首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trimming of N-linked oligosaccharides by endoplasmic reticulum (ER) glucosidase II is implicated in quality control of protein folding. An alternate glucosidase II-independent deglucosylation pathway exists, in which endo-alpha-mannosidase cleaves internally the glucose-substituted mannose residue of oligosaccharides. By immunogold labeling, we detected most endomannosidase in cis/medial Golgi cisternae (83.8% of immunogold labeling) and less in the intermediate compartment (15.1%), but none in the trans-Golgi apparatus and ER, including its transitional elements. This dual localization became more pronounced under 15 degrees C conditions indicative of two endomannosidase locations. Under experimental conditions when the intermediate compartment marker p58 was retained in peripheral sites, endomannosidase was redistributed to the Golgi apparatus. Double immunogold labeling established a mutually exclusive distribution of endomannosidase and glucosidase II, whereas calreticulin was observed in endomannosidase-reactive sites (17.3% in intermediate compartment, 5.7% in Golgi apparatus) in addition to the ER (77%). Our results demonstrate that glucose trimming of N-linked oligosaccharides is not limited to the ER and that protein deglucosylation by endomannosidase in the Golgi apparatus and intermediate compartment additionally ensures that processing to mature oligosaccharides can continue. Thus, endomannosidase localization suggests that a quality control of N-glycosylation exists in the Golgi apparatus.  相似文献   

2.
Antibodies prepared against enzymatically deglycosylated porcine submaxillary gland mucin (apomucin), which were unreactive with native mucin and its partially deglycosylated derivatives, were used to immunolocalize apomucin in situ. Electron microscopy of sections of Lowicryl K4M-embedded tissue reacted successively with antibodies and protein A-gold complexes showed apomucin exclusively in mucous cells within the rough endoplasmic reticulum, transitional elements of the endoplasmic reticulum, and vesicles at the cis side of the Golgi apparatus. The Golgi apparatus, forming mucous droplets, and mucous droplets contained no apomucin. Although the rough endoplasmic reticulum contained most of the apomucin in mucous cells, some cisternae of the endoplasmic reticulum and the nuclear envelope were devoid of apomucin. Examination of tissue sections treated with the glycosidases used to prepare apomucin revealed immunolabel for apomucin throughout the secretory pathway. Colloidal gold coated with Helix pomatia lectin was used to detect nonreducing N-acetylgalactosamine residues. In mucin-producing cells lectin-gold was found in the mucous droplets, the forming mucous droplets, and throughout the Golgi apparatus but mostly in the cis portion of this organelle. In tissue sections reacted successively with lectin-gold and anti-apomucin/protein A-gold, both types of gold complex could be found in the cis side of the Golgi apparatus. These data indicate that the O-glycosylation of mucin is a posttranslational event that occurs in the Golgi apparatus and begins in the cis side of the Golgi apparatus.  相似文献   

3.
Characterization of a novel alpha-D-mannosidase from rat brain microsomes   总被引:4,自引:0,他引:4  
A new alpha-D-mannosidase has been identified in rat brain microsomes. The enzyme was purified 70-100-fold over the microsomal fraction by solubilization with Triton X-100, followed by ion exchange, concanavalin A-Sepharose, and hydroxylapatite chromatography. The purified enzyme is very active towards mannose-containing oligosaccharides and has a pH optimum of 6.0. Unlike rat liver endoplasmic reticulum alpha-D-mannosidase and both Golgi mannosidases IA and IB, which have substantial activity only towards alpha 1,2-linked mannosyl residues, the brain enzyme readily cleaves alpha 1,2-, alpha 1,3-, and alpha 1,6-linked mannosyl residues present in high mannose oligosaccharides. The brain enzyme is also different from liver Golgi mannosidase II in that it hydrolyzes (Man)5GlcNAc and (Man)4GlcNAc without their prior N-acetylglucosaminylation. Moreover, the facts that the ability of the enzyme to cleave GlcNAc(Man)5GlcNAc, the biological substrate for Golgi mannosidase II, is not inhibited by swainsonine, and that p-nitrophenyl alpha-D-mannoside is a poor substrate provide further evidence for major differences between the brain enzyme and mannosidase II. Inactivation studies and the co-purification of activities towards various substrates suggest that a single enzyme is responsible for all the activities found. In view of these results, it seems possible that, in rat brain, a single mannosidase cleaves asparagine-linked high mannose oligosaccharide to form the core Man3GlcNAc2 moiety, which would then be modified by various glycosyl transferases to form complex type glycoproteins.  相似文献   

