首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The reaction product of myoglobin and H2O2 exists in two different forms according to the external pH. Varied-temperature magnetic-circular dichroism (m.c.d.) spectroscopy demonstrates that both contain the oxyferryl ion Fe(IV) = O. Alkaline myoglobin peroxide has often been used as a model for oxidized intermediates in the catalytic cycles of haem-containing peroxidases, but absorption and m.c.d. spectra show that the acid form is much more closely related to species such as horeradish peroxidase Compound II. The differences are tentatively ascribed to ionization of the proximal histidine ligand in alkaline myoglobin peroxide. It is also shown that the m.c.d. method allows an estimate of the zero-field splitting parameter of both forms, values of D = 28.0 +/- 3 cm-1 and 35.0 +/- 5 cm-1 being obtained for the alkaline and acid forms respectively.  相似文献   

3.
4.
Conformation of Leu- and Met-enkephalins and their 17 synthetic analogues was studied by CD and fluorescence spectroscopy both in dioxane and aqueous solutions. The results obtained indicate the beta-turn presence in dioxane solution for the most of the peptides under study. An appreciable percentage of the conformations of this type seems to exist in aqueous solutions as well.  相似文献   

5.
Low-temperature magnetic circular dichroism (MCD) spectroscopy has been used to investigate the metal clusters in the conventional nitrogenase MoFe protein and alternative VFe protein from Azotobacter vinelandii. In the dithionite-reduced state, the MCD spectrum of the MoFe protein is extremely similar to that previously observed for the S = 3/2 spin state of the M clusters in the MoFe protein of Klebsiella pneumoniae. A paramagnetic cluster with an S = 3/2 ground state is also responsible for the temperature-dependent MCD transitions of dithionite-reduced VFe protein. However, the electronic and magnetic properties of this cluster are quite distinct from those of M centers in conventional nitrogenase. When these proteins are oxidized with thionine, the MoFe protein exhibits MCD spectra and magnetization characteristics identical with those observed for the P clusters in K. pneumoniae, while those of the VFe protein are only similar. However, the paramagnetism in the thionine-oxidized VFe protein, like the conventional enzyme, probably arises from an S = 5/2 spin system with near-axial symmetry and a negative zero-field splitting. Novel clusters with electronic, magnetic, and redox properties similar to those of conventional P clusters are, therefore, present in the VFe protein.  相似文献   

6.
The first MCD spectral data for an open shell first row transition metal complex of tetraphenyltetraacenaphthoporphyrin (TPTANP) are reported. The B (or Soret) band of cobalt tetraphenyltetraacenaphthoporphyrin (Co(II)TPTANP(-2)) exhibits an anomalous negative Faraday A(1) term as was reported previously in the case of ZnTPTANP, while a positive A(1) term is observed for the Q band. INDO/1 geometry optimizations predict that the TPTANP ligand is saddled due to steric hindrance at the ligand periphery to a slightly lesser extent than is the case with ZnTPTANP. The Q and B bands of CoTPTANP arising from the pi-system are blue shifted relative to those of ZnTPTANP, based on the "hypso" effect reported previously for planar porphyrin complexes of d(6-9) transition metals.  相似文献   

7.
Magnetic circular dichroism (MCD) spectra, at ultraviolet–visible or near-infrared wavelengths (185–2000 nm), contain the same transitions observed in conventional absorbance spectroscopy, but their bisignate nature and more stringent selection rules provide greatly enhanced resolution. Thus, they have proved to be invaluable in the study of many transition metal-containing proteins. For mainly technical reasons, MCD has been limited almost exclusively to the measurement of static samples. But the ability to employ the resolving power of MCD to follow changes at transition metal sites would be a potentially significant advance. We describe here the development of a cuvette holder that allows reagent injection and sample mixing within the 50-mm-diameter ambient temperature bore of an energized superconducting solenoid. This has allowed us, for the first time, to monitor time-resolved MCD resulting from in situ chemical manipulation of a metalloprotein sample. Furthermore, we report the parallel development of an electrochemical cell using a three-electrode configuration with physically separated working and counter electrodes, allowing true potentiometric titration to be performed within the bore of the MCD solenoid.  相似文献   

