首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two different hydrogenases have been isolated from Clostridium pasteurianum W5. Hydrogenase II (uptake) is active in H2 oxidation while hydrogenase I (bidirectional) is active both in H2 oxidation and evolution. Previous EPR and electron nuclear double resonance (ENDOR) studies of oxidized hydrogenase I have now been complemented by analogous studies on oxidized 57Fe-enriched hydrogenase II and its CO derivative (using 12CO and 13CO). Binding of CO greatly changes the EPR spectrum of oxidized hydrogenase II, and use of 13CO leads to resolved hyperfine splitting from interaction with a single 13CO molecule (AC approximately 34 MHz). This coupling is over 50% larger than that seen for hydrogenase I. 57Fe ENDOR disclosed two types of iron site in both oxidized hydrogenase II and its CO derivative. Combination of EPR, ENDOR, and M?ssbauer results shows that site 1 has AFe1 = 18 MHz shifting to approximately 30 MHz upon CO binding and consisting of two Fe atoms and site 2 has A2 approximately 7 MHz shifting to approximately 10 MHz and containing a single Fe. These results are very similar to those seen for hydrogenase I, which indicates that a structurally similar 3Fe cluster, believed to be the catalytically active site, is present in both. Proton ENDOR shows a solvent exchangeable resonance only in the CO derivative of hydrogenase II. This indicates a structural difference between hydrogenases I and II that is brought out by CO binding. No evidence of 14N coordination to the cluster is seen for either enzyme.  相似文献   

2.
On the novel H2-activating iron-sulfur center of the "Fe-only" hydrogenases   总被引:1,自引:0,他引:1  
The two hydrogenases (I and II) of the anaerobic N2-fixing bacterium Clostridium pasteurianum (Cp) and the hydrogenases of the anaerobes Megasphaera elsdenii (Me) and Desulfovibrio vulgaris (strain Hildenborough, Dv), contain iron-sulfur clusters but not nickel. They are the most active hydrogenases known. All four enzymes in their reduced states give rise to EPR signals typical of [4Fe-4S]1+ clusters but exhibit novel EPR signals in their oxidized states. For example, Cp hydrogenase I exhibits a sharp rhombic EPR signal when oxidized under mild conditions but the enzyme is inactivated by over-oxidation and then exhibits an axial EPR signal. A similar axial signal is observed from mildly oxidized hydrogenase I after treatment with CO. EPR, M?ssbauer and ENDOR spectroscopy indicate that the EPR signals from the oxidized enzyme and its CO derivative arise from a novel spin-coupled Fe center. Low temperature magnetic circular dichroism (MCD) studies reveal that an EPR-silent Fe-S cluster with S greater than 1/2 is also present in oxidized hydrogenase I. From a study of all spectroscopic properties of Cp, Dv, and Me hydrogenases, it is concluded that the H2-activating site of all four is a novel Fe-S cluster with S greater than 0 and integer, which in the oxidized state is exchange-coupled to a S = 1/2 species. The data are most consistent with the S = 1/2 species being a low spin Fe(III) center. The H2-activating site is susceptible to oxidative rearrangements to yield both active and inactive states of the enzyme. We discuss the possible implications of these finding to methods of enzyme oxidation and purification procedures currently used for hydrogenases.  相似文献   