4.
Golgi membranes from rat liver have been shown to contain an endo-alpha-D-mannosidase which can convert Glc1Man9GlcNAc to Man8GlcNAc with the release of Glc alpha 1----3Man (Lubas, W. A., and Spiro, R. G. (1987) J. Biol. Chem. 262, 3775-3781). We now report that this enzyme has the capacity to cleave the alpha 1----2 linkage between the glucose-substituted mannose residue and the remainder of the polymannose branch in a wide range of oligosaccharides (Glc3Man9GlcNAc to Glc1Man4GlcNAc) as well as glycopeptides and oligosaccharide-lipids. Whereas the tri- and diglucosylated species (Glc3Man9GlcNAc and Glc2Man9GlcNAc), which yielded Glc3Man and Glc2Man, respectively, were processed more slowly than Glc1Man9GlcNAc, the monoglucosylated components with truncated mannose chains (Glc1Man8GlcNAc to Glc1Man4GlcNAc) were trimmed at an increased rate which was inversely related to the number of mannose residues present. The endomannosidase was not inhibited by a number of agents which are known to interfere with N-linked oligosaccharide processing by exoglycosidases, including 1-deoxynojirimycin, castanospermine, bromoconduritol, 1-deoxymannojirimycin, swainsonine, and EDTA. However, Tris and other buffers containing primary hydroxyl groups substantially decreased its activity. After Triton solubilization, the endomannosidase was observed to be bound to immobilized wheat germ agglutinin, indicating the presence of a type of carbohydrate unit consistent with Golgi localization of the enzyme. The Man8GlcNAc isomer produced by endomannosidase action was found to be processed by Golgi enzymes through a different sequence of intermediates than the rough endoplasmic reticulum-generated Man8GlcNAc variant, in which the terminal mannose of the middle branch is absent. Whereas the latter oligosaccharide is converted to Man5GlcNAc via Man7GlcNAc and Man6GlcNAc at an even rate, the processing of the endomannosidase-derived Man8GlcNAc stalls at the Man6GlcNAc stage due to the apparent resistance to Golgi mannosidase I of the alpha 1,2-linked mannose of the middle branch. The results of our study suggest that the Golgi endomannosidase takes part in a processing route for N-linked oligosaccharides which have retained glucose beyond the rough endoplasmic reticulum; the distinctive nature of this pathway may influence the ultimate structure of the resulting carbohydrate units.  相似文献   

5.
The maturation of N-glycans to complex type structures on cellular and secreted proteins is essential for the roles that these structures play in cell adhesion and recognition events in metazoan organisms. Critical steps in the biosynthetic pathway leading from high mannose to complex structures include the trimming of mannose residues by processing mannosidases in the endoplasmic reticulum (ER) and Golgi complex. These exo-mannosidases comprise two separate families of enzymes that are distinguished by enzymatic characteristics and sequence similarity. Members of the Class 2 mannosidase family (glycosylhydrolase family 38) include enzymes involved in trimming reactions in N-glycan maturation in the Golgi complex (Golgi mannosidase II) as well as catabolic enzymes in lysosomes and cytosol. Studies on the biological roles of complex type N-glycans have employed a variety of strategies including the treatment of cells with glycosidase inhibitors, characterization of human patients with enzymatic defects in processing enzymes, and generation of mouse models for the enzyme deficiency by selective gene disruption approaches. Corresponding studies on Golgi mannosidase II have employed swainsonine, an alkaloid natural plant product that causes "locoism", a phenocopy of the lysosomal storage disease, alpha-mannosidosis, as a result of the additional targeting of the broad-specificity lysosomal mannosidase by this compound. The human deficiency in Golgi mannosidase II is characterized by congenital dyserythropoietic anemia with splenomegaly and various additional abnormalities and complications. Mouse models for Golgi mannosidase II deficiency recapitulate many of the pathological features of the human disease and confirm that the unexpectedly mild effects of the enzyme deficiency result from a tissue-specific and glycoprotein substrate-specific alternate pathway for synthesis of complex N-glycans. In addition, the mutant mice develop symptoms of a systemic autoimmune disorder as a consequence of the altered glycosylation. This review will discuss the biochemical features of Golgi mannosidase II and the consequences of its deficiency in mammalian systems as a model for the effects of alterations in vertebrate N-glycan maturation during development.  相似文献   

