首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seamless gene engineering using RNA- and DNA-overhang cloning   总被引:2,自引:0,他引:2  
Here we describe two methods for generating DNA fragments with single-stranded overhangs, like those generated by the activity of many restriction enzymes, by simple methods that do not involve DNA digestion. The methods, RNA-overhang cloning (ROC) and DNA-overhang cloning (DOC), generate polymerase chain reaction (PCR) products composed of double-stranded (ds) DNA flanked by single-stranded (ss) RNA or DNA overhangs. The overhangs can be used to recombine DNA fragments at any sequence location, creating "perfect" chimeric genes composed of DNA fragments that have been joined without the insertion, deletion, or alteration of even a single base pair. The ROC method entails using PCR primers that contain regions of RNA sequence that cannot be copied by certain thermostable DNA polymerases. Using such a chimeric primer in PCR would yield a product with a 5' overhang identical to the sequence of the RNA component of the primer, which can be used for directional ligation of the amplified product to other preselected DNA molecules. This method provides complete control over both the length and sequence of the overhangs, and eliminates the need for restriction enzymes as tools for gene engineering.  相似文献   

2.
ABSTRACT: BACKGROUND: Molecular cloning of DNA fragments >5 kbp is still a complex task. When no genomic DNA library is available for the species of interest, and direct PCR amplification of the desired DNA fragment is unsuccessful or results in an incorrect sequence, molecular cloning of a PCR-amplified region of the target sequence and assembly of the cloned parts by restriction and ligation is an option. Assembled components of such DNA fragments can be connected together by ligating the compatible overhangs produced by different restriction endonucleases. However, designing the corresponding cloning scheme can be a complex task that requires a software tool to generate a list of potential connection sites. FINDINGS: The BIOF program presented here analyzes DNA fragments for all available restriction enzymes and provides a list of potential sites for ligation of DNA fragments with compatible overhangs. The cloning scheme, which is called modular assembly cloning (MAC), is aided by the BIOF program. MAC was tested on a practical dataset, namely, two non-coding fragments of the translation elongation factor 1 alpha gene from Chinese hamster ovary cells. The individual fragment lengths exceeded 5 kbp, and direct PCR amplification produced no amplicons. However, separation of the target fragments into smaller regions, with downstream assembly of the cloned modules, resulted in both target DNA fragments being obtained with few subsequent steps. CONCLUSIONS: Implementation of the MAC software tool and the experimental approach adopted here has great potential for simplifying the molecular cloning of long DNA fragments. This approach may be used to generate long artificial DNA fragments such as in vitro spliced cDNAs.  相似文献   

3.
Tandemly repeated DNA sequences generated from single synthetic oligonucleotide monomers are useful for many purposes. With conventional ligation procedures low yields and random orientation of oligomers makes cloning of defined repeated sequences difficult. We solved these problems using 2 bp overhangs to direct orientation and random incorporation of linkers containing restriction sites during ligation. Ligation products are amplified by PCR using the linker oligonucleotides as primers. Restriction digestion of the PCR products generate multimer distributions whose length is controlled by the monomer/linker ratio. The concatenated DNA fragments of defined length, orientation and spacing can be directly used for subcloning or other applications without further treatment.  相似文献   

4.
5.
We developed a novel method for synthesizing marker-disrupted alleles of yeast genes. The first step is PCR amplification of two sequences located upstream and downstream of the reading frame to be disrupted. Due to the addition of non-specific single A overhangs by Taq DNA polymerase, each PCR product can be ligated with a marker DNA which has T residues at its 3' ends. After amplification of individual ligation products through the second PCR, both products are mixed and annealed, and the single strand is converted to a double strand by an extension reaction. The final step is PCR amplification of the fragment composed of a selectable marker and two flanking sequences with the outermost primers. This method is rapid and needs only short oligonucleotides as primers.  相似文献   

6.
To immobilize DNA fragments onto magnetic beads coated with streptavidin for isolation purpose, it is important to label one biotin molecule at one terminus of DNA fragment. After failure to label long DNA with biotin by PCR and filling-in reaction, a 9.2 kb DNA was labeled with biotin by a modified ligation strategy. A simple method is also reported to detect the quantity and integrity of DNA immobilized on the magnetic beads.  相似文献   

