首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the presence of tetramethylammonium chloride, potassium permanganate specifically modifies mismatched thymines. Similarly, the modification of mismatched cytosines by hydroxylamine was enhanced by tetraethylammonium chloride. Modification followed by piperidine cleavage permits specific identification of the T and C mismatches and by extension, when the opposite DNA strand is analyzed, of A and G mismatches as well. These reactions can be performed conveniently with DNA immobilized on Hybond M-G paper. We describe conditions that exploit these reactions to detect mismatches, e.g. point mutations or genetic polymorphisms, using either synthetic oligonucleotide probes or PCR amplification of specific genomic DNA sequences.  相似文献   

2.
J C Delaney  J M Essigmann 《Biochemistry》2001,40(49):14968-14975
Understanding the origins of mutational hotspots is complicated by the intertwining of several variables. The selective formation, repair, and replication of a DNA lesion, such as O(6)-methylguanine (m(6)G), can, in principle, be influenced by the surrounding nucleotide environment. A nearest-neighbor analysis was used to address the contribution of sequence context on m(6)G repair by the Escherichia coli methyltransferases Ada or Ogt, and on DNA polymerase infidelity in vivo. Sixteen M13 viral genomes with m(6)G flanked by all permutations of G, A, T, and C were constructed and individually transformed into repair-deficient and repair-proficient isogenic cell strains. The 16 genomes were introduced in duplicate into 5 different cellular backgrounds for a total of 160 independent experiments, for which mutations were scored using a recently developed assay. The Ada methyltransferase demonstrated strong 5' and 3' sequence-specific repair of m(6)G in vivo. The Ada 5' preference decreased in the general order: GXN > CXN > TXN > AXN (X = m(6)G, N = any base), while the Ada 3' preference decreased in the order: NX(T/C) > NX(G/A), with mutation frequencies (MFs) ranging from 35% to 90%. The Ogt methyltransferase provided MFs ranging from 10% to 25%. As was demonstrated by Ada, the Ogt methyltransferase repaired m(6)G poorly in an AXN context. When both methyltransferases were removed, the MF was nearly 100% for all sequence contexts, consistent with the view that the replicative DNA polymerase places T opposite m(6)G during replication irrespective of the local sequence environment.  相似文献   

3.
A total of 318 forward mutations induced by ethylmethanesulphonate (EMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in the SUP4-o gene of the yeast Saccharomyces cerevisiae was characterized by DNA sequence analysis. Only base-pair substitutions were detected among the mutations examined and, for both agents, the majority (greater than 96%) were G.C to A.T. transitions. The remaining changes included A.T to G.C transitions and transversions at G.C sites. For EMS, two of the transversions were accompanied by nearby G.C to A.T transitions. There was considerable overlap of the sites within the SUP4-o gene that were mutated by EMS and MNNG and of the sites that each agent failed to mutate. However, EMS and MNNG mutagenesis differed with respect to the frequencies at which mutations were recovered at G.C pairs where the guanine is flanked (5') by a purine or pyrimidine. EMS exhibited no preference for either type of site, whereas a G.C site was 12-fold or fivefold more likely to be mutated by MNNG if preceded by a 5' adenine or guanine, respectively, than if flanked by a 5' pyrimidine. Finally, neither EMS nor MNNG mutagenesis showed a preference for G.C sites having the guanine on the non-transcribed strand.  相似文献   

4.
The distributions of the junction sequences of homooligomer tracts of various lengths have been examined in prokaryotic DNA sequences and compared with those of eukaryotes. The general trends in the nearest and next to nearest neighbors to the tracts are similar for both groups. In both prokaryotes and eukaryotes A/T runs are preferentially flanked on either the 5' or the 3' ends by A and/or T. G/C runs are preferentially flanked by G and/or C. There is discrimination against A/T runs flanked by G or C and G/C runs flanked by A or T. However, whereas the distribution of prokaryotic homooligomer tract junction sequences was quite homogeneous, large variations were observed in the 5-fold larger eukaryotic database, increasing in magnitude from tracts of length 2 to 3 to 4 base pairs long. Possible DNA conformational implications and in particular DNA curvature and packaging aspects of prokaryotes and eukaryotes are discussed.  相似文献   

