首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Various functional roles for myosin light chain 2 (LC2) have been suggested on the basis of numerous and predominantly in vitro biochemical studies. Using skinned fibers from rabbit psoas muscle, the present study examines the influence of partial removal of LC2 on isometric tension, stiffness, and maximum velocity of shortening at various levels of activation by Ca2+. Isometric tension, stiffness, and velocity of shortening were measured at pCa values between 6.6 and 4.5 (a) in a control fiber segment, (b) in the same fiber segment after partial removal of LC2, and (c) after recombination with LC2. The extraction solution contained 20 mM EDTA, 20 or 50 mM KCl, and either imidazole or PO4(2-) as a pH buffer (pH 7.0). The amount of LC2 extracted varied with the temperature, duration of extraction, and whether or not troponin C (0.5 mg/ml) was added to the extraction solution. Extraction of 20-40% LC2 resulted in increased active tensions in the range of pCa's between 6.6 and 5.7, but had no effect upon maximum tension. The tension-pCa relationship was left-shifted to lower [Ca2+] by as much as 0.2 pCa units after LC2 extraction. At low concentrations of Ca2+, an increase in stiffness proportional to the increase in tension was observed. Readdition of LC2 to these fiber segments resulted in a return of tension and stiffness to near control values. Stiffness during maximal activation was unaffected by partial extraction of LC2. LC2 extraction was shown to uniformly decrease (by 25-30%), the velocity of shortening during the high velocity phase but it did not significantly affect the low velocity phase of shortening. This effect was reversed by readdition of purified LC2 to the fiber segments. On the basis of these findings we conclude that LC2 may modulate the number of cross-bridges formed during Ca2+ activation and also the rate of cross-bridge detachment during shortening. These results are consistent with the idea that LC2 may modulate contraction via an influence upon the conformation of the S1-S2 hinge region of myosin.  相似文献   

2.
The activation of contraction in vertebrate skeletal muscle involves the binding of Ca2+ to low-affinity binding sites on the troponin C (TnC) subunit of the regulatory protein troponin. The present study is an investigation of possible cooperative interactions between adjacent functional groups, composed of seven actin monomers, one tropomyosin, and one troponin, along the same thin filament. Single skinned fibers were obtained from rabbit psoas muscles and were then placed in an experimental chamber containing relaxing solution maintained at 15 degrees C. Isometric tension was measured in solutions containing maximally and submaximally activating levels of free Ca2+ (a) in control fiber segments, (b) in the same segments after partial extraction of TnC, and finally (c) after recombination of TnC into the segments. The extraction was done at 11-13 degrees C in 20 mM Tris, 5 mM EDTA, pH 7.85 or 8.3, a procedure derived from that of Cox et al. (1981. Biochem. J. 195:205). Extraction of TnC was quantitated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the control and experimental samples. Partial extraction of TnC resulted in reductions in tension during maximal Ca activation and in a shift of the relative tension-pCa (i.e., -log[Ca2+]) relationship to lower pCa's. The readdition of TnC to the extracted fiber segments resulted in a recovery of tension to near-control levels and in the return of the tension-pCa relation to its original position. On the basis of these findings, we conclude that the sensitivity to Ca2+ of a functional group within the thin filament may vary depending upon the state of activation of immediately adjacent groups.  相似文献   

3.
Partial extraction of troponin C (TnC) decreases the Ca2+ sensitivity of tension development in mammalian skinned muscle fibers (Moss, R. L., G. G. Giulian, and M. L. Greaser. 1985. Journal of General Physiology. 86:585), which suggests that Ca2+-activated tension development involves molecular cooperativity within the thin filament. This idea has been investigated further in the present study, in which Ca2+-insensitive activation of skinned fibers from rabbit psoas muscles was achieved by removing a small proportion of total troponin (Tn) complexes. Ca2+-activated isometric tension was measured at pCa values (i.e., -log[Ca2+]) between 6.7 and 4.5: (a) in control fiber segments, (b) in the same fibers after partial removal of Tn, and (c) after recombination of Tn. Tn removal was accomplished using contaminant protease activity found in preparations of LC2 from rabbit soleus muscle, and was quantitated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and scanning densitometry. Partial Tn removal resulted in the development of a Ca2+-insensitive active tension, which varied in amount depending on the duration of the extraction, and concomitant decreases in maximal Ca2+-activated tensions. In addition, the tension-pCa relation was shifted to higher pCa values by as much as 0.3 pCa unit after Tn extraction. Readdition of Tn to the fiber segments resulted in the reduction of tension in the relaxing solution to control values and in the return of the tension-pCa relation to its original position. Thus, continuous Ca2+-insensitive activation of randomly spaced functional groups increased the Ca2+ sensitivity of tension development in the remaining functional groups along the thin filament. In addition, the variation in Ca2+-insensitive active tension as a function of Tn content after extraction suggests that only one-third to one-half of the functional groups within a thin filament need to be activated for complete disinhibition of that filament to be achieved.  相似文献   