3.
Previous M?ssbauer and electron nuclear double resonance (ENDOR) studies of oxidized hydrogenase I (bidirectional) from Clostridium pasteurianum W5 demonstrated that this enzyme contains two diamagnetic [4Fe-4S]2+ clusters and an iron-sulfur center of unknown structure and composition that is characterized by its novel M?ssbauer and ENDOR properties. In the present study we combine ENDOR and EPR measurements to show that the novel cluster contains 3-4 iron atoms. In addition, we have used EPR and ENDOR spectroscopies to investigate the effect of binding the competitive inhibitor carbon monoxide to oxidized hydrogenase I, using 13C-labeled CO and enzyme isotopically enriched in 57Fe. Treatment of oxidized enzyme with CO causes the g-tensor of the paramagnetic center to change from rhombic to axial symmetry. The observation of a 13C signal by ENDOR spectroscopy and analysis of the EPR broadening show that a single CO covalently binds to the paramagnetic center. The 13C hyperfine coupling constant (Ac approximately equal to 21 MHz) is within the range observed for inorganic iron-carbonyl clusters. The observation of 57Fe ENDOR signals from two types of iron site ([A1c] approximately 30-34 MHz; [A2c] approximately 6 MHz) and resolved 57Fe hyperfine interactions in the EPR spectrum from two nuclei characterized by [A1c] confirm that the iron-sulfur cluster remains intact upon CO coordination, but show that CO binding greatly changes the 57Fe hyperfine coupling constants.  相似文献   

4.
The two iron-only hydrogenases (I and II) from Clostridium pasteurianum have been investigated by variable temperature magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) spectroscopies. Samples were studied both reduced with dithionite under an atmosphere of H2 and after oxidation with thionine. The results are consistent with four and two [4Fe-4S]1+,2+ (F)-clusters in hydrogenases I and II, respectively. All four F-clusters are reduced and paramagnetic in reduced hydrogenase I, with up to one exhibiting an S = 3/2 ground state and the remainder having conventional S = 1/2 ground states. Both F-clusters have S = 1/2 ground states in reduced hydrogenase II; however, one appears to be only partially reduced under the conditions used for reduction. MCD studies of the oxidized enzymes show no temperature-dependent features in the visible region which can be attributed to the EPR-active S = 1/2 hydrogen-activating cluster, suggesting predominantly oxygen and nitrogen coordination for the iron atoms of this center. However, temperature-dependent MCD transitions arising from a hitherto undetected S greater than 1/2 Fe-S clusters are apparent in both oxidized hydrogenases. Detailed EPR studies of oxidized hydrogenase I revealed resonances from an S = 3/2 species, however, spin quantitation reveals this to be a trace component that is unlikely to be responsible for the observed low temperature MCD spectrum. The nature and origin of these S greater than 1/2 Fe-S clusters are discussed in light of the available spectroscopic data for these and other iron-only hydrogenases.  相似文献   

5.
Redox properties and active center of phototrophic bacteria hydrogenases   总被引:2,自引:0,他引:2  
N A Zorin 《Biochimie》1986,68(1):97-101
It is shown that the activity of phototrophic bacteria hydrogenases depends on the redox potential (Eh) of the medium. Hydrogenase from the purple sulfur bacterium Thiocapsa roseopersicina strain BBS reversibly activates H2 at Eh less than -290 mV (pH 7.0). When Eh is increased from -290 to -170 mV, the enzyme is converted into an inactive form which is accompanied by one-electron oxidation of its Fe-S cluster. In contrast, the hydrogenases of the purple nonsulfur bacterium Rhodobacter capsulatus B10 and the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum exhibit maximum activity at Eh greater than -300 mV, favourable only for H2 uptake. When Eh decreases the activities of these enzymes drop dramatically; this accounts for their unidirectional effect directed mainly towards H2 uptake. Such dependence on Eh of activity of hydrogenases from these bacteria correlates with their physiological function in the metabolism of phototrophic bacteria, i.e. with the catalysis of the H2 uptake reaction. Hydrogenases from purple bacteria contain nickel and a single Fe-S cluster. Metal chelators do not affect the activity of these enzymes, which indicates that iron and nickel are tightly bound to the apoprotein. Sulfhydryl compounds irreversibly inactivate T. roseopersicina hydrogenase by 30-40% in the presence of sulfide. Acetylene and carbon monoxide are reversible inhibitors of the enzyme. EPR and inhibitory analysis indicate a direct interaction of H2 with the nickel ion in the active center of the T. roseopersicina hydrogenase.  相似文献   