5.
Nearest neighbor interactions affect the stabilities of triple-helical complexes. Within a pyrimidine triple-helical motif, the relative stabilities of natural base triplets T.AT, C + GC, and G.TA, as well as triplets, D3.TA and D3.CG, containing the nonnatural deoxyribonucleoside 1-(2-deoxy-beta-D-ribofuranosyl)-4-(3-benzamido)phenylimidazole (D3) were characterized by the affinity cleaving method in the context of different flanking triplets (T.AT, T.AT: T.AT, C + GC: C + GC, T.AT: G + GC, C + GC). The to be insensitive to substitutions in either the 3' or 5' directions, while the relative stabilities of triple helices containing C + GC triplets decreased as the number of adjacent C + GC triplets increased. Triple helices incorporating a G.TA interaction were most stable when this triplet was flanked by two T.AT triplets and were adversely affected when a C + GC triplet was placed in the adjacent 5' direction. Similarly, complexes containing D3.TA or D3.CG triplets were most stable when the triplet was flanked by two T.AT triplets but were destabilized when the adjacent 3' neighbor position was occupied with a C + GC triplet. This information regarding sequence composition effects in triple-helix formation establishes a set of guidelines for targeting sequences of double-helical DNA by the pyrimidine triple-helix motif.  相似文献   

6.
7.
We have studied the sequence dependent binding of 2-amino-1,8-naphthyridine derivative 1 to a single guanine bulge. The free energy changes for the binding to a guanine bulge with different sequence contexts (5'X_Y3'/3'X'GY'5') were determined by a curve fitting of the thermal denaturation profile of DNA in the presence and absence of 1. The data showed that (i) the binding of 1 to a guanine bulge is stronger for those flanking the G-C base pair than A-T base pair, (ii) the guanine 3' side to 1 in the complex is especially effective for the complex stabilization, and (iii) the increase of T(m) in the presence of 1 is not a good estimate for the sequence dependent binding. The most efficient 1-binding was observed for the sequence of G_G/CGC. Molecular modeling simulations suggested that stacking interaction between the 3' side guanine and 1 is the molecular basis for the strong binding to G_G/CGC.  相似文献   

8.
Studies of sequence context preferences of oligonucleotides composed of (G/C)n and (A/T)m blocks (n + m = 3,4,5) unravel strong patterns. Comparisons of the 5' and 3' nearest neighbor doublets flanking these oligomers reveal the preference of (G/C)2 to be positioned immediately next to the (A/T)m block, enclosing it by (G/C) nucleotides rather than extending the (G/C)n block. That is, for a (G/C)n(A/T)m oligomer and a (G/C)2 doublet, (G/C)n(A/T)m(G/C)2 greater than (G/C)n + 2 (A/T)m. Similarly for an (A/T)m(G/C)n oligomer, (G/C)2(A/T)m(G/C)n greater than (A/T)m(G/C)n + 2. In an analogous manner, (A/T)2 flanking doublets prefer enclosing the (G/C)n blocks, although these patterns are weaker. Here we show a strong, direct relationship between the magnitude of the trends and the presence of Cs in the (G/C)n block in the (G/C)n(A/T)m oligomer, and the presence of Gs in the complementary (A/T)m(G/C)n oligomers. The trends are stronger in eukaryotic than in prokaryotic sequences. They are stronger for longer (G/C)n and shorter (A/T)m blocks. We suggest that the preference for (A/T)m to be enclosed by (G/C) rather than be flanked by them on only one side is related to DNA structure and DNA-protein interaction. Sequences of the (G/C)(A/T)(G/C) type may have more homogeneous minor groove geometry. In particular, the strong G vs. C asymmetry in the trends may be related to pyrimidine-purine junctions, possibly to CG sequences.  相似文献   

