首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Membrane recycling in pancreatic acinar cells involves endocytic vesicle formation at the apical cell surface and rapid membrane traffic to the Golgi complex. During this process a small amount of extracellular content is taken up from the acinar lumen. In order to determine whether secretory proteins already released into the pancreatic acinar lumen are reinternalized during membrane retrieval, 3H-labeled amylase or 125I-labeled secretory proteins were reinfused through the pancreatic duct until the lumina were reached. Tissue samples from various time points were prepared for light and electron microscope autoradiography. The observations showed that [3H]amylase and, to a lesser extent, the 125I-labeled secretory proteins were internalized at the apical cell surface and rapidly (within 2-5 min) transferred to the Golgi cisternae and the condensing vacuoles; only a minor proportion of silver grains was observed over lysosomes. In addition, at later time points, mature secretion granules close to the Golgi complex became labeled. The results indicate that exocytosis in the rat exocrine pancreas does not operate at 100% efficiency; part of the exported amylase and part of the total secretion product are reinternalized concomitantly with the endocytic removal of plasma membrane and are copackaged together with newly synthesized secretory proteins.  相似文献   

2.
Atomic force microscopy reveal pit-like structures typically containing three or four, approximately 150 nm in diameter depressions at the apical plasma membrane in live pancreatic acinar cells. Stimulation of secretion causes these depressions to dilate and return to their resting size following completion of the process. Exposure of acinar cells to cytochalasin B results in decreased depression size and a loss in stimulable secretion. It is hypothesized that depressions are the fusion pores, where membrane-bound secretory vesicles dock and fuse to release vesicular contents. Zymogen granules, the membrane-bound secretory vesicles in exocrine pancreas, contain the starch digesting enzyme, amylase. Using amylase-specific immunogold labeling, localization of amylase at depressions following stimulation of secretion is demonstrated. This study confirms depressions to be the fusion pores in pancreatic acinar cells. High-resolution images of the fusion pore in live pancreatic acinar cells reveal the structure in much greater detail than has previously been observed.  相似文献   

3.
Effects of cytochalasin B on pancreatic acinar cell structure and secretion   总被引:4,自引:0,他引:4  
Summary The effects of cytochalasin B (CB) on pancreatic structure and amylase release were studied by use of pancreatic fragments, isolated acini and isolated acinar cells. In pancreatic fragments and isolated acini CB caused the disappearance of microfilaments underlying the apical plasma membrane, loss of apical microvilli and luminal swelling, the last of which was greatly enhanced by addition of protein secretagogues. CB had no effect on basal amylase release but inhibited bethanechol-stimulated amylase in both fragments and acini. Isolated acinar cells, while retaining overall polarity, had lost most of the apical specialization including the microfilament and microvillous complex. Cells were still able to release amylase in response to bethanechol but this release was not affected by CB. The only structural effect of CB on isolated cells was margination of zymogen granules against the plasma membrane. This was, however, not accompanied by increased amylase release. It is concluded that microfilaments are important in maintaining the pancreatic acinar structure. Interference with this structure by CB leads to inhibition of bethanechol-stimulated amylase release. Microfilaments, however, may not play a direct role in secretion.Supported by NIH grant GM-19998 from the United States Public Health Service. — We are indebted to Dr. John Heuser for advice throughout this project and assistance in the preparation of rapidly frozen acini, and to M. Lee for technical assistance  相似文献   

4.
Three toxic polypeptides were purified from the venom of the Brazilian scorpion Tityus serrulatus by means of gel filtration in Sephadex G-50 and ion-exchange chromatography in carboxymethylcellulose. The peptides are basic molecules with molecular weights in the range of 7000 for which the amino acid compositions and sequences were determined. The effect of the purified peptides on pancreatic exocrine secretion in the guinea pig was studied. Biochemical measurements show that the cells are stimulated by these peptides to discharge their zymogen granules. Light and electron microscopic images confirm the biochemical measurements. At the light microscope level, acinar cells show dramatically fewer zymogen granules than in control pancreas with the appearance of large vacuoles and some loss of morphological integrity. Electron micrographs display apical regions devoid of zymogen granules and condensing vacuoles whereas acinar lumina contain crystalline secretory material. The secretory effect observed in vitro is comparable to that of carbamylcholine and that of the peptidergic secretagogue cholecystokinin-pancreozymin.  相似文献   