6.
By preparative polyacrylamide gel electrophoresis at pH 8.5, and in the absence of nickel ions, two types of subunit dimers of the NAD-linked hydrogenase from Nocardia opaca 1b were separated and isolated, and their properties were compared with each other as well as with the properties of the native enzyme. The intact hydrogenase contained 14.3 +/- 0.4 labile sulphur, 13.6 +/- 1.1 iron and 3.8 +/- 0.1 nickel atoms and approximately 1 FMN molecule per enzyme molecule. The oxidized hydrogenase showed an absorption spectrum with maxima (shoulders) at 380 nm and 420 nm and an electron spin resonance (ESR) spectrum with a signal at g = 2.01. The midpoint redox potential of the Fe-S cluster giving rise to this signal was +25 mV. In the reduced state, hydrogenase gave characteristic low-temperature (10-20 K) and high-temperature (greater than 40 K) ESR spectra which were interpreted as due to [4Fe-4S] and [2Fe-2S] clusters, respectively. The midpoint redox potentials of these clusters were determined to be -420 mV and -285 mV, respectively. The large hydrogenase dimer, consisting of subunits with relative molecular masses Mr, of 64000 and 31000, contained 9.9 +/- 0.4 S2- and 9.3 +/- 0.5 iron atoms per protein molecule. This dimer contained the FMN molecule, but no nickel. The absorption and ESR spectra of the large dimer were qualitatively similar to the spectra of the whole enzyme. This dimer did not show any hydrogenase activity, but reduced several electron acceptors with NADH as electron donor (diaphorase activity). The small hydrogenase dimer, consisting of subunits with Mr of 56000 and 27000, was demonstrated to have substantially different properties. For iron and labile sulphur average values of 3.9 and 4.3 atoms/dimer molecule have been determined, respectively. The dimer contained, in addition, about 2 atoms of nickel and was free of flavins. In the oxidized state this dimer showed an absorption spectrum with a broad band in the 400-nm region and a characteristic ESR signal at g = 2.01. The reduced form of the dimer was ESR-silent. The small dimer alone was diaphorase-inactive and did not reduce NAD with H2, but it displayed high H2-uptake activities with viologen dyes, methylene blue and FMN, and H2-evolving activity with reduced methyl viologen. Hydrogen-dependent NAD reduction was fully restored by recombining both subunit dimers, although the reconstituted enzyme differed from the original in its activity towards artificial acceptors and the ESR spectrum in the oxidized state.  相似文献   

7.
The soluble hydrogenase (hydrogen:NAD+ oxidoreductase (EC 1.12.1.2) from Alcaligenes eutrophus has been purified to homogeneity by an improved procedure, which includes preparative electrophoresis as final step. The specific activity of 57 mumol H2 oxidized/min per mg protein was achieved and the yield of pure enzyme from 200 g cells (wet weight) was about 16 mg/purification. After removal of non-functional iron, analysis of iron and acid-labile sulphur yielded average values of 11.5 and 12.9 atoms/molecule of enzyme, respectively. p-Chloromercuribenzoate was a strong inhibitor of hydrogenase and apparently competed with NAD not with H2. Chelating agents, CO and O2 failed to inhibit enzyme activity. The oxidized hydrogenase showed an EPR spectrum with a small signal at g = 2.02. On reduction the appearance of a high temperature (50--77 K) signal at g = 2.04, 1.95 and a more complex low temperature (less than 30 K) spectrum at g = 2.04, 2.0, 1.95, 1.93, 1.86 was observed. The pronounced temperature dependence and characteristic lineshape of the signals obtained with hydrogenase in 80--85% dimethylsulphoxide demonstrated that iron-sulphur centres of both the [2Fe-2S] and [4Fe-4S] types are present in the enzyme. Quantitation of the EPR signals indicated the existence of two identical centres each of the [4Fe-4S] and of the [2Fe-2S] type. The midpoint redox potentials of the [4Fe-4S] and the [2Fe-2S] centres were determined to be -445 mV and -325 mV, respectively. Spin coupling between two centres, indicated by the split feature of the low temperature spectrum of the native hydrogenase around g = 1.95, 1.93, has been established by power saturation studies. On reduction of the [Fe-4S] centres, the electron spin relaxation rate of the [2Fe-2S] centres was considerably increased. Treatment of hydrogenase with CO caused no change in EPR spectra.  相似文献   