8.
A simple approach to estimate the number of alpha-helical and beta-strand segments from protein circular dichroism spectra is described. The alpha-helix and beta-sheet conformations in globular protein structures, assigned by DSSP and STRIDE algorithms, were divided into regular and distorted fractions by considering a certain number of terminal residues in a given alpha-helix or beta-strand segment to be distorted. The resulting secondary structure fractions for 29 reference proteins were used in the analyses of circular dichroism spectra by the SELCON method. From the performance indices of the analyses, we determined that, on an average, four residues per alpha-helix and two residues per beta-strand may be considered distorted in proteins. The number of alpha-helical and beta-strand segments and their average length in a given protein were estimated from the fraction of distorted alpha-helix and beta-strand conformations determined from the analysis of circular dichroism spectra. The statistical test for the reference protein set shows the high reliability of such a classification of protein secondary structure. The method was used to analyze the circular dichroism spectra of four additional proteins and the predicted structural characteristics agree with the crystal structure data.  相似文献   

9.
The UV-visible absorption and magnetic circular dichroism (MCD) spectra of the ferric, ferrous, CO-ligated forms and kinetic photolysis intermediates of the tetraheme electron-transfer protein cytochrome c3 (Cc3) are reported. Consistent with bis-histidinyl axial coordination of the hemes in this Class III c-type cytochrome, the Soret and visible region MCD spectra of ferric and ferrous Cc3 are very similar to those of other bis-histidine axially coordinated hemeproteins such as cytochrome b5. The MCD spectra indicate low spin state for both the ferric (S = 1/2) and ferrous (S = 0) oxidation states. CO replaces histidine as the axial sixth ligand at each heme site, forming a low-spin complex with an MCD spectrum similar to that of myoglobin-CO. Photodissociation of Cc3-CO (observed photolysis yield = 30%) produces a transient five-coordinate, high-spin (S = 2) species with an MCD spectrum similar to deoxymyoglobin. The recombination kinetics of CO with heme Fe are complex and appear to involve at least five first-order or pseudo first-order rate processes, corresponding to time constants of 5.7 microseconds, 62 microseconds, 425 microseconds, 2.9 ms, and a time constant greater than 1 s. The observed rate constants were insensitive to variation of the actinic photon flux, suggesting noncooperative heme-CO rebinding. The growing in of an MCD signal characteristic of bis-histidine axial ligation within tens of microseconds after photodissociation shows that, although heme-CO binding is thermodynamically favored at 1 atm CO, binding of histidine to the sixth axial site competes kinetically with CO rebinding.  相似文献   

10.
Stephens PJ  Devlin FJ 《Chirality》2000,12(4):172-179
We discuss the theoretical prediction of vibrational circular dichroism (VCD) spectra using ab initio density functional theory (DFT) and the application of this methodology to the determination of the absolute configurations and conformations of chiral molecules.  相似文献   

11.
Circular dichroism (CD) spectroscopy beamlines at synchrotrons produce dramatically higher light flux than conventional CD instruments. This property of synchrotron radiation circular dichroism (SRCD) results in improved signal-to-noise ratios and allows data collection to lower wavelengths, characteristics that have led to the development of novel SRCD applications. Here we describe the use of SRCD to study protein complex formation, specifically evaluating the complex formed between carboxypeptidase A and its protein inhibitor latexin. Crystal structure analyses of this complex and the individual proteins reveal only minor changes in secondary structure of either protein upon complex formation (i.e., it involves only rigid body interactions). Conventional CD spectroscopy reports on changes in secondary structure and would therefore not be expected to be sensitive to such interactions. However, in this study we have shown that SRCD can identify differences in the vacuum ultraviolet CD spectra that are significant and attributable to complex formation.  相似文献   

