首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolutionary relationships among cyanobacteria and green chloroplasts.   总被引:31,自引:16,他引:31       下载免费PDF全文
The 16S rRNAs from 29 cyanobacteria and the cyanelle of the phytoflagellate Cyanophora paradoxa were partially sequenced by a dideoxynucleotide-terminated, primer extension method. A least-squares distance matrix analysis was used to infer phylogenetic trees that include green chloroplasts (those of euglenoids, green algae, and higher plants). The results indicate that many diverse forms of cyanobacteria diverged within a short span of evolutionary distance. Evolutionary depth within the surveyed cyanobacteria is substantially less than that separating the major eubacterial taxa, as though cyanobacterial diversification occurred significantly after the appearance of the major eubacterial groups. Three of the five taxonomic sections defined by Rippka et al. (R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier, J. Gen. Microbiol. 111:1-61, 1979) (sections II [pleurocapsalean], IV [heterocystous, filamentous, nonbranching], and V [heterocystous, filamentous, branching]) are phylogenetically coherent. However, the other two sections (I [unicellular] and III [nonheterocystous, filamentous]) are intermixed and hence are not natural groupings. Our results not only support the conclusion of previous workers that the cyanobacteria and green chloroplasts form a coherent phylogenetic group but also suggest that the chloroplast lineage, which includes the cyanelle of C. paradoxa, is not just a sister group to the free-living forms but rather is contained within the cyanobacterial radiation.  相似文献   

2.
Comparative 16S rRNA sequencing was used to evaluate phylogenetic relationships among selected strains of ammonia- and nitrite-oxidizing bacteria. All characterized strains were shown to be affiliated with the proteobacteria. The study extended recent 16S rRNA-based studies of phylogenetic diversity among nitrifiers by the comparison of eight strains of the genus Nitrobacter and representatives of the genera Nitrospira and Nitrospina. The later genera were shown to be affiliated with the delta subdivision of the proteobacteria but did not share a specific relationship to each other or to other members of the delta subdivision. All characterized Nitrobacter strains constituted a closely related assemblage within the alpha subdivision of the proteobacteria. As previously observed, all ammonia-oxidizing genera except Nitrosococcus oceanus constitute a monophyletic assemblage within the beta subdivision of the proteobacteria. Errors in the 16S rRNA sequences for two strains previously deposited in the databases by other investigators (Nitrosolobus multiformis C-71 and Nitrospira briensis C-128) were corrected. Consideration of physiology and phylogenetic distribution suggested that nitrite-oxidizing bacteria of the alpha and gamma subdivisions are derived from immediate photosynthetic ancestry. Each nitrifier retains the general structural features of the specific ancestor's photosynthetic membrane complex. Thus, the nitrifiers, as a group, apparently are not derived from an ancestral nitrifying phenotype.  相似文献   

3.
4.
5.
Small subunit rRNA sequences have been determined for 10 of the most clinically important pathogenic species of the yeast genus Candida (including Torulopsis [Candida] glabrata and Yarrowia [Candida] lipolytica) and for Hansenula polymorpha. Phylogenetic analyses of these sequences and those of Saccharomyces cerevisiae, Kluyveromyces marxianus var. lactis, and Aspergillus fumigatus indicate that Candida albicans, C. tropicalis, C. parapsilosis, and C. viswanathii form a subgroup within the genus. The remaining significant pathogen, T. glabrata, falls into a second, distinct subgroup and is specifically related to S. cerevisiae and more distantly related to C. kefyr (psuedotropicalis) and K. marxianus var. lactis. The 18S rRNA sequence of Y. lipolytica has evolved rapidly in relation to the other Candida sequences examined and appears to be only distantly related to them. As anticipated, species of several other genera appear to bear specific relationships to members of the genus Candida.  相似文献   