7.
Universal TA cloning   总被引:1,自引:0,他引:1  
TA cloning is one of the simplest and most efficient methods for the cloning of PCR products. The procedure exploits the terminal transferase activity of certain thermophilic DNA polymerases, including Thermus aquaticus (Taq) polymerase. Taq polymerase has non-template dependent activity which preferentially adds a single adenosine to the 3'-ends of a double stranded DNA molecule, and thus most of the molecules PCR amplified by Taq polymerase possess single 3'-A overhangs. The use of a linearized "T-vector" which has single 3'-T overhangs on both ends allows direct, high-efficiency cloning of PCR products, facilitated by complementarity between the PCR product 3'-A overhangs and vector 3'-T overhangs. The TA cloning method can be easily modified so that the same T-vector can be used to clone any double-stranded DNA fragment, including PCR products amplified by any DNA polymerase, as well as all blunt- and sticky-ended DNA species. This technique is especially useful when compatible restriction sites are not available for the subcloning of DNA fragments from one vector to another. Directional cloning is made possible by appropriate hemi-phosphorylation of both the T-vectors and the inserts. With a single T-vector at hand, any DNA fragment can be cloned without compromising the cloning efficiency. The universal TA cloning method is thus both convenient and labor-saving.  相似文献   

8.
Ligation, the joining of DNA fragments, is a fundamental procedure in molecular cloning and is indispensable to the production of genetically modified organisms that can be used for basic research, the applied biosciences, or both. Given that many genes cooperate in various pathways, incorporating multiple gene cassettes in tandem in a transgenic DNA construct for the purpose of genetic modification is often necessary when generating organisms that produce multiple foreign gene products. Here, we describe a novel method, designated PRESSO (precise sequential DNA ligation on a solid substrate), for the tandem ligation of multiple DNA fragments. We amplified donor DNA fragments with non-palindromic ends, and ligated the fragment to acceptor DNA fragments on solid beads. After the final donor DNA fragments, which included vector sequences, were joined to the construct that contained the array of fragments, the ligation product (the construct) was thereby released from the beads via digestion with a rare-cut meganuclease; the freed linear construct was circularized via an intra-molecular ligation. PRESSO allowed us to rapidly and efficiently join multiple genes in an optimized order and orientation. This method can overcome many technical challenges in functional genomics during the post-sequencing generation.  相似文献   

9.
Recent evidence suggests that coupled leading and lagging strand DNA synthesis operates in mammalian mitochondrial DNA (mtDNA) replication, but the factors involved in lagging strand synthesis are largely uncharacterised. We investigated the effect of knockdown of the candidate proteins in cultured human cells under conditions where mtDNA appears to replicate chiefly via coupled leading and lagging strand DNA synthesis to restore the copy number of mtDNA to normal levels after transient mtDNA depletion. DNA ligase III knockdown attenuated the recovery of mtDNA copy number and appeared to cause single strand nicks in replicating mtDNA molecules, suggesting the involvement of DNA ligase III in Okazaki fragment ligation in human mitochondria. Knockdown of ribonuclease (RNase) H1 completely prevented the mtDNA copy number restoration, and replication intermediates with increased single strand nicks were readily observed. On the other hand, knockdown of neither flap endonuclease 1 (FEN1) nor DNA2 affected mtDNA replication. These findings imply that RNase H1 is indispensable for the progression of mtDNA synthesis through removing RNA primers from Okazaki fragments. In the nucleus, Okazaki fragments are ligated by DNA ligase I, and the RNase H2 is involved in Okazaki fragment processing. This study thus proposes that the mitochondrial replication system utilises distinct proteins, DNA ligase III and RNase H1, for Okazaki fragment maturation.  相似文献   

10.
Effect of highly fragmented DNA on PCR.   总被引:3,自引:1,他引:2       下载免费PDF全文
We characterized the behavior of polymerase chain reactions (PCR) using degraded DNA as a template. We first demonstrated that fragments larger than the initial template fragments can be amplified if overlapping fragments are allowed to anneal and extend prior to routine PCR. Amplification products increase when degraded genomic DNA is pretreated by polymerization in the absence of specific primers. Secondly, we measured nucleotide uptake as a function of template DNA degradation. dNTP incorporation initially increases with increasing DNA fragmentation and then declines when the DNA becomes highly degraded. We demonstrated that dNTP uptake continues for >10 polymerization cycles and is affected by the quality and quantity of template DNA and by the amount of substrate dNTP. These results suggest that although reconstruction of degraded DNA may allow amplification of large fragments, reconstructive polymerization and amplification polymerization may compete. This was confirmed in PCR where the addition of degraded DNA reduced the resultant product. Because terminal deoxynucleotidyl transferase activity of Taq polymerase may inhibit 3' annealing and restrict the length of template reconstruction, we suggest modified PCR techniques which separate reconstructive and amplification polymerization reactions.  相似文献   

11.
Efficient ligation and cloning of DNA fragments with 2-bp overhangs   总被引:1,自引:0,他引:1  
Various methods of ligation are currently available and routinely used by molecular biologists, such as blunt end ligation, cohesive end (two and four overhangs), and ligation of Taq polymerase-derived products. However, there is no efficient method for the cloning of DNA fragments with 2-bp overhangs. We present a simple method for the efficient ligation of DNA fragments with 2-bp overhanging ends, ranging in size from 0.7 to 2.5 kbp. Our method involves the initial heating and flash freezing of the vector-insert DNA mix, and a subsequent unique ligation reaction. This method provides a new molecular biology tool for researchers.  相似文献   