9.
Two dipeptides, each containing a lysyl residue, were disubstituted with chlorambucil (CLB) and 2,6-dimethoxyhydroquinone-3-mercaptoacetic acid (DMQ-MA): DMQ-MA-Lys(CLB)-Gly-NH2 (DM-KCG) and DMQ-MA-beta-Ala-Lys(CLB)-NH2 (DM-BKC). These peptide-drug conjugates were designed to investigate sequence-specificity of DNA cleavage directed by the proximity effect of the DNA cleavage chromophore (DMQ-MA) situated close to the alkylating agent (CLB) inside a dipeptide moiety. Agarose electrophoresis studies showed that DM-KCG and DM-BKC possess significant DNA nicking activity toward supercoiled DNA whereas CLB and its dipeptide conjugate Boc-Lys(CLB)-Gly-NH2 display little DNA nicking activity. ESR studies of DMQ-MA and DM-KCG both showed five hyperfine signals centered at g = 2.0052 and are assigned to four radical forms at equilibrium, which may give rise to a semiquinone radical responsible for DNA cleavage. Thermal cleavage studies at 90 degrees C on a 265-mer test DNA fragment showed that besides alkylation and cleavage at G residues, reactions with DM-KCG and DM-BKC show a preference for A residues with the sequence pattern: 5'-G-(A)n-Pur-3' > 5'-Pyr-(A)n-Pyr-3' (where n = 2-4). By contrast, DNA alkylation and cleavage by CLB occurs at most G and A residues with less sequence selectivity than seen with DM-KCG and DM-BKC. Thermal cleavage studies using N7-deazaG and N7-deazaA-substituted DNA showed that strong alkylation and cleavage at A residues by DM-KCG and DM-BKC is usually flanked on the 3' side by a G residue whereas strong cleavage at G residues is flanked by at least one purine residue on either the 5' or 3' side. At 65 degrees C, it is notable that the preferred DNA cleavage by DM-KCG and DM-BKC at A residues is significantly more marked than for G residues in the 265-mer DNA; the strongest sites of A-specific reaction occur within the sequences 5'-Pyr-(A)n-Pyr-3'; 5'-Pur-(A)n-G-3' and 5'-Pyr-(A)n-G-3'. In pG4 DNA, cleavage by DM-KCG and DM-BKC is much greater than that by CLB at room temperature and at 65 degrees C. It was also observed that DM-KCG and DM-BKC cleaved at certain pyrimidine residues: C40, T66, C32, T34, and C36. These cleavages were also sequence selective since the susceptible pyrimidine residues were flanked by two purine residues on both the 5' and 3' sides or by a guanine residue on the 5' side. These findings strongly support the proposal that once the drug molecule is positioned so as to permit alkylation by the CLB moiety, the DMQ-MA moiety is held close to the alkylation site, resulting in markedly enhanced sequence-specific cleavage.  相似文献   

10.
G.U pairs occur frequently and have many important biological functions. The stability of symmetric tandem G.U motifs depends both on the adjacent Watson-Crick base pairs, e.g., 5'G > 5'C, and the sequence of the G.U pairs, i.e., 5'-UG-3' > 5'-GU-3', where an underline represents a nucleotide in a G.U pair [Wu, M., McDowell, J. A., and Turner, D. H. (1995) Biochemistry 34, 3204-3211]. In particular, at 37 degrees C, the motif 5'-CGUG-3' is less stable by approximately 3 kcal/mol compared with other symmetric tandem G.U motifs with G-C as adjacent pairs: 5'-GGUC-3', 5'-GUGC-3', and 5'-CUGG-3'. The solution structures of r(GAGUGCUC)(2) and r(GGCGUGCC)(2) duplexes have been determined by NMR and restrained simulated annealing. The global geometry of both duplexes is close to A-form, with some distortions localized in the tandem G.U pair region. The striking discovery is that in r(GGCGUGCC)(2) each G.U pair apparently has only one hydrogen bond instead of the two expected for a canonical wobble pair. In the one-hydrogen-bond model, the distance between GO6 and UH3 is too far to form a hydrogen bond. In addition, the temperature dependence of the imino proton resonances is also consistent with the different number of hydrogen bonds in the G.U pair. To test the NMR models, U or G in various G.U pairs were individually replaced by N3-methyluridine or isoguanosine, respectively, thus eliminating the possibility of hydrogen bonding between GO6 and UH3. The results of thermal melting studies on duplexes with these substitutions support the NMR models.  相似文献   

11.
DNA fragments of defined sequence have been used to determine the sites of cleavage by gamma-endonuclease activity in extracts prepared from Micrococcus luteus. End-labeled DNA restriction fragments of pBR322 DNA that had been irradiated under nitrogen in the presence of potassium iodide or t-butanol were treated with M. luteus gamma endonuclease and analyzed on high resolution, denaturing, polyacrylamide gels. Gamma endonuclease was found to cleave irradiated DNA preferentially at the positions of cytosines and thymines. DNA cleavage occurred immediately to the 3' side of pyrimidines in irradiated DNA and resulted in fragments that terminate in a 5'-phosphoryl group. These studies indicate that both altered cytosines and thymines may be important DNA lesions requiring repair after exposure to gamma radiation.  相似文献   