6.
The intracellular site of sphingomyelin (SM) synthesis was examined in subcellular fractions from rat liver using a radioactive ceramide analog N-([1-14C]hexanoyl)-D-erythro-sphingosine. This lipid readily transferred from a complex with bovine serum albumin to liver fractions without disrupting the membranes, and was metabolized to radioactive SM. To prevent degradation of the newly synthesized SM to ceramide, all experiments were performed in the presence of EDTA to minimize neutral sphingomyelinase activity and at neutral pH to minimize acid sphingomyelinase activity. An intact Golgi apparatus fraction gave an 85-98-fold enrichment of SM synthesis and a 58-83-fold enrichment of galactosyltransferase activity. Controlled trypsin digestion demonstrated that SM synthesis was localized to the lumen of intact Golgi apparatus vesicles. Although small amounts of SM synthesis were detected in plasma membrane and rough microsome fractions, after accounting for contamination by Golgi apparatus membranes, their combined activity contributed less than 13% of the total SM synthesis in rat liver. Subfractions of the Golgi apparatus were obtained and characterized by immunoblotting and biochemical assays using cis/medial (mannosidase II) and trans (sialyltransferase and galactosyltransferase) Golgi apparatus markers. The specific activity of SM synthesis was highest in enriched cis and medial fractions but far lower in a trans fraction. We conclude that SM synthesis in rat liver occurs predominantly in the cis and medial cisternae of the Golgi apparatus and not at the plasma membrane or endoplasmic reticulum as has been previously suggested.  相似文献   

7.
The distribution of activities for synthesis of phosphatidylinositol among cell fractions from rat liver was determined. Activity was concentrated in endoplasmic reticulum; rough and smooth fractions were nearly equal. Golgi apparatus exhibited a biosynthetic rate 44% that of endoplasmic reticulum. Plasma membranes and mitochondrial fractions were only 6% as active as endoplasmic reticulum. Thus, endoplasmic reticulum and Golgi apparatus fractions from rat liver catalyze the net synthesis of phosphatidylinositol in vitro, whereas plasma membrane and mitochondrial fractions do not.  相似文献   

8.
An enzyme has been found in Triton-treated rat liver Golgi membranes which trims Glc1Man9GlcNAc to Man8GlcNAc with the release of Glc alpha 1-3Man. By removing a glucosylmannose disaccharide and yielding only one Man8GlcNAc isomer, this endo-alpha-D-mannosidase provides a processing route alternative to the sequential actions of alpha-glucosidase II and alpha-mannosidase I. The endomannosidase was fully active in the presence of 1-deoxynojirimycin and EDTA which inhibited exoglycosidase release of glucose and mannose, respectively, and these agents were, therefore, included in the standard assay. The specific activity of the endomannosidase was found to be 69-fold greater in Golgi than in rough endoplasmic reticulum (RER) membranes, and Golgi-RER mixing experiments excluded the possibility that the low activity in the RER was the result of some inhibitor present in this fraction. The neutral pH optimum (approximately 7.0) of the enzyme was consistent with a role in N-linked oligosaccharide processing. The existence of an endo-alpha-D-mannosidase pathway for glucose removal could provide an explanation for the incomplete block in oligosaccharide processing which is observed in cells with inhibited or deficient alpha-glucosidase.  相似文献   

