首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The amyloidoses are a heterogeneous group of diseases, which are characterized by the local or systemic deposition of amyloid. At the root of these diseases are changes in protein conformation where normal innocuous proteins transform into insoluble amyloid fibrils and deposit in tissues. The amyloid fibrils of Alzheimer's disease are composed of the Abeta peptide and deposit in the form of senile plaques. Neurodegeneration surrounds the amyloid deposits, indicating that neurotoxic substances are produced during the deposition process. Whether the neurotoxic species is the amyloid fibril or a fibril precursor is a current area of active research. This review focuses on advancements made in elucidating the molecular structures of the Abeta amyloid fibril and alternate aggregation products of the Abeta peptide formed during fibrillogenesis.  相似文献   

3.
Probing backbone hydrogen bonds in the hydrophobic core of GCN4   总被引:1,自引:0,他引:1  
Backbone amide hydrogen bonds play a central role in protein secondary and tertiary structure. Previous studies have shown that substitution of a backbone ester (-COO-) in place of a backbone amide (-CONH-) can selectively destabilize backbone hydrogen bonds in a protein while maintaining a similar conformation to the native backbone structure. The majority of these studies have focused on backbone substitutions that were accessible to solvent. The GCN4 coiled coil domain is an example of a stable alpha-helical dimer that possesses a well-packed hydrophobic core. Amino acids in the a and d positions of the GCN4 helix, which pack the hydrophobic core, were replaced with the corresponding alpha-hydroxy acids in the context of a chemoselectively ligated heterodimer. While the overall structure and oligomerization state of the heterodimer were maintained, the overall destabilization of the ester analogues was greater (average DeltaDeltaG of 3+ kcal mol(-1)) and more variable than previous studies. Since burial of the more hydrophobic ester should stabilize the backbone and reduce the DeltaDeltaG, the increased destabilization must come from another source. However, the observed destabilization is correlated with the protection factors for individual amide hydrogens from previous hydrogen exchange experiments. Therefore, our results suggest that backbone engineering through ester substitution is a useful approach for probing the relative strength of backbone hydrogen bonds.  相似文献   

4.
A potential goal in the prevention or therapy of Alzheimer's disease is to decrease or eliminate neuritic plaques composed of fibrillar beta-amyloid (Abeta). In this paper we describe N-methyl amino acid containing congeners of the hydrophobic "core domain" of Abeta that inhibit the fibrillogenesis of full-length Abeta. These peptides also disassemble preformed fibrils of full-length Abeta. A key feature of the inhibitor peptides is that they contain N-methyl amino acids in alternating positions of the sequence. The most potent of these inhibitors, termed Abeta16-22m, has the sequence NH(2)-K(Me-L)V(Me-F)F(Me-A)E-CONH(2). In contrast, a peptide, NH(2)-KL(Me-V)(Me-F)(Me-F)(Me-A)-E-CONH(2), with N-methyl amino acids in consecutive order, is not a fibrillogenesis inhibitor. Another peptide containing alternating N-methyl amino acids but based on the sequence of a different fibril-forming protein, the human prion protein, is also not an inhibitor of Abeta40 fibrillogenesis. The nonmethylated version of the inhibitor peptide, NH(2)-KLVFFAE-CONH(2) (Abeta16-22), is a weak fibrillogenesis inhibitor. Perhaps contrary to expectations, the Abeta16-22m peptide is highly soluble in aqueous media, and concentrations in excess of 40 mg/mL can be obtained in buffers of physiological pH and ionic strength, compared to only 2 mg/mL for Abeta16-22. Analytical ultracentrifugation demonstrates that Abeta16-22m is monomeric in buffer solution. Whereas Abeta16-22 is susceptible to cleavage by chymotrypsin, the methylated inhibitor peptide Abeta16-22m is completely resistant to this protease. Circular dichroic spectroscopy of Abeta16-22m indicates that this peptide is a beta-strand, albeit with an unusual minimum at 226 nm. In summary, the inhibitor motif is that of alternating N-methyl and nonmethylated amino acids in a sequence critical for Abeta40 fibrillogenesis. These inhibitors appear to act by binding to growth sites of Abeta nuclei and/or fibrils and preventing the propagation of the network of hydrogen bonds that is essential for the formation of an extended beta-sheet fibril.  相似文献   