12.
13.
D Alkema  P A Hader  R A Bell  T Neilson 《Biochemistry》1982,21(9):2109-2117
A series of pentaribonucleotides, ApGpXpGpU (where X identical to A, G, C, or U), was synthesized to investigate the effects of flanking G . C pairs on internal Watson-Crick, G . U, and nonbonded base pairs. Sequences ApGpApCpU (Tm = 26 degrees C) and ApGpCpCpU (Tm = 25 degrees C) were each found to form a duplex with non-base-paired internal residues that stacked with the rest of the sequence but were not looped out. ApGpGpCpU also forms a duplex (Tm = 30 degrees C) but with dangling terminal nonbonded adenosines rather than internal nonbonded guanosines. ApGpUpCpU prefers a stacked single-strand conformation. In addition, contribution to duplex stability from an internal A . U or G . C base pair is enhanced by 6 degrees C when flanked by G . C base pairs as compared to A . U base pairs. G . C base pairs flanking an internal G . U base pair were found to be more tolerant to the altered conformation of a G . U pair and result in an increase to stability comparable with that found for an internal A . U base pair.  相似文献   

14.
A peptide nucleic acid (PNA) monomer containing the universal base 3-nitropyrrole was synthesized by coupling 1-carboxymethyl-3-nitropyrrole to ethyl N-[2-(tert-butoxycarbonylamino)ethyl]glycinate. The PNA sequence H-TGTACGTXACAACTA-NH2 (X = 3-nitropyrrole and C) and DNA sequence 5'-TGTACGTXACAACTA-3' were synthesized and thermal melting studies with the complementary DNA sequence 5'-TAGTTGTYACGTACA-3' (Y = A,C, G, T) compared. The T(m) data show that 3-nitropyrrole pairs indiscriminately with all four natural nucleobases as a constituent of either DNA or PNA. However, 3-nitropyrrole-containing PNA-DNA (average T(m) value = 51.1 degrees C) is significantly more thermally stable than 3-nitropyrrole-containing DNA-DNA (average T(m) value = 39.6 degrees C). From circular dichroism measurements, it is apparent that 3-nitropyrrole in the PNA strand causes a significant change in duplex structure.  相似文献   

15.
Expansion of the triplet repeat DNA sequence d[CGG]n.d[CCG]n is a characteristic of Fragile X syndrome, a human neurodegenerative disease. Stable intrastrand conformations formed by both d[CGG]n and d[CCG]n, and involving G-G and C-C mismatch pairs, respectively, are believed to be of importance in the development of the disease. We have shown previously that C-C mismatch pairs can be crosslinked covalently by mechlorethamine, a nitrogen mustard alkylating agent, and hence this reaction may be of value as a probe for conformers of d[CCG]n. To characterize the mechlorethamine C-C crosslink reaction further, here we report the kinetics and sequence dependence of formation of the crosslink species, using a series of model duplexes. The rate of reaction depends on the base sequence proximal to the C-C mismatch pair. Hence, in 19mer duplexes containing a central d[M4M3M2M1Cn1n2n3n4].d[N4N3N2N1Cm1m2m3m4] sequence, where M-m and N-n are complementary base pairs, the amount of crosslink increased with increasing G-C content of the eight base pairs neighboring the C-C mismatch and with the proximity of the G-C pairs to the C-C mismatch. Molecular dynamics simulations of the solvated duplexes provided an explanation of these data. Hence, for a C-C pair flanked by G-C base pairs the mismatched cytosine bases remain stacked within the duplex, but for a C-C pair flanked by A-T base pairs, the simulations suggested local opening of the duplex around the C-C pair, making it a less effective target for mechlorethamine.  相似文献   

16.
17.
The frequencies of occurrence of the 5' and 3' nearest neighbor doublets of oligonucleotides containing (G/C) and (A/T) blocks show strong trends. Specifically, the following trends are observed. Given a (G/C)n (A/T)m oligomer (where G/C)n indicates a sequence of length n composed solely of Gs and/or Cs and (A/T)m is a sequence of length m composed solely of As and/or Ts, and n = 3,2,1; m = 1,2,3) and a (G/mC)2 doublet, (G/C)n (A/T)m (G/C)2 greater than (G/C)n + 2 (A/T)m. That is the (G/C)2 doublet is preferentially located 3' of the oligomer, enclosing the (A/T)m stretch. The trends are strongest for n = 3, m = 1 and gradually weaken as the size of the (mG/C)n block decreases (with a concomitant increase of (A/T)m). (A/T)2 nearest neighbor flank preferentially encloses the (G/C)n block (to produce (A/T)2 (G/C)n (A/T)m). The (A/T)2 flank trends are weaker than the (G/C)2 flank ones. The (A/T)2 flank trends also decrease in strength as the size of the (G/C)n block decreases. The statistical significance of these trends in eukaryotes is very high. A possible correlation with DNA structural parameters, in particular groove geometry, is discussed.  相似文献   