12.
We have isolated and sequenced a member of tandem repetitive DNA containing BamHI site (BamHI family satellite DNA) from bluegill sunfish Lepomis macrochirus. PCR amplification with specific primers was performed to define the size of unit length repeat of the BamHI family satellite DNA, revealing that there were two distinct size of DNA fragments (0.9 kb and 1.3 kb) in the PCR products. The longer fragment (1.3 kb) consisted of internal sub-duplication of shorter fragment (0.9 kb). We have compared the size of PCR products among four fish populations, and found that both fragments co-existed in one population whereas the longer fragment was dominant in other three populations. The results may reflect ongoing homogenization of satellite DNA type over a short evolutionary time scale.  相似文献   

13.
An efficient DNA assembling strategy was developed here modified from Class-IIS endonuclease mediated DNA splicing by directed ligation (SDL). Benefited from the full-length PCR directly using ligation products as template, this strategy required less effort and less time to obtain the assembled full-length DNA. The advantages of this strategy made it a rapid and easy-to-perform gene splicing and multiple site-directed mutagenesis approach especially practicable when more fragments need to be assembled at the same time.  相似文献   

14.
Recombineering techniques have been developed to modify bacterial artificial chromosomes (BACs) via bacterial homologous recombination systems, simplifying the molecular manipulations of large DNA constructs. However, precise modifications of a DNA fragment larger than 2-3 kb by recombineering remain a difficult task, due to technical limitations in PCR amplification and purification of large DNA fragments. Here, we describe a new recombineering strategy for the replacement of large DNA fragments using the commonly utilized phage/Red recombination host system. This approach involved the introduction of rare restriction enzyme sites and positive selection markers into the ends of a large DNA fragment, followed by its release from the donor BAC construct and integration into an acceptor BAC. We have successfully employed this method to precisely swap a number of large DNA fragments ranging from 6 to 40 kb between two BAC constructs. Our results demonstrated that this new strategy was highly effective in the manipulations of large genomic DNA fragments and therefore should advance the conventional BAC recombineering technology to the next level.  相似文献   

15.
《The Journal of cell biology》1996,135(5):1369-1376
Apoptotic cells in rat thymus were labeled in situ in paraffin-embedded and frozen tissue sections by ligation of double-stranded DNA fragments containing digoxigenin or Texas red. Two forms of double-stranded DNA fragments were prepared using the polymerase chain reaction: one was synthesized using Taq polymerase, which yields products with single- base 3' overhangs, and one using Pfu polymerase, which produces blunt- ended products. Both types of fragment could be ligated to apoptotic nuclei in thymus, indicating the presence in such nuclei of DNA double- strand breaks with single-base 3' overhangs as well as blunt ends. However, in nuclei with DNA damage resulting from a variety of nonapoptotic processes (necrosis, in vitro autolysis, peroxide damage, and heating) single-base 3' overhangs were either nondetectable or present at much lower concentrations than in apoptotic cells. Blunt DNA ends were present in such tissues, but at lower concentrations than in apoptotic cells. In contrast, in all of these forms of DNA damage, nuclei contained abundant 3'-hydroxyls accessible to labeling with terminal deoxynucleotidyl transferase. Thus, although single-base 3' overhangs and blunt ends are present in apoptotic nuclei, the specificity of the in situ ligation of 3'-overhang fragments to apoptotic nuclei indicates that apoptotic cells labeled in this way can readily be distinguished from cells with nonapoptotic DNA damage. These data are consistent with the involvement of an endonuclease similar to DNase I in apoptosis, which is predicted to leave short 3' overhangs as well as blunt ends in digestion of chromatin.  相似文献   

16.
Wu J  Ye C 《Molecular biology reports》2011,38(4):2729-2731
The present DNA marker preparation with PCR amplification, one primer pair for one target DNA fragment, was very tedious and labor intensive. To develop a simple and efficient system for the preparation of small DNA fragments, a novel PCR amplification pattern was designed and tested, of which targeted small DNA fragments were amplified in groups as a unit with a specific synthetic vector as template DNA. The amplified units can be different dependent on the identities of the employed primers and give out variable combinations of small DNA fragments through complete or partial restrictive digestion with EcoRI. The novel pattern made the PCR amplification of small DNA fragments not only more efficient but also more economic than ever before. The tandem PCR pattern, as the most efficient and high throughput method for small DNA fragment preparation, has wide application for the production of various DNA markers and a good complementation to the larger DNA fragment preparation by complex synthetic vector fermentation.  相似文献   