9.
We examined the intracellular localization of sugar residues of the rat gastric surface mucous cells in relation to the functional polarity of the cell organellae using preembedding method with several lectins. In the surface mucous cells, the nuclear envelope and rough endoplasmic reticulum (rER) and cis cisternae of the Golgi stacks were intensely stained with Maclura pomifera (MPA), which is specific to alpha-Gal and GalNAc residues. In the Golgi apparatus, one or two cis side cisternae were stained with MPA and Dolichos biflorus (DBA) which is specific to terminal alpha-N-acetylgalactosamine residues, while the intermediate lamellae were intensely labeled with Arachis hypogaea (PNA) which is specific to Gal beta 1,3 GalNAc. Cisternae of the trans Golgi region were also stained with MPA, Ricinus communis I (RCA I) which is specific to beta-Gal and Limax flavus (LFA) which is specific to alpha-NeuAc. Immature mucous granules which are contiguous with the trans Golgi lamellae were weakly stained with RCA I, while LFA stained both immature and mature granules. The differences between each lectin's reactivity in the rough endoplasmic reticulum, in each compartment of the Golgi lamellae and in the secretory granules suggest that there are compositional and structural differences between the glycoconjugates in the respective cell organellae, reflecting the various processes of glycosylation in the gastric surface mucous cells.  相似文献   

10.
Golgi apparatus isolated from both rat liver and rat kidney have been characterized with respect to their neutral and phospholipid content and their phosphopipid composition and compared with mitochondria, rough endoplasmic reticulum and plasma membranes. In addition, the distribution of sulfatide in the subcellular fractions of rat kidney was determinich are rich in cholesterol esters and ubiquinone. Removal of about 75% of the cisternal contents of rat liver Golgi reduced its content of cholesterol esters but not of ubiquinone. The Golgi complex of liver most closely resembles endoplasmic reticulum in its phospholipid composition except for a higher content of sphingomyelin. Removal of most of the contents of the Golgi cisternae did not appreciably alter the phospholipid composition of the Golgi apparatus of liver. Goligi apparatus from kidney has a phospholipid composition which resembles liver Golgi much more closely than it does any other cell fraction from kidney. The sulfatide content of kidney Golgi, the cell fraction richest in this glycolipid, is about 14% of the total lipid present in this fraction. Sulfatide was present in plasma membranes, mitochondria and rough microsomes, but at about one-third the level found in Golgi. Sulfatide is the main glycosphingolipid present in all the cell fractions from kidney which were studied.  相似文献   

11.
The Golgi apparatus is enriched in specific enzymes involved in the maturation of carbohydrates of glycoproteins. Among them, alpha-mannosidases IA, IB and II are type II transmembrane Golgi-resident enzymes that remove mannose residues at different stages of N-glycan maturation. alpha-Mannosidases IA and IB trim Man9GlcNAc2 to Man5GlcNAc2, while alpha-mannosidase II acts after GlcNAc transferase I to remove two mannose residues from GlcNAcMan5GlcNAc2 to form GlcNAcMan3GlcNAc2 prior to extension into complex N-glycans by Golgi glycosyltransferases. The objective of this study is to examine the expression as well as the subcellular localization of these Golgi enzymes in the various cells of the male rat reproductive system. Our results show distinct cell-and region-specific expression of the three mannosidases examined. In the testis, only alpha-mannosidase IA and II were detectable in the Golgi apparatus of Sertoli and Leydig cells, and while alpha-mannosidase IB was present in the Golgi apparatus of all germ cells, only the Golgi apparatus of steps 1-7 spermatids was reactive for alpha-mannosidase IA. In the epididymis, principal cells were unreactive for alpha-mannosidase II, but they expressed alpha-mannosidase IB in the initial segment and caput regions, and alpha-mannosidase IA in the corpus and cauda regions. Clear cells expressed alpha-mannosidase II in all epididymal regions, and alpha-mannosidase IB only in the caput and corpus regions. Ultrastructurally, alpha-mannosidase IB was localized mainly over cis saccules, alpha-mannosidase IA was distributed mainly over trans saccules, and alpha-mannosidase II was localized mainly over medial saccules of the Golgi stack. Thus, the cell-specific expression and distinct Golgi subcompartmental localization suggest that these three alpha-mannosidases play different roles during N-glycan maturation.  相似文献   