12.
We have designed a set of 17-residue synthetic peptides to be monomeric helices in aqueous solution. Circular dichrosim experiments indicate the presence of helical structure in aqueous solution at low temperature and low pH. The two-dimensional nuclear magnetic resonance results for one of the peptides show a segment of ten residues which clearly meets all of the criteria for the existence of helical structure at both 5 degrees C and 15 degrees C. The first four residues of the peptide are in a largely extended conformation. Calculations suggest that residues 5 through 14 are significantly helical at 5 degrees C. When the temperature is increased, circular dichroism spectra indicate that the helical content decreases. At 15 degrees C, the 3JN alpha coupling constants increase in the helical region, indicating an increase in motion or conformational averaging in the helical segment. None of the peptides has pH titration behavior consistent with salt bridge stabilization of helical conformation. Our data lend themselves to interpretation with the helix dipole model and specific side-chain interactions. When the N and C termini charges are removed the helical content of the peptides increases. The amount of helicity increases as the pH is lowered, due to the ionization of His16. Much of the helical stabilization appears to be due to a specific side-chain interaction between His16 and Tyr12.  相似文献   

13.
Optical studies have been carried out on bismuth-containing proteins which were isolated from the livers and kidneys of rats following injections of BiCl3. Absorption, circular dichroism and magnetic circular dichroism spectra of hepatic Bi,Zn-metallothionein 1 and 2 indicate that the spectra are dominated by transitions from the zinc thiolate chromophore. The data from the renal Bi,Cu-metallothionein 2 are quite different and it is suggested that these spectra involve a mixture of transitions from the bismuth and copper thiolate binding sites.  相似文献   

14.
Vibrational circular dichroism (VCD) has been shown to be a useful technique for characterization of the qualitative secondary structure type for linear polypeptides and oligopeptides. A brief review of characteristic spectral responses and applications is given. Since VCD is dependent on relatively short range interactions, it detects residual structure in such oligomers even if long range order is lost. VCD studies presented here for Lys oligomers as well as Lys and Glu polymers as a function of length, salt added and temperature, confirm residual local order in these 'random coils'. Comparison to results with Pro oligomers, supports an interpretation that these extended structures have a left handed twist conformation. The 'coil' VCD is shown to be significantly reduced in intensity by temperature increase and by decrease in peptide length. By contrast, for partially alpha-helical Ac-(AAKAA)3GY-NH2 oligomers, the spectrum changes to the high temperature Lys(n) shape on heating, first losing then gaining intensity, indicating an equilibrium shift between structured states, from helix to coil (locally ordered) forms. VCD is shown to be a useful technique for monitoring local order in otherwise random coil structures.  相似文献   

15.
Room temperature circular dichroism (CD) and low temperature magnetic circular dichroism (MCD) spectra of air-oxidized and dithionite-reduced Azotobacter vinelandii ferredoxin I (FdI), a [( 4Fe-4S]2+/1+, [3Fe-4S]1+/0) protein, are reported. Unlike the CD of oxidized FdI, the CD of dithionite-reduced FdI exhibits significant pH dependence, consistent with protonation-deprotonation at or near the cluster reduced: the [3Fe-4S] cluster. The MCD of reduced FdI, which originates in the paramagnetic reduced [3Fe-4S]0 cluster, is also pH-dependent. Detailed studies of the field dependence and temperature dependence of the MCD of oxidized and reduced FdI, in the latter case at pH 6.0 and 8.3, are reported. The low-field temperature dependence of the MCD of oxidized FdI, which originates in the paramagnetic oxidized [3Fe-4S]1+ cluster, establishes the absence of a significant population of excited electronic states of this cluster up to 60 K. The low-field temperature dependence of the MCD of reduced FdI establishes that the ground-state manifold of the reduced [3Fe-4S]0 cluster possesses S greater than or equal to 2 at both pH 6.0 and 8.3. Analysis, assuming S = 2 and an axial zero-field splitting Hamiltonian, leads to D = -2.0 and -3.5 cm-1 at pH 6.0 and 8.3, respectively. The site of the (de)protonation affecting the spectroscopic properties of the [3Fe-4S] cluster remains unknown.  相似文献   