17.
Since the invention of PCR, many adaptation techniques have been developed for sequencing DNA fragments flanking known sequences. Of them, inverse PCR is a matter of interest because of the simplicity of its principle. However, the protocols for inverse PCR introduced so far consist of some time-consuming procedures, and with them, we cannot "walk" chromosomes too far since the number of suitable restriction enzymes is limited. Our experiments led to confirming simpler technical approaches applicable to the case of bacterial chromosomes, that is, designing two end-specific "contextual" sequences with which we can quickly detect the desired clones of targeted DNA fragments by simply analyzing PCR products, employing "the minimum value of the desired fragments" as a "discriminating minimum" value to decrease contaminant DNA fragments, and creating a new tandem of two cleaved end fragments of a known sequence ("reordering") for PCR amplification in combination with cloning of the inverse PCR-generated DNA. With the improvements, we could both simplify the procedures and broaden the capacity of the inverse PCR in "walking" chromosomes.  相似文献   

18.
Summary Methods for monitoring cell line identification and authentication include species-specific immunofluorescence, isoenzyme phenotyping, chromosome analysis, and DNA fingerprinting. Most previous studies of DNA fingerprinting of cell lines have used restriction fragment length polymorphism analysis. In this study, we examined the utility of an alternative and simpler method of cell line DNA fingerprinting—polymerase chain reaction (PCR) amplification of fragment length polymorphisms. Fourteen human cell lines previously found by other methods to be either related or disparate were subjected to DNA fingerprinting by PCR amplification of selected fragment length polymorphism loci. Cell identification patterns by this method were concordant with those obtained by isoenzyme phenotyping and restriction fragment length polymorphism-DNA fingerprinting, and were reproducible within and between assays on different DNA extracts of the same cell line. High precision was achieved with electrophoretic separation of amplified DNA products on high resolution agarose or polyacrylamide gels, and with fragment length polymorphism (FLP) loci-specific “allelic ladders” to identify individual FLP alleles. Determination of the composite fingerprint of a cell line at six appropriately chosen fragment length polymorphism loci should achieve a minimum discrimination power of 0.999. The ability of PCR-based fragment length polymorphism DNA fingerprinting to precisely and accurately identify the alleles of different human cell lines at multiple polymorphic fragment length polymorphism loci demonstrates the feasibility of developing a cell line DNA fingerprint reference database as a powerful additional tool for future cell line identification and authentication.  相似文献   

19.
高GC含量DNA模板的PCR扩增   总被引:1,自引:0,他引:1  
目的:探索高GC含量DNA的PCR扩增条件,为扩增达托霉素生物合成基因簇及拼接奠定基础。方法:在PCR扩增体系中,使用高保真的聚合酶及添加不同浓度的DMSO、7-deaza-dGTP等增强剂,并选择合适的PCR循环程序,优化富含GC的DNA的PCR扩增条件。结果:向反应体系中额外添加1%~4%的DMSO可以显著提高富含GC的DNA的PCR扩增产物量,但会降低其特异性;7-deaza-dGTP可以提高扩增产物的特异性及保真度,但产量会有所下降。应用touch down PCR并在体系中添加7-deaza-dGTP能够提高扩增产物的特异性和产率,增加扩增的保真度。结论:应用优化的PCR扩增条件将所有达托霉素生物合成基因簇分段扩增出来,并可扩增出长达6 kb的片段,且序列完全正确,可以进行后续拼接。  相似文献   

20.
We present a comprehensive protocol for extracting DNA from egg membranes and other internal debris recovered from the interior of blown museum bird eggs. A variety of commercially available DNA extraction methods were found to be applicable. DNA sequencing of polymerase chain reaction (PCR) products for a 176‐bp fragment of mitochondrial DNA was successful for most egg samples (> 78%) even though the amount of DNA extracted (mean = 14.71 ± 4.55 ng/µL) was significantly less than that obtained for bird skin samples (mean = 67.88 ± 4.77 ng/µL). For PCR and sequencing of snipe (Gallinago) DNA, we provide eight new primers for the ‘DNA barcode’ region of COI mtDNA. In various combinations, the primers target a range of PCR products sized from 72 bp to the full ‘barcode’ of 751 bp. Not all possible combinations were tested with archive snipe DNA, but we found a significantly better success rate of PCR amplification for a shorter 176‐bp target compared with a larger 288‐bp fragment (67% vs. 39%). Finally, we explored the feasibility of whole genome amplification (WGA) for extending the use of archive DNA in PCR and sequencing applications. Of two WGA approaches, a PCR‐based method was found to be able to amplify whole genomic DNA from archive skins and eggs from museum bird collections. After WGA, significantly more archive egg samples produced visible PCR products on agarose (56.9% before WGA vs. 79.0% after WGA). However, overall sequencing success did not improve significantly (78.8% compared with 83.0%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号