12.
The maturation of N-glycans to complex type structures on cellular and secreted proteins is essential for the roles that these structures play in cell adhesion and recognition events in metazoan organisms. Critical steps in the biosynthetic pathway leading from high mannose to complex structures include the trimming of mannose residues by processing mannosidases in the endoplasmic reticulum (ER) and Golgi complex. These exo-mannosidases comprise two separate families of enzymes that are distinguished by enzymatic characteristics and sequence similarity. Members of the Class 2 mannosidase family (glycosylhydrolase family 38) include enzymes involved in trimming reactions in N-glycan maturation in the Golgi complex (Golgi mannosidase II) as well as catabolic enzymes in lysosomes and cytosol. Studies on the biological roles of complex type N-glycans have employed a variety of strategies including the treatment of cells with glycosidase inhibitors, characterization of human patients with enzymatic defects in processing enzymes, and generation of mouse models for the enzyme deficiency by selective gene disruption approaches. Corresponding studies on Golgi mannosidase II have employed swainsonine, an alkaloid natural plant product that causes “locoism”, a phenocopy of the lysosomal storage disease, α-mannosidosis, as a result of the additional targeting of the broad-specificity lysosomal mannosidase by this compound. The human deficiency in Golgi mannosidase II is characterized by congenital dyserythropoietic anemia with splenomegaly and various additional abnormalities and complications. Mouse models for Golgi mannosidase II deficiency recapitulate many of the pathological features of the human disease and confirm that the unexpectedly mild effects of the enzyme deficiency result from a tissue-specific and glycoprotein substrate-specific alternate pathway for synthesis of complex N-glycans. In addition, the mutant mice develop symptoms of a systemic autoimmune disorder as a consequence of the altered glycosylation. This review will discuss the biochemical features of Golgi mannosidase II and the consequences of its deficiency in mammalian systems as a model for the effects of alterations in vertebrate N-glycan maturation during development.  相似文献   

13.
Golgi Microtubule-Associated Protein (GMAP)-210 is a peripheral coiled-coil protein associated with the cis -Golgi network that interacts with microtubule minus ends. GMAP-210 overexpression has previously been shown to perturb the microtubule network and to induce a dramatic enlargement and fragmentation of the Golgi apparatus (Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM. J Cell Biol 1999; 145: 83–98). We now report that overexpressing GMAP-210 blocks the anterograde transport of both a soluble form of alkaline phosphatase and the hemagglutinin protein of influenza virus, an integral membrane protein, between the endoplasmic reticulum and the cis /medial (mannosidase II-positive) Golgi compartment. Retrograde transport of the Shiga toxin B-subunit is also blocked between the Golgi apparatus and the endoplasmic reticulum. As a consequence, the B-subunit accumulates in compartments positive for GMAP-210. Ultrastructural analysis revealed that, under these conditions, the Golgi complex is totally disassembled and Golgi proteins as well as proteins of the intermediate compartment are found in vesicle clusters distributed throughout the cell. The role of GMAP-210 on membrane processes at the interface between the endoplasmic reticulum and the Golgi apparatus is discussed in the light of the property of this protein to bind CGN membranes and microtubules.  相似文献   