5.
Monoclonal antibodies (mAb) were generated as probes for the plasma membrane domains of pancreatic acinar cells. Primary monolayer cultures of mouse pancreatic acinar cells, which have an expanded apical surface relative to normal pancreas, were used to immunize rats. With conventional immunization and fusion protocols, 3% of the hybridomas were positive against the acinar lumen by indirect immunofluorescence of mouse pancreas cryosections. Culturing of spleen cells from an immunized rat on the apical surface of acinar cell monolayer cultures before fusion with the myeloma (an in vitro boost) doubled the percentage of hybridomas producing apical membrane-specific mAb. Monoclonal antibodies were characterized by immunofluorescence, ultrastructural immunoperoxidase cytochemistry, immunoprecipitation, and immunoblotting. One antibody, acinar-1 (IgG2a), labeled the apical membranes of pancreatic acinar cells, hepatocytes, salivary and lacrimal gland acinar cells, and the brush border of small intestine enterocytes. This mAb precipitated and blotted a protein of 94 KD. Acinar-2 (IgM) also labeled pancreatic acinar cell apical membranes but did not label other tissues and did not precipitate or blot. Acinar-3 labeled pancreatic acinar cell lateral membranes. Duct-1 (IgM) labeled pancreatic duct apical membrane and ducts in liver and salivary glands but did not precipitate or blot. These domain-specific mAb demonstrate that common antigenic determinants occur in the apical surfaces of several exocrine epithelia and may be important in secretion.  相似文献   

6.
We investigated the distribution of microtubules and microfilaments in some exocrine and endocrine cells in rats. Microtubules were stained by applying an immunofluorescent technique using antibodies against beta-tubulin, while microfilaments were stained with rhodamine-phalloidin, which binds selectively to polymerized actin filaments. In the cytoplasm of some exocrine cells (pancreatic acinar cells and ventral prostatic epithelial cells), the microtubules were distributed longitudinally from the apical region to the basal region, but no microtubules were found in the nuclear region. In exocrine cells, most of the microfilaments were localized beneath the apical plasma membrane. In some endocrine cells (those of the adenohypophysis and the islets of Langerhans), the microtubules exhibited a radial or reticular distribution in the cytoplasm, and intense fluorescence was observed in the perinuclear region. The immunofluorescence produced by the antibodies against beta-tubulin was more intense in endocrine cells than in exocrine cells. The microfilaments observed in the endocrine cells studied were homogenously distributed beneath the plasma membrane. Dot-like rhodamine-phalloidin staining was often observed in the cytoplasm of both the exocrine and endocrine cells. The present study clearly demonstrated marked differences in the distribution of cytoskeletal elements in exocrine and endocrine cells, and these may reflect differences in the secretory direction of such cells as well as in epithelial-cell polarity.  相似文献   

7.
The mammalian exocrine pancreas secretes a near-isosmotic fluid over a wide osmolarity range. The role of aquaporin (AQP) water channels in this process is now becoming clearer. AQP8 water channels, which were initially cloned from rat pancreas, are expressed at the apical membrane of pancreatic acinar cells and contribute to their osmotic permeability. However, the acinar cells secrete relatively little fluid and there is no obvious defect in pancreatic function in AQP8 knockout mice. Most of the fluid secreted by the pancreas is generated by ductal epithelial cells, which comprise only a small fraction of the gland mass. In the human pancreas, secretion occurs mainly in the intercalated ducts, where the epithelial cells express abundant AQP1 and AQP5 at the apical membrane and AQP1 alone at the basolateral membrane. In the rat and mouse, fluid secretion occurs mainly in the interlobular ducts where AQP1 and AQP5 are again co-localized at the apical membrane but appear to be expressed at relatively low levels. Nonetheless, the transepithelial osmotic permeability of rat interlobular ducts is sufficient to support near-isosmotic fluid secretion at observed rates. Furthermore, apical, but not basolateral, application of Hg2+ significantly reduces the transepithelial osmotic permeability, suggesting that apical AQP1 and AQP5 may contribute significantly to fluid secretion. The apparently normal fluid output of the pancreas in AQP1 knockout mice may reflect the presence of AQP5 at the apical membrane.  相似文献   