4.
C-protein, a substantial component of muscle thick filaments, has been postulated to have various functions, based mainly on results from biochemical studies. In the present study, effects on Ca(2+)-activated tension due to partial removal of C-protein were investigated in skinned single myocytes from rat ventricle and rabbit psoas muscle. Isometric tension was measured at pCa values of 7.0 to 4.5: (a) in untreated myocytes, (b) in the same myocytes after partial extraction of C-protein, and (c) in some myocytes, after readdition of C-protein. The solution for extracting C-protein contained 10 mM EDTA, 31 mM Na2HPO2, 124 mM NaH2PO4, pH 5.9 (Offer et al., 1973; Hartzell and Glass, 1984). In addition, the extracting solution contained 0.2 mg/ml troponin and, for skeletal muscle, 0.2 mg/ml myosin light chain-2 in order to minimize loss of these proteins during the extraction procedure. Between 60 and 70% of endogenous C-protein was extracted from cardiac myocytes by a 1-h soak in extracting solution at 20-23 degrees C; a similar amount was extracted from psoas fibers during a 3-h soak at 25 degrees C. For both cardiac myocytes and skeletal muscle fibers, partial extraction of C-protein resulted in increased active tension at submaximal concentrations of Ca2+, but had little effect upon maximum tension. C-protein extraction also reduced the slope of the tension-pCa relationships, suggesting that the cooperativity of Ca2+ activation of tension was decreased. Readdition of C-protein to previously extracted myocytes resulted in recovery of both tension and slope to near their control values. The effects on tension did not appear to be due to disruption of cooperative activation of the thin filament, since C-protein extraction from cardiac myocytes that were 40-60% troponin-C (TnC) deficient produced effects similar to those observed in cells that were TnC replete. Measurements of the tension-pCa relationship in skeletal muscle fibers were also made at a sarcomere length of 3.5 microns which, because of the distribution of C-protein on the thick filament, should eliminate any interaction between C-protein and actin. The effects of C-protein extraction were similar at long and short sarcomere lengths. These data are consistent with a model in which C-protein modulates the range of movement of myosin, such that the probability of myosin binding to actin is increased after its extraction.  相似文献   

5.
Ca2+ binding to troponin C (TnC), a subunit of the thin filament regulatory strand, activates vertebrate skeletal muscle contraction. Tension, however, increases with Ca2+ too abruptly to be the result of binding to sites on individual TnCs. Because extraction of one TnC on average per regulatory strand dramatically reduces the slope of the tension/Ca2+ relationship, we proposed that all 26 troponin-tropomyosin complexes of the regulatory strand form a co-operative system. This study of permeabilized (chemically skinned) rabbit psoas fibers analyzes the extraction time-course, the distribution of extraction sites on regulatory strands and the effects of extraction on the co-operativity of the tension/Ca2+ relationship. Two components of TnC are resolved in the time-course of extraction: a "rapidly extracting" component that can be selectively removed without affecting tension or co-operativity, and a "slow extracting" component whose loss reduces tension and co-operativity. Extraction of [14C]TnC shows that the slowly extracting component is lost randomly, so that, after removal of 5% of the TnC, most extracted strands have lost one TnC. Extraction interrupts the transmission of co-operativity by dividing the regulatory strand into smaller, independent co-operative systems; it reduces tension by preventing Ca2+ activation of TnC-depleted regulatory units. Co-operativity of the tension/Ca2+ relationship is modeled with the concerted-transition formalism for intact systems of 26 regulatory units, and for the smaller systems in extracted fibers.  相似文献   