8.
The archaebacterium, Pyrococcus furiosus, grows optimally at 100 degrees C by a fermentative type metabolism in which H2 and CO2 are the only detectable products. The organism also reduces elemental sulfur (S0) to H2S. Cells grown in the absence of S0 contain a single hydrogenase, located in the cytoplasm, which has been purified 350-fold to apparent homogeneity. The yield of H2 evolution activity from reduced methyl viologen at 80 degrees C was 40%. The hydrogenase has a Mr value of 185,000 +/- 15,000 and is composed of three subunits of Mr 46,000 (alpha), 27,000 (beta), and 24,000 (gamma). The enzyme contains 31 +/- 3 g atoms of iron, 24 +/- 4 g atoms of acid-labile sulfide, and 0.98 +/- 0.05 g atoms of nickel/185,000 g of protein. The H2-reduced hydrogenase exhibits an electron paramagnetic resonance (EPR) signal at 70 K typical of a single [2Fe-2S] cluster, while below 15 K, EPR absorption is observed from extremely fast relaxing iron-sulfur clusters. The oxidized enzyme is EPR silent. The hydrogenase is reversibly inhibited by O2 and is remarkably thermostable. Most of its H2 evolution activity is retained after a 1-h incubation at 100 degrees C. Reduced ferredoxin from P. furiosus also acts as an electron donor to the enzyme, and a 350-fold increase in the rate of H2 evolution is observed between 45 and 90 degrees C. The hydrogenase also catalyzes H2 oxidation with methyl viologen or methylene blue as the electron acceptor. The temperature optimum for both H2 oxidation and H2 evolution is greater than 95 degrees C. Arrhenius plots show two transition points at approximately 60 and approximately 80 degrees C independent of the mode of assay. That occurring at 80 degrees C is associated with a dramatic increase in H2 production activity. The enzyme preferentially catalyzes H2 production at all temperatures examined and appears to represent a new type of "evolution" hydrogenase.  相似文献   

9.
This report elucidates the distinctions of redox properties between two uptake hydrogenases in Escherichia coli. Hydrogen uptake in the presence of mediators with different redox potential was studied in cell-free extracts of E. coli mutants HDK103 and HDK203 synthesizing hydrogenase 2 or hydrogenase 1, respectively. Both hydrogenases mediated H(2) uptake in the presence of high-potential acceptors (ferricyanide and phenazine methosulfate). H(2) uptake in the presence of low-potential acceptors (methyl and benzyl viologen) was mediated mainly by hydrogenase 2. To explore the dependence of hydrogen consumption on redox potential of media in cell-free extracts, a chamber with hydrogen and redox ( E(h)) electrodes was used. The mutants HDK103 and HDK203 exhibited significant distinctions in their redox behavior. During the redox titration, maximal hydrogenase 2 activity was observed at the E(h) below -80 mV. Hydrogenase 1 had maximum activity in the E(h) range from +30 mV to +110 mV. Unlike hydrogenase 2, the activated hydrogenase 1 retained activity after a fast shift of redox potential up to +500 mV by ferricyanide titration and was more tolerant to O(2). Thus, two hydrogenases in E. coli are complementary in their redox properties, hydrogenase 1 functioning at higher redox potentials and/or at higher O(2) concentrations than hydrogenase 2.  相似文献   