6.
To understand the evolution of photosynthetic bacteria it is necessary to understand how the main groups within Bacteria have evolved from a common ancestor, a critical issue that has not been resolved in the past. Recent analysis of shared conserved inserts or deletions (indels) in protein sequences has provided a powerful means to resolve this long-standing problem in microbiology. Based on a set of 25 indels in highly conserved and widely distributed proteins, all main groups within bacteria can now be defined in clear molecular terms and their relative branching orders logically deduced. For the 82 presently completed bacterial genomes, the presence or absence of these signatures in various proteins was found to be almost exactly as predicted by the indel model, with only 11 exceptions observed in 1842 observations. The branching order of different bacterial groups as deduced using this approach is as follows: low G+C Gram-positive (Heliobacterium chlorum) ↔ high G+C Gram-positive ↔ Clostridium–Fusobacterium–ThermotogaDeinococcus–Thermus ↔ green nonsulfur bacteria (Chloroflexus aurantiacus) ↔ Cyanobacteria ↔ SpirochetesChlamydia–Cytophaga–Flavobacteria–green sulfur bacteria (Chlorobium tepidum) ↔ AquifexProteobacteria (δ and ∈) ↔ Proteobacteria (α) ↔ Proteobacteria (β) and ↔ Proteobacteria (γ). The Heliobacterium species, which contain an Fe–S type of reaction center (RC 1) and represent the sole photosynthetic phylum from the Gram-positive or monoderm bacteria (i.e., bounded by only a single membrane), is indicated to be the most ancestral of the photosynthetic lineages. Among the Gram-negative or diderm bacteria (containing both inner and outer cell membranes) the green nonsulfur bacteria, which contain a pheophytin-quinone type of reaction center (RC 2), are indicated to have evolved first. The later emerging photosynthetic groups which contain either one or both of these reaction centers could have acquired such genes from the earlier branching lineages by either direct descent or by means of lateral gene transfer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Evolutionary relationships among bacterial carbamoyltransferases   总被引:2,自引:0,他引:2  
An immunological approach was used for the study of ornithine carbamoyltransferase (OTCase) evolution in bacteria. Antisera were prepared against the anabolic and catabolic OTCases of Pseudomonas aeruginosa and Aeromonas formicans as well as against OTCase and putrescine carbamoyltransferases from Streptococcus faecalis; these antisera were then tested against the unpurified OTCases, either anabolic or catabolic, of 34 bacterial strains. Extensive cross-reactions were observed between the antisera to catabolic OTCases from P. aeruginosa, A. formicans and S. faecalis and the catabolic enzymes from other species or genera. These antisera cross-reacted also with the anabolic OTCases of strains of the Enterobacteriaceae but not with the anabolic OTCases of the same species or of other species or genera. The cross-reaction measured between the antisera against P. aeruginosa anabolic OTCase and the anabolic OTCases of other Pseudomonas were largely in agreement with the phylogenic subdivision of Pseudomonas proposed by N. J. Palleroni. The correlation was also significantly higher with the anabolic enzyme of an archaeobacterium, Methanobacterium thermoaceticum, than with the catabolic or anabolic OTCases from other genera in the eubacterial line. The antiserum raised against A. formicans anabolic OTCase was quite specific for its antigen and appeared to be raised against the heaviest of the various oligomeric structures of the enzyme.  相似文献   

8.
gamma-Carboxymuconolactone decarboxylase (EC 4.1.1.44) from Azotobacter vinelandii resembled the isofunctional enzymes from Acinetobacter calcoaceticus and Pseudomonas putida. All three decarboxylases appeared to be hexamers formed by association of identical subunits of about 13,300 daltons. The A. vinelandii and P. putida decarboxylases cross-reacted immunologically with each other, and the NH2-terminal amino acid sequences of the enzymes differed in no more than 7 of the first 36 residues. In contrast, the A. calcoaceticus decarboxylase did not cross-react with the decarboxylase from A. vinelandii or P. putida; the NH2-terminal amino acid sequences of these enzymes diverged about 50% from the NH2-terminal amino acid sequence of the A. calcoaceticus decarboxylase.  相似文献   

9.
10.
J V Undevia  N Saha 《Human heredity》1987,37(4):205-210
Transferrin and group-specific component subtypes were studied by isoelectric focusing of sera from 253 Parsis in India. The frequencies of TfC1, TfC2, TfC3 and TfC4 were found to be 0.8083, 0.1719, 0.019 and 0.0020, respectively. TfB was present in a frequency of 0.0059. The frequencies of Gc alleles were found to be 0.4478 for GcIF, 0.3875 for GcIS and 0.1647 for Gc2. The gene frequency of GcIF was rather high in comparison with Iranian and Indian populations.  相似文献   