6.
Rabbit ileum strips were functionally skinned by exposure to staphylococcal alpha-toxin. Incubation of the strips in the ATP analog ATP gamma S or [35S]ATP gamma S in the presence of Ca2+ (but not in the absence of Ca2+) resulted in a maximal Ca2+-insensitive activated tension that persisted following removal of Ca2+. Correlated with this tension was 35S-labeling of the 20,000-dalton myosin light chain, LC20, that persisted even after removal of Ca2+. Tension in these strips partially relaxed when exposed to ATP (alpha,beta-methylene). In contrast, alpha-toxin-treated strips exposed to ATP or [gamma-32P]ATP showed Ca2+-sensitive, reversible activated tension and reversible 32P-labeling of the LC20. These results are consistent with a currently proposed model of Ca2+ control of smooth muscle contraction involving a myosin light chain kinase-phosphatase system.  相似文献   

7.
Regulation of contraction in skeletal muscle is a highly cooperative process involving Ca(2+) binding to troponin C (TnC) and strong binding of myosin cross-bridges to actin. To further investigate the role(s) of cooperation in activating the kinetics of cross-bridge cycling, we measured the Ca(2+) dependence of the rate constant of force redevelopment (k(tr)) in skinned single fibers in which cross-bridge and Ca(2+) binding were also perturbed. Ca(2+) sensitivity of tension, the steepness of the force-pCa relationship, and Ca(2+) dependence of k(tr) were measured in skinned fibers that were (1) treated with NEM-S1, a strong-binding, non-force-generating derivative of myosin subfragment 1, to promote cooperative strong binding of endogenous cross-bridges to actin; (2) subjected to partial extraction of TnC to disrupt the spread of activation along the thin filament; or (3) both, partial extraction of TnC and treatment with NEM-S1. The steepness of the force-pCa relationship was consistently reduced by treatment with NEM-S1, by partial extraction of TnC, or by a combination of TnC extraction and NEM-S1, indicating a decrease in the apparent cooperativity of activation. Partial extraction of TnC or NEM-S1 treatment accelerated the rate of force redevelopment at each submaximal force, but had no effect on kinetics of force development in maximally activated preparations. At low levels of Ca(2+), 3 microM NEM-S1 increased k(tr) to maximal values, and higher concentrations of NEM-S1 (6 or 10 microM) increased k(tr) to greater than maximal values. NEM-S1 also accelerated k(tr) at intermediate levels of activation, but to values that were submaximal. However, the combination of partial TnC extraction and 6 microM NEM-S1 increased k(tr) to virtually identical supramaximal values at all levels of activation, thus, completely eliminating the activation dependence of k(tr). These results show that k(tr) is not maximal in control fibers, even at saturating [Ca(2+)], and suggest that activation dependence of k(tr) is due to the combined activating effects of Ca(2+) binding to TnC and cross-bridge binding to actin.  相似文献   

8.
Troponin C (TnC) is the Ca(2+)-sensing subunit of troponin responsible for initiating the cascade of events resulting in contraction of striated muscle. This protein can be readily extracted from myofibrils with low-ionic-strength EDTA-containing buffers. The properties of TnC extraction have not been characterized at the structural level, nor have the interactions of TnC with the native myofibrillar thin filament been studied. To address these issues, fluorescein-labeled TnC, in conjunction with high-resolution digital fluorescence microscopy, was used to characterize TnC binding to myofibrils and to determine the randomness of TnC extraction. Fluorescein-5-maleimide TnC (F5M TnC) retained biological activity, as evidenced by reconstitution of Ca(2+)-dependent ATPase activity in extracted myofibrils and binding to TnI in a Ca(2+)-sensitive manner. The binding of F5M TnC to highly extracted myofibrils at low Ca2+ was restricted to the overlap region under rigor conditions, and the location of binding was not influenced by F5M TnC concentration. The addition of myosin subfragment 1 to occupy all actin sites resulted in F5M TnC being bound in both the overlap and nonoverlap regions. However, very little F5M TnC was bound to myofibrils under relaxing conditions. These results suggest that strong binding of myosin heads enhances TnC binding. At high Ca2+, the pattern of F5M TnC binding was concentration dependent: binding was restricted to the overlap region at low F5M TnC concentration, whereas the binding propagated into the nonoverlap region at higher levels. Analysis of fluorescence intensity showed the greatest binding of F5M TnC at high Ca2+ with S1, and these conditions were used to characterize partially TnC-extracted myofibrils. Comparison of partially extracted myofibrils showed that low levels of extraction were associated with greater F5M TnC being bound in the nonoverlap region than in the overlap region relative to higher levels of extraction. These results show that TnC extraction is not random along the length of the thin filament, but occurs more readily in the nonoverlap region. This observation, in conjunction with the influence of rigor heads on the pattern of F5M TnC binding, suggests that strong myosin binding to actin stabilizes TnC binding at low Ca2+.  相似文献   