10.
Hydrogenase II contains two iron-sulfur clusters, one of the [4Fe-4S] type and one of unknown structure with unusual spectral properties (H-cluster). Using M?ssbauer spectroscopy we have studied the H-cluster under a variety of conditions. In the reduced state the cluster exhibits, in zero magnetic field, spectra with the typical 2:1 quadrupole pattern of reduced [3Fe-4S] clusters. However, whereas the latter are paramagnetic (S = 2) the H-cluster is diamagnetic (S = 0). Upon oxidation and exposure to CO the H-cluster exhibits an S = 1/2 EPR spectrum with g values at 2.03, 2.02, and 2.00. In this state, the M?ssbauer spectra reveal two cluster subsites with magnetic hyperfine coupling constants AI = +26.5 MHz and AII = -30 MHz. ENDOR data obtained by Hoffman and co-workers (Telser, J., Benecky, M. J., Adams, M. W. W., Mortenson, L. E., and Hoffman, B. M. (1986) J. Biol. Chem. 261, 13536-13541) show a 57Fe resonance at AIII approximately equal to 9.5 MHz. Analysis of the M?ssbauer spectra shows that this resonance represents one iron site. Our studies of the reduced and CO-bound oxidized states of hydrogenase II suggest that the H-cluster contains three iron atoms. The data obtained for the oxidized H-cluster suggest a novel type of 3-Fe cluster and bear little resemblance to those reported for oxidized [3Fe-4S] clusters with g = 2.01 EPR signals. In the reduced sample the [4Fe-4S]1+ cluster appears to occur in a mixture of two distinct electronic states.  相似文献   

11.
As in many other hydrogenases, the small subunit of the F420-reducing hydrogenase of Methanococcus voltae contains three iron-sulfur clusters. The arrangement of the three [4Fe-4S] clusters corresponds to the arrangement of [Fe-S] clusters in the [NiFeSe] hydrogenase of Desulfomicrobium baculatum. Many other hydrogenases contain two [4Fe-4S] clusters and one [3Fe-4S] cluster with a relatively high redox potential, which is located in the central position between a proximal and a distal [4Fe-4S] cluster. We have investigated the role of the central [4Fe-4S] cluster in M. voltae with regard to its effect on the enzyme activity and its spectroscopic properties. Using site-directed mutagenesis, we constructed a strain in which one cysteine ligand of the central [4Fe-4S] cluster was replaced by proline. The mutant protein was purified, and the [4Fe-4S] to [3Fe-4S] cluster conversion was confirmed by EPR spectroscopy. The conversion resulted in an increase in the redox potential of the [3Fe-4S] cluster by about 400 mV. The [NiFe] active site was not affected significantly by the mutation as assessed by the unchanged Ni EPR spectrum. The specific activity of the mutated enzyme did not show any significant differences with the artificial electron acceptor benzyl viologen, but its specific activity with the natural electron acceptor F420 decreased tenfold.  相似文献   

12.
Megasphaera elsdenii hydrogenase has been purified to homogeneity using an FPLC procedure as the final step. The protein gives a single band in SDS/PAGE with an apparent molecular mass of 57-59 kDa. There is no second hydrogenase activity in the soluble fraction of M. elsdenii. The hydrodynamics of the enzyme have been compared to those of the two-subunit Fe hydrogenase from Desulfovibrio vulgaris (Hildenborough) in the analytical ultracentrifuge using the absorption of the intrinsic iron-sulfur clusters as the monitor. Sedimentation-velocity experiments indicate the M. elsdenii enzyme (s20,w = 4.95 S) to be essentially globular, while the D. vulgaris enzyme (s20,w = 4.1 S) has a less symmetric shape. From the sedimentation equilibrium measurements under a variety of conditions an average molecular mass is calculated of 58 kDa (M. elsdenii) and 54 kDa (D. vulgaris), respectively. Pure, maximally active M. elsdenii hydrogenase has A405/A280 = 0.36 and has a specific H2-production activity of 400 mumol H2.min-1.(mg protein)-1 at 30 degrees C and pH 8.0. The enzyme contains some 13-18 iron and acid-labile sulfur ions/58-kDa monomer. Eight of these Fe-S are present as two electron-transferring ferredoxin-like cubanes with Em approximately greater than -0.3 V, as indicated by pH-dependent EPR spectroscopy on the H2-reduced enzyme. In the (re)oxidized state the remainder iron gives rise to a single S = 1/2 rhombic EPR signal. Hydrogen-production activity, content of remainder iron and rhombic EPR signal intensity are mutually correlated. Purified hydrogenase appears to exist as a mixture of fully active holoenzyme and inactive protein still carrying the two cubanes but deficient in active-site iron.  相似文献   