16.
Although extensive research has been performed on various cytochrome P450s, especially Cyt P450cam, there is much to be learned about the mechanism of how its functional unit, a heme b ligated by an axial cysteine, is finely tuned for catalysis by its second coordination sphere. Here we study how the hydrogen-bonding network affects the proximal cysteine and the Fe-S(Cys) bond in ferric Cyt P450cam. This is accomplished using low-temperature magnetic circular dichroism (MCD) spectroscopy on wild-type (wt) Cyt P450cam and on the mutants Q360P (pure ferric high-spin at low temperature) and L358P where the "Cys pocket" has been altered (by removing amino acids involved in the hydrogen-bonding network), and Y96W (pure ferric low-spin). The MCD spectrum of Q360P reveals fourteen electronic transitions between 15200 and 31050 cm(-1). Variable-temperature variable-field (VTVH) saturation curves were used to determine the polarizations of these electronic transitions with respect to in-plane (xy) and out-of-plane (z) polarization relative to the heme. The polarizations, oscillator strengths, and TD-DFT calculations were then used to assign the observed electronic transitions. In the lower energy region, prominent bands at 15909 and 16919 cm(-1) correspond to porphyrin (P) → Fe charge transfer (CT) transitions. The band at 17881 cm(-1) has distinct sulfur S(π) → Fe CT contributions. The Q band is observed as a pseudo A-term (derivative shape) at 18604 and 19539 cm(-1). In the case of the Soret band, the negative component of the expected pseudo A-term is split into two features due to mixing with another π → π* and potentially a P → Fe CT excited state. The resulting three features are observed at 23731, 24859, and 25618 cm(-1). Most importantly, the broad, prominent band at 28570 cm(-1) is assigned to the S(σ) → Fe CT transition, whose intensity is generated through a multitude of CT transitions with strong iron character. For wt, Q360P, and L358P, this band occurs at 28724, 28570, and 28620 cm(-1), respectively. The small shift of this feature upon altering the hydrogen bonds to the proximal cysteine indicates that the role of the Cys pocket is not primarily for electronic fine-tuning of the sulfur donor strength but is more for stabilizing the proximal thiolate against external reactants (NO, O(2), H(3)O(+)), and for properly positioning cysteine to coordinate to the iron center. This aspect is discussed in detail.  相似文献   

17.
The first high resolution proton nuclear magnetic resonance spectra are reported for the native ferric and ferric cyano complexes of bovine lactoperoxidase. The spectrum of the native species exhibits broad heme signals in a far downfield region characteristic of the high-spin ferric state. The low-spin cyano complex yields a proton nuclear magnetic resonance spectrum with signals as far as 68.5 ppm downfield and as far as -28 ppm upfield of the tetramethylsilane reference. These peak positions are anomalous with respect to those seen only as far as 35 ppm downfield in other cyano hemoprotein complexes. An extreme asymmetry in the unpaired spin delocalization pattern of the iron porphyrin is suggested. The unusual proton nuclear magnetic resonance properties parallel distinctive optical spectral properties and the exceptional resistance to heme displacement from the enzyme. Lactoperoxidase utilized in these studies was isolated from raw milk and purified by an improved, rapid chromatographic procedure.  相似文献   

18.
The electron paramagnetic resonance (EPR) and near-infrared magnetic circular dichroism (MCD) spectra of the azide and cyanide adducts of nitrimyoglobin and hydroperoxidase II from Escherichia coli have been measured at cryogenic temperatures. For the first time, ligand-to-metal charge-transfer transitions in the near-infrared have been observed for an Fe(III)-chlorine system. It is shown that near-ultraviolet-to-visible region electronic spectra of 'green' hemes such as these are an unreliable indicator of macrocycle type. However, the combined application of EPR and near-infrared MCD spectroscopies clearly distinguishes between the porphyrin-containing nitrimyoglobin and the chlorine-containing hydroperoxidase II.  相似文献   

19.
The spin states of the haem components of mixed-valence cytochrome oxidase were studied at room temperature and at temperature down to 20K by using magnetic circular dichroism. The room-temperature studies show the presence of a low-spin ferrous haem together with a low-spin ferric haem, which we attribute to heams a3 and a respectively. At temperatures below 100K it appears that the CO of the mixed-valence CO complex may be irreversibly photolysed, and that in this case haems a and a3 assume their high-spin states. Thus in this enzyme haem-haem interactions appear possible at temperatures below 100K.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号