9.
Steady-state ATPase activities of cardiac myosin from thyroxine-treated rabbit hearts have been determined before and after removal of the 18-kDa light-chain subunit (LC2) of myosin. LC2 was selectively removed from myosin by treatment with a myofibrillar protease according to the method of Kuo and Bhan (Biochem. Biophys. Res. Commun. 92, 570-576 (1980) ). The effects of removal of LC2 on the enzymatic properties of thyrotoxic myosin were compared with the results obtained for cardiac myosin from normal rabbits by parallel studies. It has been found that removal of LC2 does not affect the Ca2+- and K+ (EDTA)-ATPase activities of these myosins. The actin-activated myosin Mg2+-ATPase activities of intact and LC2-deficient thyrotoxic myosin were 0.18 +/- 0.03 and 0.36 +/- 0.03 mumol Pi/mg per min, respectively, whereas the actin-activated myosin Mg2+-ATPase activities of intact and LC2-deficient normal myosin were 0.12 +/- 0.02 and 0.18 +/- 0.03 mumol Pi/mg per min, respectively. Thus, removal of LC2 increases the actin-activated myosin Mg2+-ATPase activity of thyrotoxic myosin by 100%, and the same activity is increased about 50% for normal myosin, indicating that the degree of potentiation of actin-activated myosin Mg2+-ATPase activity as a result of LC2 removal is 2-fold greater in thyrotoxic myosin than that obtained for normal myosin. These results suggest that LC2 does not influence the increased actomyosin ATPase activity of thyrotoxic myosin and that potentiation of actomyosin ATPase following LC2 removal may depend on the variations of the heavy-chain domain where LC2 interacts.  相似文献   

10.
The rate constant of tension redevelopment (ktr; 1986. Proc. Natl. Acad. Sci. USA. 83:3542-3546) was determined at various levels of thin filament activation in skinned single fibers from mammalian fast twitch muscles. Activation was altered by (a) varying the concentration of free Ca2+ in the activating solution, or (b) extracting various amounts of troponin C (TnC) from whole troponin complexes while keeping the concentration of Ca2+ constant. TnC was extracted by bathing the fiber in a solution containing 5 mM EDTA, 10 mM HEPES, and 0.5 mM trifluoperazine dihydrochloride. Partial extraction of TnC resulted in a decrease in the Ca2+ sensitivity of isometric tension, presumably due to disruption of near-neighbor molecular cooperativity between functional groups (i.e., seven actin monomers plus associated troponin and tropomyosin) within the thin filament. Altering the level of thin filament activation by partial extraction of TnC while keeping Ca2+ concentration constant tested whether the Ca2+ sensitivity of ktr results from a direct effect of Ca2+ on cross-bridge state transitions or, alternatively, an indirect effect of Ca2+ on these transitions due to varying extents of thin filament activation. Results showed that the ktr-pCa relation was unaffected by partial extraction of TnC, while steady-state isometric tension exhibited the expected reduction in Ca2+ sensitivity. This finding provides evidence for a direct effect of Ca2+ on an apparent rate constant that limits the formation of force-bearing cross-bridge states in muscle fibers. Further, the kinetics of this transition are unaffected by disruption of near-neighbor thin filament cooperativity subsequent to extraction of TnC. Finally, the results support the idea that the steepness of the steady-state isometric tension-calcium relationship is at least in part due to mechanisms involving molecular cooperativity among thin filament regulatory proteins.  相似文献   

