首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous reports have implicated theY5 receptor as the 'feeding' receptor mediating the orexigenic action of neuropeptide Y (NPY). This notion is supported by the correlation between the in vitro functional and binding activities of different peptide agonists and their potent stimulation of food intake in rodents. We have discovered a series of small molecule heterocycles with high affinity, selectivity, and functional antagonism for Y5 receptors. Intraperitoneal (i.p.) administration of GW438014A into rodents, resulted in a potent reduction of NPY-induced and normal overnight food intake. Brain levels of GW438014A were detected well in excess of its binding IC(50) for up to 3 h post-dosing. Daily (i.p., BID, 10 mg/kg) administration of this compound to Zucker Fatty rats for a period of 4 days resulted in a marked decrease in the rate of weight gain and a reduction in fat mass. No effect on food intake was observed following oral administration of GW438014A (25-100 mg/kg), consistent with the poor oral bioavailability (<3%) and low brain levels observed.  相似文献   

2.
The first Y(5) receptor-selective analog of neuropeptide Y (NPY), [Ala(31),Aib(32)]NPY, has been developed and biologically characterized. Using competition binding assays on cell lines that express different Y receptors, we determined the affinity of this analog to be 6 nm at the human Y(5) receptor, >500 nm at the Y(1) and Y(2) receptors, and >1000 nm at the Y(4) receptor. Activity studies performed in vitro using a cAMP enzyme immunoassay, and in vivo using food intake studies in rats, showed that the peptide acted as an agonist. Further peptides obtained by the combination of the Ala(31)-Aib(32) motif with chimeric peptides containing segments of NPY and pancreatic polypeptide displayed the same selectivity and even higher affinity (up to 0.2 nm) for the Y(5) receptor. In vivo administration of the new Y(5) receptor-selective agonists significantly stimulated feeding in rats. The NMR solution structures of NPY and [Ala(31),Aib(32)]NPY showed a different conformation in the C-terminal region, where the alpha-helix of NPY was substituted by a more flexible, 3(10)-helical turn structure.  相似文献   

3.
Aldegunde M  Mancebo M 《Peptides》2006,27(4):719-727
Neuropeptide Y (NPY) is one of the most potent stimulants of food intake in mammals, but very little is known about NPY actions in fish. The present study investigated the role of NPY in food intake in the rainbow trout (Oncorhynchus mykiss). Food intake was monitored at different times after intracerebroventricular administration of porcine NPY (4 or 8 microg). Both doses significantly increased food intake at 2 and 3 h, and this effect was dose-dependent. However, 50 h after administration of NPY, food intake was significantly lower than in control fish, and cumulative food intake had returned to levels similar to those seen in the control group. The NPY antagonist (D-Tyr27,36, D-Thr32)-NPY (10 microg) inhibited food intake 2 h after icv administration, but did not block the orexigenic effect of NPY when administered jointly with 4 microg NPY. To identify the NPY receptor subtypes involved in the effects of NPY on food intake, we studied the effects of the Y1 receptor agonist (Leu31, Pro34)-NPY (4 microg), the Y2 receptor agonist NPY(3-36) (4 microg), and the highly specific Y5 receptor agonist (cPP(1-7), NPY19-23, Ala31, Aib32, Gln34)-hPP (4 microg). Short-term (2 h) food intake was moderately stimulated by the Y1 agonist, more strongly stimulated by the Y2 agonist, and unaffected by the Y5 agonist. We found that administration of NPY (8 microg icv) had no effect on aminergic systems in several brain regions 2 and 50 h after NPY administration. These results indicate that NPY stimulates feeding in the rainbow trout, and suggest that this effect is cooperatively mediated by Y2- and Y1-like NPY receptors, not by Y5-like receptors.  相似文献   