8.
Although the molecular machinery and mechanism of cell secretion in acinar cells of the exocrine pancreas is well documented and clear, only recently has the pharmacophysiology of pancreatic exocrine secretion come to light. Therefore, we focus in this article on the current understanding of the pharmacophysiology of pancreatic exocrine secretion. The pancreatic secretory response to ingestion of a meal is mediated via a complex interplay of neural, humoral and paracrine mediators. A major role in the control of the intestinal phase of pancreatic secretion is attributed to vago-vagal enteropancreatic reflexes. In the scheme of this control mechanism, afferents originating in the duodenal mucosa, and efferents mediating central input on the pancreatic ganglia, activate intrapancreatic postganglionic neurons. Experiments utilizing specific receptor antagonists demonstrate the involvement of both muscarinic M1 and M3 receptors expressed in pancreatic acinar cells. Cholecystokinin (CCK), originally implicated in the humoral secretion of pancreatic enzymes, through a direct action on acinar CCK receptors, is also essential to the enteropancreatic reflex mechanism. CCK stimulation of the exocrine pancreatic secretion through excitation of sensory afferents of the enteropancreatic reflexes, is a paracrine mode of CCK action, and is probably the only one in humans and the predominant one in rats. In dogs, however, CCK acts on the pancreas via both the humoral and a paracrine route. More recent experiments suggest further possible sites of CCK action. Additionally, at the brain stem, vago-vagal enteropancreatic reflexes may be modulated by input from higher brain centres, particularly the hypothalamic-cholinergic system in the tonic stimulation of preganglionic neurons of the dorsal motor nucleus of the vagus projecting into the pancreas.  相似文献   

9.
CRHSP-28 is a member of the tumor protein D52 protein family that was recently shown to regulate Ca(2+)-stimulated secretory activity in streptolysin-O-permeabilized acinar cells (Thomas, D. H., Taft, W. B., Kaspar, K. M., and Groblewski, G. E. (2001) J. Biol. Chem. 276, 28866-28872). In the present study, the Ca(2+)-sensitive phospholipid-binding protein annexin VI was purified from rat pancreas as a CRHSP-28-binding protein. The interaction between CRHSP-28 and annexin VI was demonstrated by coimmunoprecipitation and gel-overlay assays and was shown to require low micromolar levels of free Ca(2+), indicating these molecules likely interact under physiological conditions. Immunofluorescence microscopy confirmed a dual localization of CRHSP-28 and annexin VI, which appeared in a punctate pattern in the supranuclear and apical cytoplasm of acini. Stimulation of cells for 5 min with the secretagogue cholecystokinin enhanced the colocalization of CRHSP-28 and annexin VI within regions of acini immediately below the apical plasma membrane. Tissue fractionation revealed that CRHSP-28 is a peripheral membrane protein that is highly enriched in smooth microsomal fractions of pancreas. Further, the content of CRHSP-28 in microsomes was significantly reduced in pancreatic tissue obtained from rats that had been infused with a secretory dose of cholecystokinin for 40 min, demonstrating that secretagogue stimulation transiently alters the association of CRHSP-28 with membranes in cells. Collectively, the Ca(2+)-dependent binding of CRHSP-28 and annexin VI, together with their colocalization in the apical cytoplasm, is consistent with a role for these molecules in acinar cell membrane trafficking events that are essential for digestive enzyme secretion.  相似文献   

10.
The secretory products in exocrine pancreas acinar cells in utero were found to reduce osmium tetroxide. This reducing capacity was also exhibited by adult pancreas and parotid glands in different phases of synchronized secretion, and after single or chronic administration of a secretagogue, pilocarpine or isoprenaline. In utero, the reducing capacity appeared in the pancreas concomitantly with the synthesis of secretory products, and was limited to the transitional vesicles on the cis Golgi side. After birth, osmium staining occurred in the cis Golgi vesicles and cisternae of both glands. In the chronically-treated parotid gland, where the occupational programme for secretory proteins had been altered, the reducing capacity was diminished, resembling that in embryonic exocrine pancreas.  相似文献   