11.
Externally added calmodulin (CaM) restored Ca2+ regulation for the tension development by skeletal muscle fibers of hamster and rabbit desensitized by the troponin C (TnC) extraction treatment. CaM produced this action by combining with the TnC-denuded sites in the fiber. However, the binding properties differed strikingly from TnC: unlike TnC, CaM binding required the continued presence of Ca2+ and the bound portion was completely released with EGTA in the physiological milieu. The maximal uptake was 1.7 g of CaM/kg of muscle in the present study. The apparent Ca2+ sensitivity for force development with 200 micrograms/ml CaM in the solution was lower than in the native fiber or in the TnC-loaded fiber. The apparent association constant for CaM binding to the TnC-denuded sites was found as 4.9 x 10(5) M-1, and the extrapolated maximum force (Fmax) with CaM was close to PO. The intrinsic CaM level in intact muscle was also measured and was 18.6 mg/kg, amounting to about 1% of the total TnC or the CaM uptake by TnC-denuded fibers. The intrinsic CaM was not dislodged by EDTA treatment, indicating tight binding and suggesting that it exists in a separate pool from the vacated TnC sites adsorbing externally added CaM. The stringent Ca+ dependence of the CaM adsorption to TnC sites in the regulatory complex in the fiber supports the view that the evolutionary replacement of residues in the amino terminus helix portion of the "EF-hand" motif of site IV may be critical for the functional specialization by TnC.  相似文献   

12.
Binding of Ca2+ to the troponin C (TnC) subunit of troponin is necessary for tension development in skeletal and cardiac muscles. Tension was measured in skinned fibers from rabbit skeletal muscle at various [Ca2+] before and after partial substitution of skeletal TnC with cardiac TnC. Following substitution, the tension-pCa relationship was altered in a manner consistent with the differences in the number of low-affinity Ca2+-binding sites on the two types of TnC and their affinities for Ca2+. The alterations in the tension-pCa relationship were for the most part reversed by reextraction of cardiac TnC and readdition of skeletal TnC into the fiber segments. These findings indicate that the type of TnC present plays an important role in determining the Ca2+ dependence of tension development in striated muscle.  相似文献   

13.
The elementary steps of the cross-bridge cycle in which troponin C (TnC) was partially extracted were investigated by sinusoidal analysis in rabbit psoas muscle fibers. The effects of MgATP and phosphate on the rate constants of exponential processes were studied at 200 mM ionic strength, pCa 4.20, pH 7.00, and at 20 degrees C. The results were analyzed with the following cross-bridge scheme: [formula: see text] where A is actin, M is myosin, S is MgATP, D is MgADP, and P is phosphate (Pi). When TnC was extracted so that the average remaining tension was 11% (range 8-15%), K1 (MgATP association constant) increased to 7x, k2 (rate constant of cross-bridge detachment) increased to 1.55x, k-2 (reversal of detachment) decreased to 0.27x, and K2 (= k2/k-2: equilibrium constant of cross-bridge detachment) increased to 6.6x, k4 (rate constant of force generation) decreased to 0.4x, k-4 (reversal of force generation) increased to 2x, K4 (= k4/k-4) decreased to 0.17x, and K5 (Pi association constant) did not change. The activation factor alpha, which represents the fraction of cross-bridges participating in the cycling, decreased from 1 to 0.14 with TnC extraction. The fact that K1 increased with TnC extraction implies that the condition of the thin filament modifies the contour of the substrate binding site on the myosin head and is consistent with the Fenn effect. The fact that alpha decreased to 0.14 is consistent with the steric blocking mechanism (recruitment hypothesis) and indicates that some of the cross-bridges disappear from the active cycling pool. The fact that the equilibrium constants changed is consistent with the cooperative activation mechanism (graded activation hypothesis) among thin-filament regulatory units that consist of troponin (TnC, Tnl, TnT), tropomyosin, and seven actin molecules, and possibly include cross-bridges.  相似文献   