18.
Site-specifically modified oligodeoxynucleotides were used to investigate the mutagenic properties of a major cooked food mutagen-derived DNA adduct, N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (dG-C8-PhIP). dG-C8-PhIP-modified oligodeoxynucleotides were prepared by reacting an oligodeoxynucleotide containing a single dG (5'-TCCTCCTXGCCTCTC, where X = C, A, G, or T) with N-acetoxy-PhIP. The unmodified and dG-C8-PhIP-modified oligomers were inserted into single-stranded phagemid vectors. These single-stranded vectors were transfected into simian kidney (COS-7) cells. The progeny plasmid obtained was used to transform Escherichia coli DH10B. When dC was at the 5'-flanking position to dG-C8-PhIP, preferential incorporation of dCMP, the correct base, was observed opposite the dG-C8-PhIP. Targeted G --> T transversions were detected, along with lesser amounts of G --> A transitions and G --> C transversions. No mutations were detected for the unmodified vector. The influence of sequence context on the dG-C8-PhIP mutation frequency and spectrum was also explored. When the dC 5'-flanking base was replaced by dT, dA, or dG, the mutational spectra were similar to that observed with dC-flanking base. Higher mutational frequencies (28-30%) were observed when dC or dG was 5' to dG-C8-PhIP. A lower mutational frequency (13%) was observed when dA was at the 5' to the lesion. Single-base deletions were detected only when dG or dT flanked the adduct. We conclude that dG-C8-PhIP is mutagenic, generating primarily G --> T transversions in mammalian cells. The mutational frequency and specificity of dG-C8-PhIP vary depending on the neighboring sequence context.  相似文献   

19.
Previous studies of the dinucleotides flanking both the 5' and 3' ends of homooligomer tracts have shown that some flanks are consistently preferred over others (1,2). In the first preferred group, the homooligomer tracts are flanked by the same nucleotide and/or the complementary nucleotides, e.g.,ATAn,TTAn,CCGn, where n = 2-5. Runs flanked by nucleotides with which they cannot base pair are distinctly disfavored. (In this group An/Tn are flanked by C and/or G; Gn/Cn are flanked by A/T, e.g.,CGAn,TnGG,GnAT). The frequencies of runs flanked by A or T, and G or C ("mixed"group) are as expected. Here we seek the origin of this effect and its relevance to protein-DNA interactions. Surprisingly, within the first group, runs flanked by their complements with a pyrimidine-purine junction (e.g.,TTAn,CnGG) are greatly preferred. The frequencies of their purine-pyrimidine junction mirror-images is just as expected. This effect, as well as additional ones enumerated below, is seen universally in eukaryotes and in prokaryotes, although it is stronger in the former. Detailed analysis of regulatory regions shows these strong trends, particularly in GC sequences. The potential relationship to DNA conformation and DNA-protein interaction is discussed.  相似文献   

20.
Hannah KC  Gil RR  Armitage BA 《Biochemistry》2005,44(48):15924-15929
A symmetrical cyanine dye was previously shown to bind as a cofacial dimer to alternating A-T sequences of duplex DNA. Indirect evidence suggested that dimerization of the dye occurred in the minor groove. 1H NMR experiments reported here verify this model based on broadening and shifting of signals due to protons on carbon 2 of adenine and imino protons at the central five A-T pairs of the 11 base pair duplex: 5'-GCGTATATGCG-3'/3'-CGCATATACGC-5'. This binding mode is similar to that of distamycin A, even though the dye lacks the hydrogen-bonding groups used by distamycin for sequence-specific recognition. Surprisingly, the third base pair (G-C) was also implicated in the binding site. UV-vis experiments were used to compare the extent of dimerization of the dye for 11 different sequence variants. These experiments verified the importance of a G-C pair at the third position: replacing this pair with A-T suppressed dimerization. These results indicate that the dye binding site spans six base pairs: 5'-GTATAT-3'. The initial G-C pair seems to be important for widening the minor groove rather than for making important contacts with the dye molecules since inverting its orientation to C-G or replacing it with I-C still led to favorable dimerization of the dye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号