5.
The aggregation of 42-mer amyloid beta (Abeta42) plays a central role in the pathogenesis of Alzheimer's disease. Our recent research on proline mutagenesis of Abeta42 suggested that the formation of a turn structure at positions 22 and 23 could play a crucial role in its aggregative ability and neurotoxicity. Since E22K-Abeta42 (Italian mutation) aggregated more rapidly and with more potent neurotoxicity than wild-type Abeta42, the tertiary structure at positions 21-24 of E22K-Abeta42 fibrils was analyzed by solid-state NMR using dipolar-assisted rotational resonance (DARR) to identify the 'malignant' conformation of Abeta42. Two sets of chemical shifts for Asp-23 were observed in a ratio of about 2.6:1. The 2D DARR spectra at the mixing time of 500 ms suggested that the side chains of Asp-23 and Val-24 in the major conformer, and those of Lys-22 and Asp-23 in the minor conformer could be located on the same side, respectively. These data support the presence of a turn structure at positions 22 and 23 in E22K-Abeta42 fibrils. The formation of a salt bridge between Lys-22 and Asp-23 in the minor conformer might be a reason why E22K-Abeta42 is more pathogenic than wild-type Abeta42.  相似文献   

6.
An energy term, representing the N-H...O type of hydrogen bond, which is a function of the hydrogen bond length (R) and angle (theta) has been introduced in an energy minimization program, taking into consideration its interpolation with the non-bonded energy for borderline values of R and theta. The details of the mathematical formulation of the derivatives of the hydrogen bond function as applicable to the energy minimization have been given. The minimization technique has been applied to hydrogen bonded two and three linked peptide units (gamma-turns and beta-turns), and having Gly, Ala and Pro side chains. Some of the conformational highlights of the resulting minimum energy conformations are a) the occurrence of the expected 4----1 hydrogen bond in all of the burn-turn tripeptide sequences and b) the presence of an additional 3----1 hydrogen bond in some of the type I and II tripeptides with the hydrogen bonding scheme in such type I beta-turns occurring in a bifurcated form. These and other conformational features have been discussed in the light of experimental evidence and theoretical predictions of other workers.  相似文献   

7.
A new protocol has been developed for incorporation of a photoisomerizable azobenzene moiety into synthetic stereo-enriched [Rp] and [Sp] PS-oligonucleotides. The azobenzene pendant is attached at pre-selected positions in internucleotidic phosphorothioate oligonucleotides of both [Rp] and [Sp] diastereomers using a novel reagent, N-iodoacetyl-p-aminoazobenzene, 1. The modified oligomers are purified on HPLC, characterized by LC–MS, and examined for their thermal and photoisomerization properties. The azobenzene moiety imparts greater stability to oligomer duplexes in (E) NN configuration as compared to (Z) configuration. The placement of the azobenzene pendant close to 5′-terminus (n − 1) and 3′-terminus of the modified PS-oligos contributes maximum stability to the duplex while a gradual decline in stability occurs with azobenzene moving toward middle of the duplex. Circular Dichroism studies reveal that the chiral environment at the phosphorus center of the PS-oligos does not alter the global conformation of the DNA duplex as such, suggesting conservation of conformation of the modified DNA strands.  相似文献   

8.
Every AE  Russu IM 《Biopolymers》2007,87(2-3):165-173
Aromatic stacking and hydrogen bonding between nucleobases are two of the key interactions responsible for stabilization of DNA double-helical structures. The present work aims at defining the specific contributions of these interactions to the stability of individual base pairs in DNA. The two DNA double helices investigated are formed, respectively, by the palindromic base sequences 5'-dCCAACGTTGG-3' and 5'-dCGCAGATCTGCG-3'. The strength of the N==H...N inter-base hydrogen bond in each base pair is characterized from the measurement of the protium-deuterium fractionation factor of the corresponding imino proton using NMR spectroscopy. The structural stability of each base pair is evaluated from the exchange rate of the imino proton, measured by NMR. The results reveal that the fractionation factors of the imino protons in the two DNA double helices investigated fall within a narrow range of values, between 0.92 and 1.0. In contrast, the free energies of structural stabilization for individual base pairs span 3.5 kcal/mol, from 5.2 to 8.7 kcal/mol (at 15 degrees C). These findings indicate that, in the two DNA double helices investigated, the strength of N==H...N inter-base hydrogen bonds does not change significantly depending on the nature or the sequence context of the base pair. Hence, the variations in structural stability detected by proton exchange do not involve changes in the strength of inter-base hydrogen bonds. Instead, the results suggest that the energetic identity of a base pair is determined by the number of inter-base hydrogen bonds, and by the stacking interactions with neighboring base pairs.  相似文献   