13.
A soluble [NiFe] hydrogenase has been partially purified from the obligate thermophilic sulfate-reducing bacterium Thermodesulfobacterium mobile. A 17% purification yield was obtained after four chromatographic steps and the hydrogenase presents a purity index (A398 nm/A277 nm) equal to 0.21. This protein appears to be 75% pure on SDS-gel electrophoresis showing two major bands of molecular mass around 55 and 15 kDa. This hydrogenase contains 0.6-0.7 nickel atom and 7-8 iron atoms per mole of enzyme and has a specific activity of 783 in the hydrogen uptake reaction, of 231 in the hydrogen production assay and of 84 in the deuterium-proton exchange reaction. The H2/HD ratio is lower than one in the D2-H+ exchange reaction. The enzyme is very sensitive to NO, relatively little inhibited by CO but unaffected by NO2-. The EPR spectrum of the native hydrogenase shows the presence of a [3Fe-4S] oxidized cluster and of a Ni(III) species.  相似文献   

14.
Oxygen, either molecular oxygen or a reduction adduct, can tightly bind in the vicinity of the two forms of trivalent nickel occurring in hydrogenase from Chromatium vinosum, as evident from studies with 17O-enriched O2. This oxygen is not in the first coordination sphere of nickel. As has been reported earlier for hydrogenase from Desulfovibrio gigas (Fernandez, V.M., Hatchikian, A.C., Patil, D.S. and Cammack, R. (1986) Biochim. Biophys. Acta 883, 145-154), also the relative activity of the C.vinosum enzyme correlates well with the presence of only one of the two Ni(III) forms in the oxidized preparation. These results make it less likely that a specific oxygenation of only one of the Ni(III) forms would be the reason for the reversible inactivation of nickel hydrogenases by oxygen. Reaction of H2-reduced enzyme with 13CO now demonstrated beyond doubt that: (i) One 13CO molecule is a direct ligand to nickel in axial position; and (ii) hydrogen binds at the same coordination site as CO. It can also be concluded that hydrogen is not bound as a hydride ion, but presumably as molecular hydrogen. A simple way to explain the EPR spectra from the 13CO-adduct of the enzyme is to assume a monovalent state for the nickel.  相似文献   

15.
The [NiFe] hydrogenase isolated from Desulfovibrio gigas was poised at different redox potentials and studied by M?ssbauer spectroscopy. The data firmly establish that this hydrogenase contains four prosthetic groups: one nickel center, one [3Fe-xS], and two [4Fe-4S] clusters. In the native enzyme, both the nickel and the [3Fe-xS] cluster are EPR-active. At low temperature (4.2 K), the [3Fe-xS] cluster exhibits a paramagnetic M?ssbauer spectrum typical for oxidized [3Fe-xS] clusters. At higher temperatures (greater than 20 K), the paramagnetic spectrum collapses into a quadrupole doublet with parameters magnitude of delta EQ magnitude of = 0.7 +/- 0.06 mm/s and delta = 0.36 +/- 0.06 mm/s, typical of high-spin Fe(III). The observed isomer shift is slightly larger than those observed for the three-iron clusters in D. gigas ferredoxin II (Huynh, B. H., Moura, J. J. G., Moura, I., Kent, T. A., LeGall, J., Xavier, A. V., and Münck, E. (1980) J. Biol. Chem. 255, 3242-3244) and in Azotobacter vinelandii ferredoxin I (Emptage, M. H., Kent, T. A., Huynh, B. H., Rawlings, J., Orme-Johnson, W. H., and Münck, E. (1980) J. Biol. Chem. 255, 1793-1796) and may indicate a different iron coordination environment. When D. gigas hydrogenase is poised at potentials lower than -80 mV (versus normal hydrogen electrode), the [3Fe-xS] cluster is reduced and becomes EPR-silent. The M?ssbauer data indicate that the reduced [3Fe-xS] cluster remains intact, i.e. it does not interconvert into a [4Fe-4S] cluster. Also, the electronic properties of the reduced [3Fe-xS] cluster suggest that it is magnetically isolated from the other paramagnetic centers.  相似文献   