4.
Neuropeptide Y (NPY) is a 36-amino acid neuropeptide that exerts its activity by at least five different receptor subtypes that belong to the family of G-protein-coupled receptors. We isolated an aptamer directed against NPY from a nuclease-resistant RNA library. Mapping experiments with N-terminally, C-terminally, and centrally truncated analogues of NPY revealed that the aptamer recognizes the C terminus of NPY. Individual replacement of the four arginine residues at positions 19, 25, 33, and 35 by l-alanine showed that arginine 33 is essential for binding. The aptamer does not recognize pancreatic polypeptide, a highly homologous Y4 receptor-specific peptide of the gut. Furthermore, the affinity of the aptamer to the Y5 receptor-selective agonist [Ala(31),Aib(32)]NPY and the Y1/Y5 receptor-binding peptide [Leu(31),Pro(34)]NPY was considerably reduced, whereas Y2 receptor-specific NPY mutants were bound well by the aptamer. Accordingly, the NPY epitope was recognized by the Y2 receptor, and the aptamer was highly similar. This Y2 receptor mimicking effect was further confirmed by competition binding studies. Whereas the aptamer competed with the Y2 receptor for binding of [(3)H]NPY with high affinity, a low affinity displacement of [(3)H]NPY was observed at the Y1 and the Y5 receptors. Consequently, competition at the Y2 receptor occurred with a considerably lower K(i) value compared with the Y1 and Y5 receptors. These results indicate that the aptamer mimics the binding of NPY to the Y2 receptor more closely than to the Y1 and Y5 receptors.  相似文献   

5.
Cox HM  Pollock EL  Tough IR  Herzog H 《Peptides》2001,22(3):445-452
A functional study has been performed to characterise the Y receptors responsible for NPY, PYY and PP-stimulated responses in mouse colonic mucosal preparations. Electrogenic ion secretion was stimulated with VIP following which NPY, PYY and PP analogues were, to varying degrees, inhibitory. PYY(3-36), hPP, Gln(23)hPP and rPP were effective but less potent than full length PYY, NPY or their Pro(34)-substituted analogues, while the Y(5) agonist Ala(31), Aib(32)hNPY was the least active peptide tested. The Y(1) antagonists, BIBP3226 and BIBO3304 virtually abolished Pro(34)PYY and PYY responses while PYY(3-36) responses were selectively inhibited by the Y(2) antagonist, BIIE0246. A combination of BIBO3304 and BIIE0246 also partially attenuated hPP responses, leaving residual effects that were most probably Y(4)-mediated. Thus we conclude that Y(1), Y(2) and Y(4) receptors attenuate ion secretion in mouse colon.  相似文献   

6.
A novel class of potent and selective non-peptide neuropeptide Y (NPY) Y1 receptor antagonists, having benzazepine nuclei, have been designed, synthesized, and evaluated for activity. Through a blind screening we found the compound 1-N-(3-(N'-(tert-butoxycarbonyl)amino)benzyl)-7-methoxy-(3-(3)-methyl ureido)-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (9: IC50 = 1.6 microM). Chemical modifications of 9 gave a potent NPY Y1 antagonist 3-(N-(4-hydroxyphenyl)-N'-methylguanidino)-1-N-(3-(N'-(tert-butoxy carbonyl)amino)benzyl)-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (14c: IC5(0=43 nM), which had no affinity for NPY Y2 and Y5 receptors.  相似文献   

7.
The turn-inducing sequence Ala-Aib introduced into positions 31 and 32 of neuropeptide Y (NPY) and its analogues has been identified as the key structure for Y(5)-receptor selectivity. Analogues of NPY and PP/NPY chimera containing the motif Ala-Aib were prepared; these peptides turned out to be selective for the Y(5)-receptor. The affinity of the NPY-based peptides was in the range of 6-150 nM, while the affinity of three (Ala-Aib)-containing PP/NPY chimera was in the range of 0.2-0.9 nM. The circular dichroism spectra of the Aib analogues in aqueous solution were all characteristic of an alpha helix; however, they had different intensities of the two negative bands at 220 and 208 nm. Affinity and selectivity for the Y(5)-receptor were correlated with the ratio of the ellipticity at 220 nm versus the one at 208 nm (R), which indicates the presence of a pronounced helix (R > 1) versus a less stabile one (R < 1). When R was in the range 0.74-0.96, the affinity at the Y(5)-receptor was in the range >5 nM, while there was complete loss of affinity at the Y(4)-receptor. R > 1.15 was associated with very high affinity at the Y(5)-receptor and weak affinity at the Y(4)-receptor. These results suggest that the selectivity of the Ala(31)-Aib(32) motif for the Y(5)-receptor derives from a specific conformation that must be correlated with the bioactive conformation of NPY at this subtype.  相似文献   