9.
D G Wallace 《Biopolymers》1990,30(9-10):889-897
A quantitative model for fibril assembly of type I collagen was extended to include the explicit effect of extrahelical peptides. The collagen molecule was simulated by rod-like sequences to which short, rigid tails were connected by "nondimensional" flexible joints. Three collagen structures were studied: (1) intact collagen, simulated by a rod of axial ratio 200 (The axial ratio x was taken as a segment length) with two tails of length x = 1 and x = 2, respectively, appended to each end; (2) pepsin-digested collagen, simulated by one rigid segment of length 200 and one tail of length 1; and (3) pronase-digested collagen, by a single rigid segment of length x = 200. Phase equilibria of such structures were calculated, using a lattice theory of Matheson and Flory, and the relation of the polymer-solvent interaction parameter chi to the equilibrium solubility was determined. The chi for each collagen species was then related to temperature (T) and ionic strength (I), based on the approximation that local (per segment) stabilization of collagen fibrils was due to hydrophobic and electrostatic forces only. Solubility vs temperature curves for all three collagen species were computed and compared to published experimental data. From the chi factors for each species, the composite chi was resolved into components representing energetic contributions of the extrahelical peptides relative to the helix, which were interpreted in terms of hydrophobic or electrostatic interactions stabilizing the collagen fibril.  相似文献   

10.
The thrombin-binding aptamer d(GGTTGGTGTGGTTGG) (TBA) is an efficient tool for the inhibition of thrombin function. We have studied conformations and thermodynamic stability of a number of modified TBA oligonucleotides containing thiophosphoryl substitution at different internucleotide sites. Using circular dichroism such modifications were found not to disrupt the antiparallel intramolecular quadruplex specific for TBA. Nevertheless, the presence of a single thiophosphoryl bond between two G-quartet planes led to a significant decrease in the quadruplex thermostability. On the contrary, modifications in each of the loop regions either stabilized an aptamer structure or did not reduce its stability. According to the thrombin time test, the aptamer with thio-modifications in both TT loops (LL11) exhibits the same antithrombin efficiency as the original TBA. This aptamer shows better stability against DNA nuclease compared to that of TBA. We conclude that such thio-modification patterns are very promising for the design of anticoagulation agents.  相似文献   

11.
As part of a search for peptides that have specificity for selected protein kinases, the possibility that adenosine cyclic 3',5'-phosphate dependent protein kinase (A-kinase) recognizes the hydrogen-bonding potential of its peptide substrates was investigated. A-Kinase catalyzes the phosphorylation of five N alpha-methylated and four depsipeptide derivatives of Leu-Arg-Arg-Ala-Ser-Leu-Gly (peptide 1) at rates that differ by at least 7 orders of magnitude. These peptide 1 analogues each lack the ability to donate a hydrogen bond at selected positions in the peptide chain. If a particular amide hydrogen of a peptide amide is involved in hydrogen bonding, which is important for enzyme recognition, the prediction is that peptides which contain an ester or a N-methylated bond at that position in peptide 1 will be comparatively poor substrates. In contrast, if a depsipeptide has a reactivity comparable to that of peptide 1 but the analogous N-methylated peptide has a poor reactivity with A-kinase, the result might indicate that the N-methyl group causes unfavorable steric effects. The depsipeptide that lacks a Leu6 amide proton is a good substrate for A-kinase, but the corresponding N-methylated peptide is phosphorylated far less efficiently. This result and others presented in this paper suggest that although enzyme-substrate hydrogen bonding may play some role in A-kinase catalysis of phosphoryl group transfer, other explanations are necessary to account for the relative reactivities of N alpha-methylated and depsi-containing peptide 1 analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The formation mechanism of amyloid peptides in normally functioning neuron and upon the development of amyloidosis resulting in neuron death is described. Amyloid peptides are formed by enzymatic processing of a large protein precursor and participate in intermolecular interactions after conformational rearrangements resulting in the formation of pathogenic structures. They enter into the cascade of molecular and cellular events leading to amyloidosis and death of nervous cells. These molecular events clarify the relation between the conformation and function of neuropathogenic peptides and the role of this relation in the development of pathology of differentiated neurons. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2006, vol. 32, no. 3; see also http://www.maik.ru.  相似文献   

