed that clones differ significantly for all traits across locations. The following five clones combine high to moderate resistance to late blight with high yields: 396029.250, 395017.229, 396004.263, 396034.103 and 395077.12. These clones are useful genetic resources for resistance breeding against late blight disease and for enhanced yields.  相似文献   

19.
This study addresses the sustainable use of water resources in the Mediterranean basin, particularly in the Southern and Eastern parts of the region, and the many problems generated by water scarcity and misuse. Water economy in the region is beset by two specific problems: high irrigation needs and changes in consumer demands (especially after population shifts from rural to urban areas and because of increasing tourism and industrialisation). The challenges presented by the water crisis are even greater because of growing populations and estimated future climatic changes in the region. The integrated management of limited water resources in the Southern and Eastern parts of the Mediterranean involves several areas of research. Those most directly related with agriculture concern improving water (and nutrient) use in agriculture through the management and breeding of irrigated and rain-fed crops. However, these fields of research address only one face of a multi-factorial equation that affects water sustainability in the region. Thus, other research fields include the design of comprehensive water policies and integrated planning, and technologies for advanced water treatment and re-use. Moreover, local problems and socio-economic aspects must be considered when addressing research issues.  相似文献   

20.
Harvest index: a review of its use in plant breeding and crop physiology   总被引:7,自引:0,他引:7  
This review charts the use of the concept of harvest index in crop improvement and physiology, concentrating on the literature from the last 20 years. Evidence from abstract journals indicates that the term has been applied most to small grain cereal crops and pulses, in India, Western Europe and the USA, and that it has been less useful for maize and tuber crops. Standard methods of measuring harvest index, the associated problems of measurement and interpretation, and representative values for a range of world species are reviewed. The values for modern varieties of most intensively-cultivated grain crops fall within the range 0.4 to 0.6. Variation between varieties of the same species is illustrated by trends in the harvest indices of old, outclassed and recent varieties of temperate and mediterranean wheat and barley (compared under uniform conditions); this shows a progressive increase throughout the present century, although improvement has been much slower in Australia and Canada than in the UK. In most cases, the improvement in harvest index has been a consequence of increased grain population density coupled with stable individual grain weight. The high heritability of harvest index is explored by examining its (rather weak) response to variation in environmental factors (fertilisation, population density, application of growth regulators) in the absence of severe stress. A fuller perspective is gained by reviewing aspects of the harvest index of rice, maize and tropical pulses. With rice, attention must be paid to the fact that the adhering lemma and palea (not primarily part of economic yield) can make up 20% of grain weight; and there are important interactions among biomass, grain yield and season length. Maize differs from most small grain crops in that harvest index (in N. American varieties) was already high at the start of this century, and increases in yield potential have been largely the consequence of increased biomass production. The harvest index of many pulse species and varieties tends to be low because selection has been for some yield in all seasons. Extension of the harvest index concept to express the partitioning of mineral nutrients as well as dry matter (e.g. the nitrogen harvest index) has provided a range of responses whose implications for production and breeding remain to be explored. It is concluded that even though the principal cereal crops appear to be approaching the upper limit of harvest index, and future yield gains will have to be sought by increased biomass production, there will still be a need for the concept of harvest index as a tool in interpreting crop response to different environments and climatic change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号