11.
The exocrine pancreas releases secretory products essential for nutrient assimilation. In addition to digestive enzymes, the release of lipoprotein-like particles containing the membrane trafficking protein caveolin-1 from isolated pancreatic explants has been reported. The present study examined: (1) if gastrointestinal hormones induce the apical secretion of phospholipid in vivo and (2) a potential association of caveolin-1 and the lipid-soluble vitamin K analog menaquinone-4 (MK-4) with these structures. Analysis of isolated acinar cells, purified zymogen granules, and pancreatic juice collected in vivo indicated the presence a caveolin-1 immunoreactive protein that was acutely released in response hormone stimulation. Chloroform-extracted fractions of pancreatic juice also contained high concentrations of MK-4 that was secreted in parallel to protein and phospholipid. The presence of caveolin-1 and MK-4 in the phospholipid fraction of pancreatic juice places these molecules in the secretory pathway of exocrine cells and suggests a physiological role in digestive enzyme synthesis and/or processing.  相似文献   

12.
Our earlier work demonstrated that the rate of protein synthesis in the exocrine cells of the rat pancreas is constant in different physiological states, including prolonged fasting. In this study we have followed the fate of the protein in the pancreatic cells of the fasting animal in vivo as well as in vitro. The data were obtained by quantitative radioautography and by biochemical determinations. In nonanesthesized, fasting rats, without cannulated pancreatic duct, some 80% of the proteins synthesized at a given time leaves the cell within 12 hr by way of secretion, intracellular breakdown not being important. Two mechanisms of fasting secretion exist. The first, starting at a slow rate after 20 min, is inferred to result from fortuitous contacts of young secretory granules with the apical cell membrane. The rate of secretion is the same in vivo as in vitro, at least during the first 4 hr after pulse labeling. Within 7 hr about 20% of the total amount of newly synthesized protein has left the cell. The second mechanism consists of an orderly movement of the mass of secretory granules towards the apical cell membrane as caused by the continuous assembly of new granules. The granules that come into contact with the cell membrane are discharged. It takes about 7–12 hr for secretory protein transported in this way to reach the cell membrane. The addition of new secretory granules to those present is essential for the second mechanism, for the blockade of protein synthesis by cycloheximide decreases the rate of this phase of secretion without interfering with the secretory process proper. Atropin does not inhibit the fasting secretion in vitro, nor does extensive washing of the tissue slices, excluding possible secretagogues as important factors in fasting secretion.  相似文献   

13.
Summary Stimulation of the exocrine pancreas by the secretagogue urecholine causes degranulation of the acinar cells. Under in vivo conditions, this degranulation is not uniform throughout the tissue. Indeed some of the acini are almost completely depleted of their granules while others display the appearance of resting acini. A noticeable feature is that all the cells of the same acinus display a comparable degree of degranulation. Moreover, groups of neighbouring acini seem to respond simultaneously suggesting that the secretory stimulus is propagated from one acinus to the other. In vitro stimulation of dispersed acini also showed that some of the acini are more responsive than others indicating that this phenomenon can not be attributed to accessibility of the secretagogue to its receptor. These observations lead us to the concept that the response of the pancreatic acinar cell is controlled at the level of the acinus.  相似文献   

14.
Summary We investigated the distribution of microtubules and microfilaments in some exocrine and endocrine cells in rats. Microtubules were stained by applying an immunofluorescent technique using antibodies against -tubulin, while microfilaments were stained with rhodamine-phalloidin, which binds selectively to polymerized actin filaments. In the cytoplasm of some exocrine cells (pancreatic acinar cells and ventral prostatic epithelial cells), the microtubules were distributed longitudinally from the apical region to the basal region, but no microtubules were found in the nuclear region. In exocrine cells, most of the microfilaments were localized beneath the apical plasma membrane. In some endocrine cells (those of the adenohypophysis and the islets of Langerhans), the microtubules exhibited a radial or reticular distribution in the cytoplasm, and intense fluorescence was observed in the perinuclear region. The immunofluorescence produced by the antibodies against -tubulin was more intense in endocrine cells than in exocrine cells. The microfilaments observed in the endocrine cells studied were homogeneously distributed beneath the plasma membrane. Dot-like rhodamine-phalloidin staining was often observed in the cytoplasm of both the exocrine and endocrine cells. The present study clearly demonstrated marked differences in the distribution of cytoskeletal elements in exocrine and endocrine cells, and these may reflect differences in the secretory direction of such cells as well as in epithelial-cell polarity.  相似文献   