14.
The thiamine pyrophosphatase (the enzyme [s] catalyzing the release of inorganic phosphate with thiamine pyrophosphate as the substrate) activities of Golgi apparatus-, plasma membrane-, endoplasmic reticulum-, and mitochondria-rich fractions from rat liver were compared at pH 8. Activity was concentrated in the Golgi apparatus fractions, which, on a protein basis, had a specific activity six to eight times that of the total homogenates or purified endoplasmic reticulum fractions. However, only 1–3% of the total activity was recovered in the Golgi apparatus fractions under conditions where 30–50% of the UDPgalactose:N-acetylglucosamine-galactosyl transferase activity was recovered. Considering both recovery of galactosyl transferase and fraction purity, we estimate that approximately 10% of the total thiamine pyrophosphatase activity of the liver was localized within the Golgi apparatus, with a specific activity of about ten times that of the total homogenate. Cytochemically, reaction product was found in the cisternae of the endoplasmic reticulum as well as in the Golgi apparatus. This is in contrast to results obtained in most other tissues, where reaction product was restricted to the Golgi apparatus. Thus, enzymes of rat liver catalyzing the hydrolysis of thiamine pyrophosphate, although concentrated in the Golgi apparatus, are widely distributed among other cell components in this tissue.  相似文献   

15.
The yeast SNARE Ykt6p has been implicated in several trafficking steps, including vesicular transport from the endoplasmic reticulum (ER) to the Golgi, intra-Golgi transport, and homotypic vacuole fusion. The functional role of its mammalian homologue (Ykt6) has not been established. Using antibodies specific for mammalian Ykt6, it is revealed that it is found mainly in Golgi-enriched membranes. Three SNAREs, syntaxin 5, GS28, and Bet1, are specifically associated with Ykt6 as revealed by co-immunoprecipitation, suggesting that these four SNAREs form a SNARE complex. Double labeling of Ykt6 and the Golgi marker mannosidase II or the ER-Golgi recycling marker KDEL receptor suggests that Ykt6 is primarily associated with the Golgi apparatus. Unlike the KDEL receptor, Ykt6 does not cycle back to the peripheral ER exit sites. Antibodies against Ykt6 inhibit in vitro ER-Golgi transport of vesicular stomatitis virus envelope glycoprotein (VSVG) only when they are added before the EGTA-sensitive stage. ER-Golgi transport of VSVG in vitro is also inhibited by recombinant Ykt6. In the presence of antibodies against Ykt6, VSVG accumulates in peri-Golgi vesicular structures and is prevented from entering the mannosidase II compartment, suggesting that Ykt6 functions at a late stage in ER-Golgi transport. Golgi apparatus marked by mannosidase II is fragmented into vesicular structures in cells microinjected with Ykt6 antibodies. It is concluded that Ykt6 functions in a late step of ER-Golgi transport, and this role may be important for the integrity of the Golgi complex.  相似文献   

16.
Yeast Bet1p participates in vesicular transport from the endoplasmic reticulum to the Golgi apparatus and functions as a soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) associated with ER-derived vesicles. A mammalian protein (rbet1) homologous to Bet1p was recently identified, and it was concluded that rbet1 is associated with the Golgi apparatus based on the subcellular localization of transiently expressed epitope-tagged rbet1. In the present study using rabbit antibodies raised against the cytoplasmic domain of rbet1, we found that the majority of rbet1 is not associated with the Golgi apparatus as marked by the Golgi mannosidase II in normal rat kidney cells. Rather, rbet1 is predominantly associated with vesicular spotty structures that concentrate in the peri-Golgi region but are also present throughout the cytoplasm. These structures colocalize with the KDEL receptor and ERGIC-53, which are known to be enriched in the intermediate compartment. When the Golgi apparatus is fragmented by nocodazole treatment, a significant portion of rbet1 is not colocalized with structures marked by Golgi mannosidase II or the KDEL receptor. Association of rbet1 in cytoplasmic spotty structures is apparently not altered by preincubation of cells at 15°C. However, upon warming up from 15 to 37°C, rbet1 concentrates into the peri-Golgi region. Furthermore, rbet1 colocalizes with vesicular stomatitis virus G-protein en route from the ER to the Golgi. Antibodies against rbet1 inhibit in vitro transport of G-protein from the ER to the Golgi apparatus in a dose-dependent manner. This inhibition can be neutralized by preincubation of antibodies with recombinant rbet1. EGTA is known to inhibit ER-Golgi transport at a stage after vesicle docking but before the actual fusion event. Antibodies against rbet1 inhibit ER-Golgi transport only when they are added before the EGTA-sensitive stage. These results suggest that rbet1 may be involved in the docking process of ER- derived vesicles with the cis-Golgi membrane.  相似文献   