14.
The effect of changes in temperature on the calcium sensitivity of tension development was examined in permeabilized cellular preparations of rat ventricle and rabbit psoas muscle. Maximum force and Ca2+ sensitivity of force development increased with temperature in both muscle types. Cardiac muscle was more sensitive to changes in temperature than skeletal muscle in the range 10-15 degrees C. It was postulated that the level of thin filament activation may be decreased by cooling. To investigate this possibility, troponin C (TnC) was partially extracted from both muscle types, thus decreasing the level of thin filament activation independent of temperature and, at least in skeletal muscle fibers, decreasing cooperative activation of the thin filament as well. TnC extraction from cardiac muscle reduced the calcium sensitivity of tension less than did extraction of TnC from skeletal muscle. In skeletal muscle the midpoint shift of the tension-pCa curve with altered temperature was greater after TnC extraction than in control fibers. Calcium sensitivity of tension development was proportional to the maximum tension generated in cardiac or skeletal muscle under all conditions studied. Based on these results, we conclude that (a) maximum tension-generating capability and calcium sensitivity of tension development are related, perhaps causally, in fast skeletal and cardiac muscles, and (b) thin filament activation is less cooperative in cardiac muscle than in skeletal muscle, which explains the differential sensitivity of the two fiber types to temperature and TnC extraction. Reducing thin filament cooperativity in skeletal muscle by TnC extraction results in a response to temperature similar to that of control cardiac cells. This study provides evidence that force levels in striated muscle influence the calcium binding affinity of TnC.  相似文献   

15.
The actin-based cytomatrix generates stress fibers containing a host of proteins including actin and myosin II and whose dynamics are easily observable in living cells. We developed a dual-radioisotope-based assay of myosin II phosphorylation and applied it to serum-deprived fibroblasts treated with agents that modified the dynamic distribution of stress fibers and/or altered the phosphorylation state of myosin II. Serum-stimulation induced an immediate and sustained increase in the level of myosin II heavy chain (MHC) and 20-kDa light chain (LC20) phosphorylation over the same time course that it caused stress fiber contraction. Cytochalasin D, shown to cause stress fiber fragmentation and contraction, had little effect on myosin II phosphorylation. Okadaic acid, a protein phosphatase inhibitor, induced a delayed but massive cell shortening preceded by a large increase in MHC and LC20 phosphorylation. Staurosporine, a kinase inhibitor known to effect dissolution but not contraction of stress fibers, immediately caused an increase in MHC and LC20 phosphorylation followed within minutes by the dephosphorylation of LC20 to a level below that of untreated cells. We therefore propose that the contractility of the actin-based cytomatrix is regulated by both modulating the activity of molecular motors such as myosin II and by altering the gel structure in such a manner as to either resist or yield to the tension applied by the motors.  相似文献   

16.
J R Patel  G M Diffee    R L Moss 《Biophysical journal》1996,70(5):2333-2340
To determine the role of myosin regulatory light chain (RLC) in modulating contraction in skeletal muscle, we examined the rate of tension development in bundles of skinned skeletal muscle fibers as a function of the level of Ca(2+) activation after UV flash-induced release of Ca(2+) from the photosensitive Ca(2+) chelator DM-nitrophen. In control fiber bundles, the rate of tension development was highly dependent on the concentration of activator Ca(2+) after the flash. There was a greater than twofold increase in the rate of tension development when the post-flash [Ca(2+)] was increased from the lowest level tested (which produced a steady tension that was 42% of maximum tension) to the highest level (producing 97% of maximum tension). However, when 40-70% of endogenous myosin RLC was extracted from the fiber bundles, tension developed at the maximum rate, regardless of the post-flash concentration of Ca(2+). Thus, the Ca(2+) dependence of the rate of tension development was eliminated by partial extraction of myosin RLC, an effect that was partially reversed by recombination of RLC back into the fiber bundles. The elimination of the Ca(2+) dependence of the kinetics of tension development was specific to the extraction of RLC rather than an artifact of the co-extraction of both RLC and Troponin C, because the rate of tension development was still Ca(2+) dependent, even when nearly 50% of endogenous Troponin C was extracted from fiber bundles fully replete with RLC. Thus, myosin RLC appears to be a key component in modulating Ca(2+) sensitive cross-bridge transitions that limit the rate of force development after photorelease of Ca(2+) in skeletal muscle fibers.  相似文献   