15.
The majority of digestive enzymes in humans are produced in the pancreas where they are stored in zymogen granules before secretion into the intestine. GP2 is the major membrane protein present in zymogen granules of the exocrine pancreas. Numerous studies have shown that GP2 binds digestive enzymes such as amylase, thereby supporting a role in protein sorting to the zymogen granule. Other studies have suggested that GP2 is important in the formation of zymogen granules. A knock-out mouse was generated for GP2 to study the impact of the protein on pancreatic function. GP2-deficient mice displayed no gross signs of nutrient malab-sorption such as weight loss, growth retardation, or diarrhea. Zymogen granules in the GP2 knock-out mice appeared normal on electron microscopy and contained the normal complement of proteins excluding GP2. Primary cultures of pancreatic acini appropriately responded to secretagogue stimulation with the secretion of digestive enzymes. The course of experimentally induced pancreatitis was also examined in the knock-out mice because proteins known to associate with GP2 have been found to possess a protective role. When GP2 knock-out mice were subjected to two different models of pancreatitis, no major differences were detected. In conclusion, GP2 is not essential for pancreatic exocrine secretion or zymogen granule formation. It is unlikely that GP2 serves a major intracellular role within the pancreatic acinar cell and may be functionally active after it is secreted from the pancreas.  相似文献   

16.
Olive oil is a major component of the Mediterranean diet, and its role in human health is being actively debated. This study aimed to clarify the mechanism of pancreatic adaptation to dietary fat. For this purpose, we examined whether dietary-induced modification of pancreatic membranes affects acinar cell function in response to the secretagogue acetylcholine (ACh). Weaning male Wistar rats were assigned to one of two experimental groups and fed for 8 weeks with a commercial chow (C) or a semisynthetic diet containing virgin olive oil as dietary fat (OO). The fatty acid composition of pancreatic plasma membranes was determined by gas-liquid chromatography. For assessment of secretory function, viable acini were incubated with ACh and amylase of supernatant was further assayed with a substrate reagent. Changes in cytosolic Ca(2+) concentration in response to ACh were measured by fura-2 AM fluorimetry. Compared to C rats, pancreatic cell membranes of OO rats had a higher level of monounsaturated fatty acids and a lower level of both saturated and polyunsaturated fatty acids, thus, reflecting the type of dietary fat given. Net amylase secretion in response to ACh was greatly enhanced after OO feeding, although this was not paralleled by enhancement of ACh-evoked Ca(2+) peak increases. In conclusion, chronic intake of diets that differ in the fat type influences not only the fatty acid composition of rat pancreatic membranes but also the responsiveness of acinar cells to ACh. This mechanism may be, at least in part, responsible for the adaptation of the exocrine pancreas to the type of fat available.  相似文献   

17.
During pregnancy, lymphocytes infiltrating the rabbit lacrimal gland disperse to the interacinar space from their normal focal concentrations, basal fluid secretion decreases, pilocarpine-induced fluid secretion increases, and stimulated fluid protein concentration decreases. Ductal epithelial cell prolactin (PRL) content increases and redistributes from the apical to the basal-lateral cytoplasm. A replication-incompetent adenovirus vector for rabbit PRL (AdPRL) was used to test the hypothesis that increased intracrine/autocrine PRL signaling alters secretory protein traffic in an ex vivo lacrimal acinar cell model. AdPRL had no discernable influence on microtubules or actin microfilaments or their responses to carbachol (CCh). Endogenous and transduced PRLs exhibited similar, nonpolarized, punctate distributions. Cells secreted PRL consititutively and at increased rates in response to CCh. In contrast, constitutive secretion of beta-hexosaminidase was negligible, suggesting that the constitutive pathway for PRL is relatively inaccessible to typical secretory proteins. AdPRL had no significant effect on total secretion of beta-hexosaminidase or syncollin-green fluorescent protein (GFP), a chimeric secretory protein construct. However, it reversed the polarized distributions of vesicles containing rab3D and syncollin-GFP. Live-cell imaging indicated that AdPRL redirected CCh-dependent syncollin-GFP exocytosis from the apical plasma membrane to the basal-lateral membrane. Elevated concentrations of exogenous rabbit PRL in the ambient medium elicited similar changes. These observations suggest that elevated PRL, as occurs in the physiological hyperprolactinemia of pregnancy, induces lacrimal epithelial cells to express a mixed exocrine/endocrine phenotype that secretes fluid to the acinus-duct lumen but secretes proteins to the underlying tissue space. This phenotype may contribute to the pregnancy-associated immunoarchitecture.  相似文献   