8.
Neuropeptide Y (NPY) is known to induce robust feeding through the action of NPY receptors in the hypothalamus. Among the subtypes of NPY receptors, Y(1) receptors may play a key role in feeding regulation. In the present study, we demonstrated that a novel Y(1) antagonist, J-104870, shows high selectivity and potency for the Y(1) receptor with an anorexigenic effect on NPY-mediated feeding. J-104870 displaced [(125)I]peptide YY (PYY) binding to cloned human and rat Y(1) receptors with K(i) values of 0.29 and 0.54 nM, respectively, and inhibited the NPY (10 nM)-induced increase in intracellular calcium levels (IC(50) = 3.2 nM) in cells expressing human Y(1) receptors. In contrast, J-104870 showed low affinities for human Y(2) (K(i) > 10 microM), Y(4) (K(i) > 10 microM), and Y(5) receptors (K(i) = 6 microM). In rat hypothalamic membranes, J-104870 also completely displaced the binding of [(125)I]1229U91, which is known to bind to the typical Y(1) receptor, with a high affinity (K(i) = 2.0 nM). Intracerebroventricular (ICV) injection of J-104870 (200 microg) significantly suppressed NPY (5 microg)-induced feeding in satiated Sprague-Dawley rats by 74%. Furthermore, ICV and oral administration of J-104870 (200 microg and 100 mg/kg, respectively) significantly suppressed spontaneous food intake in Zucker fatty rats. These findings suggested that J-104870 is a selective and potent nonpeptide Y(1) antagonist with oral bioavailability and brain penetrability. In addition, the anorexigenic effect of J-104870 clearly revealed the participation of the Y(1) receptor in NPY-mediated feeding regulation. The potent and orally active Y(1) antagonist J-104970 is a useful tool for elucidating the physiological roles of NPY in obesity.  相似文献   

9.
Neuropeptide Y (NPY) recognition by the human neuroblastoma cell lines SiMa, Kelly, SH-SY5Y, CHP-234, and MHH-NB-11 was analyzed in radioactive binding assays using tritiated NPY. For the cell lines CHP-234 and MHH-NB-11 binding of [3H]propionyl-NPY was observed with Kd-values of 0.64 +/- 0.07 nM and 0.53 +/- 0.12 nM, respectively, determined by saturation analysis with non-linear regression. The receptor subtype was determined by competition analysis using the subtype selective NPY analogues [Leu31, Pro34]-NPY (NPY-Y1, NPY-Y5), [Ahx(5-24)]-NPY (NPY-Y2), [Ala31, Aib32]-NPY (NPY-Y5), NPY [3-36] (NPY-Y2, NPY-Y5), and NPY [13-36] (NPY-Y2). Both cell lines, CHP-234 and MHH-NB-11, the latter one being characterized for NPY receptors for the first time, showed exclusive expression of NPY-Y2 receptors. In both cell lines binding of NPY induced signal transduction, which was monitored as reduction of forskolin-induced cAMP production in an ELISA.  相似文献   