13.
14.
The class II MHC homolog HLA-DM catalyzes exchange of peptides bound to class II MHC proteins, and is an important component of the Ag presentation machinery. The mechanism of HLA-DM-mediated catalysis is largely obscure. HLA-DM catalyzes exchange of peptides of varying sequence, suggesting that a peptide sequence-independent component of the MHC-peptide interaction could be involved in the catalytic process. Twelve conserved hydrogen bonds between the peptide backbone and the MHC are a prominent sequence-independent feature of the MHC-peptide interaction. To evaluate the relative importance of these hydrogen bonds toward HLA-DM action, we prepared peptide variants that lacked the ability to form one or more of the hydrogen bonds as a result of backbone amide N-methylation or truncation, and tested their ability to be exchanged by HLA-DM. We found that disruption of hydrogen bonds involving HLA-DR1 residues alpha51-53, a short extended segment at the N terminus of the alpha subunit helical region, led to heightened HLA-DM catalytic efficacy. We propose that those bonds are disrupted in the MHC conformation recognized by HLA-DM to allow structural transitions in that area during DM-assisted peptide release. These results suggest that peptides or compounds that bind MHC but cannot form these interactions would be preferentially edited out by HLA-DM.  相似文献   

15.
The importance of hydrogen bonding studies lies in their structural, biological and medicinal applications. Non-conventional hydrogen bonds are weak, but are found to play an important role in biological molecules. In view of their importance,a study of the aromatic hydrogen bonds in peptides with aromatic amino acid side chains was carried out. The results indicate a reasonable probability for their occurrence, thereby enumerating their distinct features.  相似文献   

16.
17.
18.
19.
The mechanisms of cold and pressure denaturation of proteins are a matter of debate, but it is commonly accepted that water plays a fundamental role in the process. It has been proposed that the denaturation process is related to an increase of hydrogen bonds among hydration water molecules. Other theories suggest that the causes of denaturation are the density fluctuations of surface water, or the destabilization of hydrophobic contacts as a consequence of water molecule inclusions inside the protein, especially at high pressures. We review some theories that have been proposed to give insight into this problem, and we describe a coarse-grained model of water that compares well with experiments for proteins’ hydration water. We introduce its extension for a homopolymer in contact with the water monolayer and study it by Monte Carlo simulations in an attempt to understand how the interplay of water cooperativity and interfacial hydrogen bonds affects protein stability.  相似文献   

20.
gamma-Secretase is an unusual intramembranous protease that has been reported to cleave the beta-amyloid precursor protein (APP) near the middle of its transmembrane domain (TMD) but cleave Notch near the cytoplasmic end of its TMD. To ascertain whether the TMD sequence of the substrate determines where gamma-secretase cleaves and whether the region just before the TMD participates in recognition by the enzyme, we expressed chimeric human APP molecules containing either the TMD or pre-TMD regions of Notch or other transmembrane proteins. APP chimeras bearing either the Notch or the amyloid precursor-like protein-2 TMD released similar amounts of approximately 4-kDa amyloid beta-peptide (Abeta)-like peptides as did intact APP. Mass spectrometry revealed that the principal Abeta-like peptide ended at residue 40, indicating cleavage at the middle of the Notch TMD in the chimera. Generation of Abeta-like peptides was significantly decreased when the APP TMD was replaced by those of SREBP-1 or human epithelial growth factor receptor 3. Replacement of the APP pre-TMD region (Abeta 10-28) with that of SREBP-1 increased generation of Abeta-like peptides, while those of human epithelial growth factor receptor 3 or amyloid precursor-like protein-2 decreased it. We conclude that gamma-secretase can cleave near the middle of the Notch TMD, that Abeta-like peptides may arise during Notch processing, and that the pre-TMD sequence of the substrate influences recognition or binding by the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号