18.
Slp1 is a putative Rab27 effector protein and implicated in intracellular membrane transport; however, the precise tissue distribution and function of Slp1 protein remain largely unknown. In this study we investigated the tissue distribution of Slp1 in mice and found that Slp1 is abundantly expressed in the pancreas, especially in the apical region of pancreatic acinar cells. Slp1 interacted with Rab27B in vivo and both proteins were co-localized on zymogen granules. Morphological analysis of fasted Slp1 knockout mice showed an increased number of zymogen granules in the pancreatic acinar cells, indicating that Slp1 is part of the machinery of amylase secretion by the exocrine pancreas.  相似文献   

19.
The present work reports on exocrine pancreatic secretion in control rats, adrenalectomized rats and hydrocortisone-treated (10 mg/Kg/d) rats during 7 days, under normal conditions and after induction of acute pancreatitis with caerulein (20 micrograms/Kg) by 4 subcutaneous injections at hourly intervals. Pancreatic secretion was seen to be affected by the procedure of adrenalectomy, which led to a marked reduction in the secretion of proteins and amylase with respect to control values. This was probably due to the decrease occurring in the zymogen granules in the acinar cells of the exocrine pancreas, a phenomenon which also led to a decrease in pancreatic weight observed in these animals. Treatment with hydrocortisone induced a decrease in the secretion of proteins and amylase, as well as an increase in pancreatic weight. This agrees with the accepted hypothesis that large amounts glucocorticoids stimulate the synthesis and storage of proteins in the exocrine pancreas, reducing the secretory phase. The administration of high doses of caerulein under these conditions led to acute pancreatitis in the three groups of animals. This was paralleled by a dramatic decrease in protein and amylase secretion and by severe interstitial edema of the pancreas and by increases in serum amylase values. In the case of the animals treated previously with hydrocortisone, the latter were tripled with respect to the control animals. The conclusion is offered that since the storage of enzyme proteins is governed by glucocorticoids, which furthermore increase the sensitivity of the acinar cells to stimulation by secretagogues, the administration of these substances during the development of pancreatic lesions such as acute pancreatitis is highly compromising to the organism.  相似文献   

20.
Gamma Glutamyltranspeptidase (GGT) is a membrane-bound enzyme involved in glutathione metabolism. It is present in rat exocrine pancreas at a level which is only exceeded by the kidney. It has been previously shown that most of the enzyme activity is located in the apical area of the acinar cell, more precisely at the level of zymogen granules and plasma membrane. The aim of the present study was to examine the secretory behavior of that enzyme. Under resting conditions, in vivo, high levels of GGT were found in pancreatic juice and its level was not related to protein concentration. Under secretin infusion, a relatively constant level of GGT was released, and again, there was no correlation between enzyme activity and protein concentration. Following a bolus injection of caerulein, an analog of cholecystokinin, marked and concomitant rises in protein and GGT levels were observed. Ultracentrifugation, as well as gel filtration on Sepharose 4B, demonstrated that the enzyme was not released in a soluble form. This observation is in agreement with in vitro determinations on isolated zymogen granules showing that GGT is totally associated with the ZG membrane and undetect-able in the content of these organelles. The present data show that 1 degree GGT is released from the rat pancreas acinar cells in a particulate form; 2 degree GGT release is elicited by hormonal stimulation coinciding with the exocytotic release of secretory proteins. Our observations lead us to propose that in rat pancreas, ZG membrane fragments are released along with secretory proteins during exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号