10.
Brill J  Kwakye G  Huguenard JR 《Peptides》2007,28(2):250-256
Neuropeptide Y is the ligand of a family of G-protein coupled receptors (Y(1) to Y(6)). In the thalamus, exogenous and endogenously released NPY can shorten the duration of thalamic oscillations in brain slices from P13 to P15 rats, an in vitro model of absence seizures. Here, we examine which Y receptors are involved in this modulation. Application of the Y(1) receptor agonist Leu(31)Pro(34)NPY caused a reversible reduction in the duration of thalamic oscillations (-26.6+/-7.8%), while the Y(2) receptor agonist peptideYY((3-36)) and the Y(5) receptor agonist BWX-46 did not exert a significant effect. No Y receptor agonist affected oscillation period. Application of antagonists of Y(1), Y(2) and Y(5) receptors (BIBP3226, BIIE0246 and L152,806, respectively) produced results consistent with those obtained from agonists. BIBP3226 caused a reversible disinhibition, an effect that increases oscillation duration (18.2+/-9.7%) while BIIE0246 and L152,806 had no significant effect. Expression of NPY is limited to neurons in the reticular thalamic nucleus (nRt), but Y(1) receptors are expressed in both nRt and adjacent thalamic relay nuclei. Thus, intra-nRt or nRt to relay nucleus NPY release could cause Y(1) receptor mediated inhibition of thalamic oscillations.  相似文献   

11.
The actions of neuropeptide Y (NPY) are mediated by at least six G-protein coupled receptors denoted as Y(1), Y(2), Y(3), Y(4), Y(5), and y(6). Investigations using receptor selective ligands and receptor knock-out mice suggest that NPY effects on feeding are mediated by both Y(1) and Y(5) receptors. We have previously shown that Cys-dimers of NPY C-terminal peptides exhibit Y(1) selectivity relative to Y(2) receptors. Re-investigation of their selectivity with respect to the newly cloned receptors, has identified bis(31/31') [[Cys(31), Nva(34)]NPY(27-36)-NH(2)] (BWX-46) as a Y(5) receptor selective agonist. BWX-46 selectively bound Y(5) receptors, and inhibited cAMP synthesis by Y(5) cells with potencies comparable to that of NPY. Moreover, BWX-46 (10 microM) exhibited no significant effect on the cAMP synthesis by Y(1), Y(2), and Y(4) cells. Thus, BWX-46 constitutes the lowest molecular weight Y(5) selective agonist reported to date. Intrahypothalamic (i.h.t)-injection of 30 and 40 microg of BWX-46 stimulated the food intake by rats in a gradual manner, reaching maximal level 8 h after injection. This response was similar to that exhibited by other Y(5) selective agonists, but differed from that of NPY, which exhibited a rapid orexigenic stimulus within 1 h. It is suggested that the differences in the orexigenic stimuli of NPY and Y(5) agonists may be due to their differences in the signal transduction mechanisms.  相似文献   

12.
In vitro and in vivo experiments suggest antiepileptic properties for NPY. In this study, the pharmacology of these effects was examined and compared in different rat models of seizures. Agonists for Y(1), Y(2) and Y(5) receptors reduced seizure-like activity in hippocampal cultures. Intracerebral injection of NPY or Y(5) agonists reduced the expression of focal seizures produced by a single electrical stimulation of the hippocampus. Conversely, NPY agonists increased the duration of generalized convulsive seizures induced by pentylenetetrazol. These results suggest that NPY reduces seizures of hippocampal origin through activation of Y(5) receptors. They also point to probable modulatory effects of NPY in brain structures other than the hippocampus, involved in initiation, propagation or control of seizures.  相似文献   

13.
The neuropeptide Y-family receptor Y4 differs extensively between human and rat in sequence, receptor binding, and anatomical distribution. We have investigated the differences in binding profile between the cloned human, rat, and guinea pig Y4 receptors using NPY analogues with single amino acid replacements or deletion of the central portion. The most striking result was the increase in affinity for the rat receptor, but not for human or guinea pig, when amino acid 34 was replaced with proline; [Ahx(8-20),Pro(34)]NPY bound to the rat Y4 receptor with 20-fold higher affinity than [Ahx(8-20)]NPY. Also, the rat Y4 tolerates alanine in position 34 since p[Ala(34)]NPY bound with similar affinity as pNPY while the affinity for hY4 and gpY4 decreased about 50-fold. Alanine substitutions in position 33, 35, and 36 as well as the large loop-deletion, [Ahx(5-24)]NPY, reduced the binding affinity to all three receptors more than 100-fold. NPY and PYY competed with (125)I-hPP at Y4 receptors expressed in CHO cells according to a two-site model. This was investigated for gpY4 by saturation with either radiolabeled hPP or pPYY. The number of high-affinity binding-sites for (125)I-pPYY was about 60% of the receptors recognized by (125)I-hPP. Porcine [Ala(34)]NPY and [Ahx(8-20)]NPY bound to rY4 (but not to hY4 or gpY4) according to a two-site model. These results suggest that different full agonists can distinguish between different active conformations of the gpY4 receptor and that Y4 may display functional differences in vivo between human, guinea pig, and rat.  相似文献   