11.
The complete amino acid sequence (458 amino acid residues) of human group-specific component 2 (Gc2) protein was determined. Computer analyses established a three-fold internal homology of Gc2 protein as well as an extensive homology between the overall structures of Gc2 protein, human serum albumin and human alpha-fetoprotein.  相似文献   

12.
近年来随着生命科学新技术、新方法的涌现,酶蛋白结构和功能研究逐渐深入。具有多结构域的酶蛋白中各个结构域常具有独立的催化或结合底物的功能,在重组酶和组合生物合成研究中具有极大的研究和应用价值。这些结构域功能和组织方式的多样性,是研究分子进化的基础。对结构域进行进化分析对于研究多结构域酶的进化过程、功能相近酶之间的关系,以及对酶的分类鉴定等有重要意义。本文从结构域的重复性、结构域的水平基因转移和结构域的重组等方面出发,对多结构域酶中结构域之间进化关系的研究成果进行综述。  相似文献   

13.
DNaseI sensitivity of the rat albumin and alpha-fetoprotein genes.   总被引:3,自引:1,他引:3       下载免费PDF全文
We have analyzed the DNaseI sensitivity of chromatin from the rat albumin and alpha-fetoprotein genes in the fetal liver (which synthesizes albumin and alpha-fetoprotein), adult liver (which synthesizes albumin), fetal yolk sac (which synthesizes alpha-fetoprotein), and adult kidney (which synthesizes neither). Active genes were much more sensitive than their kidney counterparts, and the adult liver alpha-fetoprotein and fetal yolk sac albumin genes showed intermediate levels of sensitivity. Sensitivity was analyzed as a function of the extent of DNaseI digestion. Rate constants were calculated for the degradation of individual DNA hybridization bands and normalized to the intrinsic rate constants of the same bands degraded in purified DNA. This enabled us to eliminate the inconsistencies that otherwise result from comparing chromatin sensitivity of different DNA sequences, or chromatin sensitivity in different nuclear environments.  相似文献   

14.
41 Amino acid long N-terminal sequences of the three major human vitamin D-binding proteins (group-specific components Gc1F, Gc1S and Gc2) were characterized: they were identical. By computer analyses, the alignment of this N-terminal sequence with several sequences of human serum pre-proalbumin and human pre-alpha-fetoprotein was established.  相似文献   

15.
A data base was compiled containing the amino acid sequences of 12 aspartate aminotransferases and 11 other aminotransferases. A comparison of these sequences by a standard alignment method confirmed the previously reported homology of all aspartate aminotransferases and Escherichia coli tyrosine aminotransferase. However, no significant similarity between these proteins and any of the other aminotransferases was detected. A more rigorous analysis, focusing on short sequence segments rather than the total polypeptide chain, revealed that rat tyrosine aminotransferase and Saccharomyces cerevisiae and Escherichia coli histidinol-phosphate aminotransferase share several homologous sequence segments with aspartate aminotransferases. For comparison of the complete sequences, a multiple sequence editor was developed to display the whole set of amino acid sequences in parallel on a single work-sheet. The editor allows gaps in individual sequences or a set of sequences to be introduced and thus facilitates their parallel analysis and alignment. Several clusters of invariant residues at corresponding positions in the amino acid sequences became evident, clearly establishing that the cytosolic and the mitochondrial isoenzyme of vertebrate aspartate aminotransferase, E. coli aspartate aminotransferase, rat and E. coli tyrosine aminotransferase, and S. cerevisiae and E. coli histidinol-phosphate aminotransferase are homologous proteins. Only 12 amino acid residues out of a total of about 400 proved to be invariant in all sequences compared; they are either involved in the binding of pyridoxal 5'-phosphate and the substrate, or appear to be essential for the conformation of the enzymes.  相似文献   