17.
《Gene》1996,169(2):293-294
We characterized rat cDNAs that predict a protein, r-Slyl, which is similar to SLY1, a yeast protein that plays a critical role in endoplasmic reticulum to Golgi apparatus vesicle trafficking. The r-Slyl gene is expressed in all tissues examined  相似文献   

18.
Yeast and mammalian cells use a variety of different mechanisms to ensure that the endoplasmic reticulum and Golgi apparatus are inherited by both daughter cells on cell division. In yeast, endoplasmic reticulum inheritance involves both active microtubule and passive actin-based mechanisms, while the Golgi is transported into the forming daughter cell by an active actin-based mechanism. Animal cells actively partition the endoplasmic reticulum and Golgi apparatus, but association with the mitotic spindle-rather than the actin cytoskeleton-appears to be the mechanism  相似文献   

19.
The subcellular localization of the post-translational processing steps which occur in the conversion of pro-adrenocorticotropic hormone (ACTH)/endorphin into beta-endorphin-sized molecules in rat intermediate pituitary has been studied. Primary cell cultures were incubated in radioactively labeled amino acids, and a subcellular fraction containing secretory granules was separated from a subcellular fraction containing rough endoplasmic reticulum and Golgi apparatus by centrifugation of homogenates on gradients on Percoll (Pharmacia Fine Chemicals). The radiolabeled beta-endorphin-related material in the granule and rough endoplasmic reticulum/Golgi apparatus fractions was quantitated by immunoprecipitation and sodium dodecyl sulfate polyacrylamide gel electrophoresis. A pulse-chase labeling experiment demonstrated that newly synthesized beta-endorphin-related material first appeared in the rough endoplasmic reticulum/Golgi apparatus fraction and after longer incubations (chase) appeared in the secretory granule fraction. After 2 h of chase incubation, about 85% of the beta-endorphin-related material synthesized during the 30-min pulse incubation had been transferred from the rough endoplasmic reticulum/Golgi apparatus to the secretory granule fraction. The conversion of most of the newly synthesized pro-ACTH/endorphin into beta-lipotropin occurred in the rough endoplasmic reticulum/Golgi apparatus fraction, whereas the conversion of most of the beta-lipotropin into beta-endorphin-sized molecules occurred in the secretory granule fraction.  相似文献   

20.
Evidence for an alpha-mannosidase in endoplasmic reticulum of rat liver   总被引:24,自引:0,他引:24  
An alpha-mannosidase activity has been identified in a preparation of rat liver endoplasmic reticulum and shown to be distinct from the previously described Golgi alpha-mannosidases I and II and the lysosomal alpha-mannosidase. The enzyme was solubilized with deoxycholate and separated from other alpha-mannosidases by passage over concanavalin A-Sepharose to which it does not bind. The endoplasmic reticulum alpha-mannosidase cleaves alpha-1,2-linked mannoses from high mannose oligosaccharides and, unlike Golgi alpha-mannosidase I, is active against p-nitrophenyl-alpha-D-mannoside (Km = 0.17 mM). It has no activity toward GlcNAc-Man5GlcNAc2 peptide, the specific substrate of the Golgi alpha-mannosidase II. The endoplasmic reticulum alpha-mannosidase activity toward p-nitrophenyl-alpha-D-mannoside is relatively insensitive to swainsonine, an inhibitor of both the lysosomal alpha-mannosidase and Golgi alpha-mannosidase II. We propose that the endoplasmic reticulum alpha-mannosidase is responsible for the removal of mannose residues from asparagine-linked high mannose type oligosaccharides prior to their entry into the Golgi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号