14.
Ligand binding to rodent pancreatic polypeptide-responding neuropeptide Y (NPY) receptors (here termed PP/NPY receptors), or to cloned Y4 or Y5 receptors, is selectively inhibited by amiloride, peptide or alkylating modulators of sodium transport. The PP/NPY and Y4 receptors are also selectively blocked by human or rat pancreatic polypeptide (PP) and the blocking peptides are not dissociated by high concentrations of alkali chlorides (which restore most of the binding of subtype-selective agonists to Y1 and Y2 sites). The PP/NPY receptors could also be blocked by NPY and related full-length peptides, including Y1-selective agonists (IC50 300-400 pM). The cloned Y(4) receptors from three species are much less sensitive to NPY or PYY. The sensitivity of both the PP/NPY sites and the Y(4) sites to Y2-selective peptides is quite low. The ligand attachment to PP/NPY sites is also very sensitive to peptidic Y1 antagonist ((Cys31,NVal34NPY27-36))2, which however blocks these sites at much higher molarities. Blockade of PP/NPY and Y4 sites by agonist peptides can be largely prevented by N5-substituted amiloride modulators of Na+ transport, and by RFamide NRNFLRF.NH2, but not by Ca2+ channel blockers, or by inhibitors of K+ transport. Protection of both PP/NPY and Y4 sites against blockade by human or rat pancreatic polypeptide is also afforded by short N-terminally truncated NPY-related peptides. The above results are consistent with a stringent and selective activity regulation for rabbit PP/NPY receptor(s) that may serve to differentiate agonists and constrain signaling, and could involve transporter-like interactants.  相似文献   

15.
Highly potent and selective small molecule neuropeptide Y Y2 receptor antagonists are reported. The systematic SAR exploration of a hit molecule N-(4-ethoxyphenyl)-4-[hydroxy(diphenyl)methyl]piperidine-1-carbothioamide, identified from HTS, led to the discovery of highly potent NPY Y2 antagonists 16 (CYM 9484) and 54 (CYM 9552) with IC(50) values of 19 nM and 12 nM respectively.  相似文献   

16.
Corp ES  McQuade J  Krasnicki S  Conze DB 《Peptides》2001,22(3):493-499
Neuropeptide Y (NPY) and peptide YY (PYY) stimulate food intake after injection into the fourth cerebral ventricle, suggesting that NPY receptors in the hindbrain are targets for the stimulatory effect of these peptides on food intake. However, the NPY/PYY receptor subtype mediating the feeding response in the hindbrain is not known. To approach to this question we compared dose-effect of several NPY receptor agonists to stimulate food intake in freely-feeding rats 60- and 120-min after injection into the fourth cerebral ventricle. At the 120-min time point, PYY was 2- to 10-times as potent as NPY over the dose-response range and stimulated twice the total intake at the maximally effective dose (2-fold greater efficacy). NPY was 2-times as potent as the Y1, Y5 receptor agonist, [Leu(31)Pro(34)]NPY but acted with comparable efficacy. The Y5-, Y2-differentiating receptor agonist, NPY 2-36, was comparable in potency to PYY at low doses but equal in efficacy NPY and [Leu(31)Pro(34)]NPY. The Y2 receptor agonist, NPY 13-36, produced only a marginal effect on total food intake. The profile of agonist potency after fourth cerebral ventricle administration is similar to the profile obtained when these or related agonists are injected in the region of the hypothalamus. Agonists at both Y1 and Y5 receptors stimulated food intake with a rank order of potency that does not conclusively favor the exclusive involvement of a single known NPY receptor subtype. Thus it is possible that the ingestive effects of NPY and PYY are mediated by multiple or novel receptor subtypes in the hindbrain. And the relatively greater potency and efficacy of PYY raises the possibility that a novel PYY-preferring receptor in the hindbrain is involved in the stimulation of food intake.  相似文献   