16.
17.
We suggest an extension of connexin orthology relationships across the major vertebrate lineages. We first show that the conserved domains of mammalian connexins (encoding the N-terminus, four transmembrane domains and two extracellular loops) are subjected to a considerably more strict selection pressure than the full-length sequences or the variable domains (the intracellular loop and C-terminal tail). Therefore, the conserved domains are more useful for the study of family relationships over larger evolutionary distances. The conserved domains of connexins were collected from chicken, Xenopus tropicalis, zebrafish, pufferfish, green spotted pufferfish, Ciona intestinalis and Halocynthia pyriformis (two tunicates). A total of 305 connexin sequences were included in this analysis. Phylogenetic trees were constructed, from which the orthologies and the presumed evolutionary relationships between the sequences were deduced. The tunicate connexins studied had the closest, but still distant, relationships to vertebrate connexin 36, 39.2, 43.4, 45 and 47. The main structure in the connexin family known from mammals pre-dates the divergence of bony fishes, but some additional losses and gains of connexin sequences have occurred in the evolutionary lineages of subsequent vertebrates. Thus, the connexin gene family probably originated in the early evolution of chordates, and underwent major restructuring with regard to gene and subfamily structures (including the number of genes in each subfamily) during early vertebrate evolution.  相似文献   

18.
We have incorporated an additional 56 species of land snails and slugs in our ribosomal (r) RNA molecular phylogeny. The new taxa include representatives of several important groups. The molecular tree now includes 160 species of stylommatophoran land snails and slugs in 144 genera in 61 families. In the rDNA tree, the Stylommatophora are principally divided into an 'achatinoid' and a 'non-achatinoid' clade. Within these clades, several major land snail groups, including the Orthurethra, Elasmognatha, Limacoidea, and Helicoidea, are supported. Overall, the rDNA molecular phylogeny has remained stable following the incorporation of the additional taxa, with these additions having little impact on the major evolutionary patterns in the tree. Taxonomic coverage of the Orthurethra, Orthalicidae, Camaenidae, and Bradybaenidae is increased significantly. The camaenids and bradybaenids form a complex, and both appear to be paraphyletic. Several families of uncertain affinity, such as the Sagdidae and Thyrophorellidae, are included for the first time. The Sagdidae are shown to belong to the Helicoidea, and the Thyrophorellidae to the Achatinoidea.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 593–610.  相似文献   

19.
Evolutionary rates vary among rRNA structural elements   总被引:1,自引:0,他引:1  
Understanding patterns of rRNA evolution is critical for a number of fields, including structure prediction and phylogeny. The standard model of RNA evolution is that compensatory mutations in stems make up the bulk of the changes between homologous sequences, while unpaired regions are relatively homogeneous. We show that considerable heterogeneity exists in the relative rates of evolution of different secondary structure categories (stems, loops, bulges, etc.) within the rRNA, and that in eukaryotes, loops actually evolve much faster than stems. Both rates of evolution and abundance of different structural categories vary with distance from functionally important parts of the ribosome such as the tRNA path and the peptidyl transferase center. For example, fast-evolving residues are mainly found at the surface; stems are enriched at the subunit interface, and junctions near the peptidyl transferase center. However, different secondary structure categories evolve at different rates even when these effects are accounted for. The results demonstrate that relative rates and patterns of evolution are lineage specific, suggesting that phylogenetically and structurally specific models will improve evolutionary and structural predictions.  相似文献   

20.
Evolutionary relationships among the primate Mhc-DQA1 and DQA2 alleles   总被引:4,自引:0,他引:4  
The variation of the Mhc-DQA1 and DQA2 loci of ten different primate species (hominoids and Old World monkeys) was studied in order to obtain an insight in the processes that generate polymorphism of major histocompatibility complex (Mhc) class II genes and to establish the evolutionary relationships of their alleles. To that end nucleotide sequences of 36 Mhc class II DQA1 and seven DQA2 second exons were determined and phylogenetic trees that illustrate their evolutionary relationships were constructed. We demonstrate the existence of four primate Mhc-DQA1 allele lineages, two of which probably existed before the separation of the ancestors of the hominoids and Old World monkeys (approximately 22–28 million years ago). Mhc-DQA2 sequences were found only in the hominoid species and showed little diversity. We found no evidence for a major contribution of recombinational events to the generation of allelic diversity of the primate Mhc-DQA1 locus. Instead, our data suggest that the primate Mhc-DQA1 and DQA2 loci are relatively stable entities that mutated primarily as a result of point mutations.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M76186-M76229.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号