16.
Bennett B  Lemon BJ  Peters JW 《Biochemistry》2000,39(25):7455-7460
Carbon monoxide binding and inhibition have been investigated by electron paramagnetic resonance (EPR) spectroscopy in solution and in crystals of structurally described states of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum. Simulation of the EPR spectrum of the as-isolated state indicates that the main component of the EPR spectrum consists of the oxidized state of the "H cluster" and components due to reduced accessory FeS clusters. Addition of carbon monoxide to CpI in the presence of dithionite results in the inhibition of hydrogen evolution activity, and a characteristic axial EPR signal [g(eff(1)), g(eff(2)), and g(eff(3)) = 2.0725, 2.0061, and 2.0061, respectively] was observed. Hydrogen evolution activity was restored by successive sparging with hydrogen and argon and resulted in samples that exhibited the native oxidized EPR signature that could be converted to the reduced form upon addition of sodium dithionite and hydrogen. To examine the relationship between the spectroscopically defined states of CpI and those observed structurally by X-ray crystallography, we have examined the CpI crystals using EPR spectroscopy. EPR spectra of the crystals in the CO-bound state exhibit the previously described axial signal associated with CO binding. The results indicate that the addition of carbon monoxide to CpI results in a single reversible carbon monoxide-bound species characterized by loss of enzyme activity and the distinctive axial EPR signal.  相似文献   

17.
The structure and mechanism of iron-hydrogenases   总被引:14,自引:0,他引:14  
Hydrogenases devoid of nickel and containing only Fe-S clusters have been found so far only in some strictly anaerobic bacteria. Four Fe-hydrogenases have been characterized: from Megasphaera elsdenii, Desulfovibrio vulgaris (strain Hildenborough), and two from Clostridium pasteurianum. All contain two or more [4Fe-4S]1+,2+ or F clusters and a unique type of Fe-S center termed the H cluster. The H cluster appears to be remarkably similar in all the hydrogenases, and is proposed as the site of H2 oxidation and H2 production. The F clusters serve to transfer electrons between the H cluster and the external electron carrier. In all of the hydrogenases the H cluster is comprised of at least three Fe atoms, and possibly six. In the oxidized state it contains two types of magnetically distinct Fe atoms, has an S = 1/2 spin state, and exhibits a novel rhombic EPR signal. The reduced cluster is diamagnetic (S = 0). The oxidized H cluster appears to undergo a conformation change upon reduction with H2 with an increase in Fe-Fe distances of about 0.5 A. Studies using resonance Raman, magnetic circular dichroism and electron spin echo spectroscopies suggest that the H cluster has significant non-sulfur coordination. The H cluster has two binding sites for CO, at least one of which can also bind O2. Binding to one site changes the EPR properties of the cluster and gives a photosensitive adduct, but does not affect catalytic activity. Binding to the other site, which only becomes exposed during the catalytic cycle, leads to loss of catalytic activity. Mechanisms of H2 activation and electron transfer are proposed to explain the effects of CO binding and the ability of one of the hydrogenases to preferentially catalyze H2 oxidation.  相似文献   

18.
Clostridium acetobutylicum ATCC 824 was selected for the homologous overexpression of its Fe-only hydrogenase and for the heterologous expressions of the Chlamydomonas reinhardtii and Scenedesmus obliquus HydA1 Fe-only hydrogenases. The three Strep tag II-tagged Fe-only hydrogenases were isolated with high specific activities by two-step column chromatography. The purified algal hydrogenases evolve hydrogen with rates of around 700 micromol H(2) min(-1) mg(-1), while HydA from C. acetobutylicum (HydA(Ca)) shows the highest activity (5,522 micromol H(2) min(-1) mg(-1)) in the direction of hydrogen uptake. Further, kinetic parameters and substrate specificity were reported. An electron paramagnetic resonance (EPR) analysis of the thionin-oxidized HydA(Ca) protein indicates a characteristic rhombic EPR signal that is typical for the oxidized H cluster of Fe-only hydrogenases.  相似文献   