17.
NPY is the most potent orexigenic agent known to man, with NPY Y1 and NPY Y5 being the receptor subtypes that are most likely responsible for centrally-mediated NPY-induced feeding responses. Based on the aforementioned, novel hydrazide derivatives were prepared for the purpose of searching new NPY Y5 receptor antagonists. Many of the compounds exhibited nanomolar binding affinity for this receptor, affording trans-N-(4-[N'-(3,4-dichlorophenyl)hydrazinocarbonyl]cyclohexylmethyl)-4-fluorobenzenesulfonamide, which showed the best activity (IC(50)=0.43nM).  相似文献   

18.
Neuropeptide Y is one of the most potent appetite stimulating hormones known. Novel thiophene and benzo[b]thiophene hydrazide derivatives were synthetized and evaluated biologically as NPY Y(1) and Y(5) receptor subtype antagonists. They were found to have nanomolar binding affinities for human NPY Y(5) receptor, obtaining the lead compound, trans-N-4-[N'-(thiophene-2-carbonyl)hydrazinocarbonyl]cyclohexylmethyl-4-bromobenzenesulfonamide, which binds with a 7.70 nM IC(50) to the hY(5) receptor.  相似文献   

19.
The Y5 receptor has been postulated to be the main receptor mediating NPY-induced food intake in rats, based on its pharmacological profile and mRNA distribution. To further characterize this important receptor subtype, we isolated the Y5 gene in the guinea pig, a widely used laboratory animal in which all other known NPY receptors (Y1, Y2, Y4, y6) [2,13,33,37] have recently been cloned by our group. Our results show that the Y5 receptor is well conserved between species; guinea pig Y5 displays 96% overall amino acid sequence identity to human Y5, the highest identity reported for any non-primate NPY receptor orthologue, regardless of subtype. Thirteen of the twenty substitutions occur in the large third cytoplasmic loop. The identities between the guinea pig Y5 receptor and the dog, rat, and mouse Y5 receptors are 93%, 89%, and 89% respectively. When transiently expressed in EBNA cells, the guinea pig Y5 receptor showed a high binding affinity to iodinated porcine PYY with a dissociation constant of 0.41 nM. Competition experiments showed that the rank order of potency for NPY-analogues was PYY = NPY = NPY2-36 > gpPP > rPP > NPY 22-36. Thus the pharmacological profile of the guinea pig Y5 receptor agrees well with that reported for the Y5 receptor from other cloned species.  相似文献   

20.
Malmström RE 《Life sciences》2001,69(17):1999-2005
The effects of the first selective, non-peptide, NPY Y2 receptor antagonist (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6h)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamid (BIIE0246) were studied on splenic vascular responses evoked in the pig in vivo. BIIE0246 abolished the splenic vasoconstrictor response to the NPY Y2 receptor agonist N-acetyl[Leu25Leu31]NPY(24-36), but did not affect the response to the NPY Y1 receptor agonist [Leu31Pro34]NPY, which in turn was abolished by the selective NPY Y1 receptor antagonist (2R)-5-([amino(imino)methyl]amino)-2-[(2,2-diphenylacetyl)amino]-N-[(IR)-1-(4-hydroxyphenyl)ethyl]-pentanamide (H 409/22). Furthermore, the PYY-evoked splenic vasoconstrictor response was partially antagonized by BIIE0246 and subsequently almost abolished by the addition of H 409/22. It is concluded that BIIE0246 exerts selective (vs the NPY Y1 receptor) NPY Y2 receptor antagonism, and thus represents an interesting tool for classification of NPY receptors, in vivo. In addition, evidence for NPY Y2 receptor mediated vasoconstriction was presented. Furthermore, both NPY Y1 and Y2 receptors are involved in the splenic vasoconstrictor response to PYY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号