17.
Reciprocal coupling between troponin C and myosin crossbridge attachment   总被引:5,自引:0,他引:5  
A S Zot  J D Potter 《Biochemistry》1989,28(16):6751-6756
The attachment of cycling myosin crossbridges to actin and the resultant muscle contraction are regulated in skeletal muscle by the binding of Ca2+ to the amino-terminal, regulatory sites of the troponin C (TnC) subunit of the thin filament protein troponin. Conversely, the attachment of crossbridges to actin has been shown to alter the affinity of TnC for Ca2+. In this study, fluorescently labeled TnC incorporated into reconstituted thin filaments was used to investigate the relationship between crossbridge attachment to actin and structural changes in the amino-terminal region of TnC. Fluorescence intensity changes were measured under the following conditions: saturating [Ca2+] in the absence of crossbridges, rigor crossbridge attachment in the presence and absence of Ca2+, and cycling crossbridge attachment. The percent of heavy meromyosin crossbridges associated with the thin filaments under these conditions was also determined. The results show that, in addition to the binding of Ca2+ to TnC, the attachment of both rigor and cycling crossbridges to actin alters the structure of TnC near the regulatory, Ca2+-specific sites of the molecule. A differential coupling between weakly versus strongly bound crossbridge states and TnC structure was detected, suggesting a possible differential regulation of these states by conformational changes in TnC. These findings illustrate a reciprocal coupling, via thin filament protein interactions, between structural changes in TnC and the attachment of myosin crossbridges to actin, such that each can influence the other, and indicate that TnC is not simply an on-off switch but may exist in a number of different conformations.  相似文献   

18.
Twitch tension and maximal unloaded velocity of human knee extensor muscles were studied under conditions of low phosphate content of the phosphorylatable light chains (P-light chains) of myosin and elevated phosphate content, following a 10-s maximal voluntary isometric contraction (MVC). After the MVC, twitch tension was significantly potentiated, with greater potentiation observed at a shorter muscle length (p less than 0.05). The MVC was associated with at least a twofold increase in phosphate content of the fast (LC2F) and two slow (LC2S and LC2S') P-light chains, but this increase was unrelated to muscle length. No significant differences in knee extension velocity were observed between conditions where P-light chains had low or elevated phosphate content. Positive but nonsignificant correlations were noted between the extent of twitch potentiation and phosphate content of individual P-light chains as well as the percentage of type II muscle fibres in vastus lateralis muscle. No significant relationships were determined for myosin light chain kinase activity and either P-light chain phosphorylation or type II fibre percentage. These data suggest that, unlike other mammalian fast muscles, P-light chain phosphorylation of mixed human muscles is not strongly associated with altered contractile performance.  相似文献   

19.
Troponin C (TnC) was extracted from skinned skeletal muscle fibers by a method similar to that used previously on myofibrils (Zot, H.G., and Potter, J.D. (1982) J. Biol. Chem. 257, 7678-7683) and replaced with either skeletal (fast-twitch) or cardiac TnC. The relationship between isometric tension and Sr2+ concentration remained essentially the same before removal and after replacement with skeletal or cardiac TnC. Therefore, the origin of the TnC made no difference in the Sr2+ activation properties of the skinned fiber. In contrast, the activation of skinned cardiac fibers is approximately an order of magnitude more sensitive to Sr2+ than skinned skeletal fibers. These results show that the affinity of cardiac TnC for Sr2+ is altered when substituted into skinned skeletal muscle fibers through protein-protein interactions.  相似文献   

20.
Myosin from rabbit white skeletal muscle was treated with 10 mM EDTA in 150 mM phosphate buffer. After precipitation of myosin by dialysis against a 14-fold volume of water, EDTA-treated myosin, myosin before treatment and the supernatant from the treatment of myosin with EDTA were examined on sodium dodecyl sulphate-polyacrylamide gels by electrophoresis. It has been found that the quantity of LC2 light chains diminished after treatment with EDTA, and the supernatant contained the LC2 light chains. Treatment of myosin with EDTA in the presence of Mg2+ does not change the stoichiometry of the LC2 light chain and the supernatant is free from LC2 light chains. The treatment of myosin with p-chloromercuri-benzoate leads to dissociation of the same amount of LC2 light chains. It is suggested that divalent cations and thiol groups are engaged in the attachment of LC2 light chain to the myosin molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号