19.
The energy coupled NADH-ubiquinone (Q) oxidoreductase segment of the respiratory chain of Escherichia coli GR19N has been studied by EPR spectroscopy. Previously Matsushita et al. [(1987) Biochemistry 26, 7732-7737] have demonstrated the presence of two distinct NADH-Q oxidoreductases in E. coli membrane particles and designated them NADH dh I and NADH dh II. Although both enzymes oxidize NADH, only NADH dh I is coupled to the formation of the H+ electrochemical gradient. In addition to NADH, NADH dh I oxidizes nicotinamide hypoxanthine dinucleotide (deamino-NADH), while NADH dh II does not. In membrane particles we have detected EPR signals arising from four low-potential iron-sulfur clusters, one binuclear, one tetranuclear, and two fast spin relaxing g perpendicular = 1.94 type clusters (whose cluster structure has not yet been assigned). The binuclear cluster, temporarily designated [N-1]E, shows an EPR spectrum with gx,y,z = 1.92, 1.935, 2.03 and the Em7.4 value of -220 mV (n = 1). The tetranuclear cluster, [N-2]E, elicits a spectrum with gx,y,z = 1.90, 1.91, 2.05 and an Em7.4 of -240 mV (n = 1). These two clusters have been shown to be part of the NADH dh I complex by stability and inhibitor studies. When stored at 4 degrees C, both clusters are extremely labile as is the deamino-NADH-Q oxidoreductase activity. Addition of deamino-NADH in the presence of piericidin A results in nearly full reduction of [N-2]E within 17 s. In membrane particles pretreated with piericidin A, the cluster [N-1]E is only partly reducible by deamino-NADH and shows an altered line shape.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The periplasmic hydrogenase of Desulfovibrio vulgaris (Hildenbourough NCIB 8303) belongs to the category of [Fe] hydrogenase which contains only iron-sulfur clusters as its prosthetic groups. Amino acid analyses were performed on the purified D. vulgaris hydrogenase. The amino acid composition obtained compared very well with the result derived from the nucleotide sequence of the structural gene (Voordouw, G., Brenner, S. (1985) Eur. J. Biochem. 148, 515-520). Detailed EPR reductive titration studies on the D. vulgaris hydrogenase were performed to characterize the metal centers in this hydrogenase. In addition to the three previously observed EPR signals (namely, the "isotropic" 2.02 signal, the rhombic 2.10 signal, and the complex signal of the reduced enzyme), a rhombic signal with resonances at the g-values of 2.06, 1.96, and 1.89 (the rhombic 2.06 signal) was detected when the samples were poised at potentials between 0 and -250 mV (with respect to normal hydrogen electrode). The midpoint redox potentials for each of the four EPR-active species were determined, and the characteristics of each EPR signal are described. Both the rhombic 2.10 and 2.06 signals exhibit spectral properties that are distinct from a ferredoxin-type [4Fe-4S] cluster and are proposed to originate from the same H2-binding center but in two different conformations. The complex signal of the reduced hydrogenase has been shown to represent two spin-spin interacting ferredoxin-type [4Fe-4S]1+ clusters (Grande, H. J., Dunham, W. R., Averill, B., Van Dijk, C., and Sands, R. H. (1983) Eur. J. Biochem. 136, 201-207). The titration data indicated a strong cooperative effect between these two clusters during their reduction. In an effort to accurately estimate the number of iron atoms/molecule of hydrogenase, plasma emission and chemical methods were used to determine the iron contents in the samples; and four different methods, including amino acid analysis, were used for protein determination. The resulting iron stoichiometries were found to be method-dependent and vary over a wide range (+/- 20%). The uncertainties involved in the determination of iron stoichiometry are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号