首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although many stimuli activate extracellular signal-regulated kinases 1 and 2 (ERK1/2), the kinetics and compartmentalization of ERK1/2 signals are stimulus-dependent and dictate physiological consequences. ERKs can be inactivated by dual specificity phosphatases (DUSPs), notably the MAPK phosphatases (MKPs) and atypical DUSPs, that can both dephosphorylate and scaffold ERK1/2. Using a cell imaging model (based on knockdown of endogenous ERKs and add-back of wild-type or mutated ERK2-GFP reporters), we explored possible effects of DUSPs on responses to transient or sustained ERK2 activators (epidermal growth factor and phorbol 12,13-dibutyrate, respectively). For both stimuli, a D319N mutation (which impairs DUSP binding) increased ERK2 activity and reduced nuclear accumulation. These stimuli also increased mRNA levels for eight DUSPs. In a short inhibitory RNA screen, 12 of 16 DUSPs influenced ERK2 responses. These effects were evident among nuclear inducible MKP, cytoplasmic ERK MKP, JNK/p38 MKP, and atypical DUSP subtypes and, with the exception of the nuclear inducible MKPs, were paralleled by corresponding changes in Egr-1 luciferase activation. Simultaneous removal of all JNK/p38 MKPs or nuclear inducible MKPs revealed them as positive and negative regulators of ERK2 signaling, respectively. The effects of JNK/p38 MKP short inhibitory RNAs were not dependent on protein neosynthesis but were reversed in the presence of JNK and p38 kinase inhibitors, indicating DUSP-mediated cross-talk between MAPK pathways. Overall, our data reveal that a large number of DUSPs influence ERK2 signaling. Together with the known tissue-specific expression of DUSPs and the importance of ERK1/2 in cell regulation, our data support the potential value of DUSPs as targets for drug therapy.  相似文献   

2.
MAP kinase phosphatases (MKPs) are important regulators of the activation levels and kinetics of MAP kinases. This is crucial for a large number of physiological processes during development and growth, as well as interactions with the environment, including the response to ultraviolet-B (UV-B) stress. Arabidopsis MKP1 is a key regulator of MAP kinases MPK3 and MPK6 in response to UV-B stress. However, virtually nothing is presently known about the post-translational regulation of plant MKPs in vivo. Here, we provide evidence that MKP1 is a phosphoprotein in vivo and that MKP1 accumulates in response to UV-B stress. Moreover, proteasome inhibitor experiments suggest that MKP1 is constantly turned-over under non-stress conditions and that MKP1 is stabilized upon stress treatment. Stress-responsive phosphorylation and stabilization of MKP1 demonstrate the post-translational regulation of a plant MKP in vivo, adding an additional regulatory layer to MAP kinase signaling in plants.  相似文献   

3.
4.
MAP kinase phosphatases (MKPs) catalyze dephosphorylation of activated MAP kinase (MAPK) molecules and deactivate them. Therefore, MKPs play an important role in determining the magnitude and duration of MAPK activities. MKPs constitute a structurally distinct family of dual-specificity phosphatases. The MKP family members share the sequence homology and the preference for MAPK molecules, but they are different in substrate specificity among MAPK molecules, tissue distribution, subcellular localization and inducibility by extracellular stimuli. Our understanding of their protein structure, substrate recognition mechanisms, and regulatory mechanisms of the enzymatic activity has greatly increased over the past few years. Furthermore, although there are a number of MKPs, that have similar substrate specificities, non-redundant roles of MKPs have begun to be identified. Here we focus on recent findings regarding regulation and function of the MKP family members as physiological regulators of MAPK signaling.  相似文献   

5.
The Arabidopsis genome contains 20 genes encoding mitogen-activated protein kinases (MAPKs), which drastically outnumbers genes for their negative regulators, MAP kinase phosphatases (MKPs) (five at most). This contrasts sharply with genomes of other eukaryotes where the number of MAPKs and MKPs is approximately equal. MKPs may therefore play an important role in signal integration in plants, through concerted regulation of several MAPKs. Our previous studies identified Arabidopsis MKP1 and showed that its deficiency in the mkp1 mutant results in plant hypersensitivity to genotoxic stress. Here, we identify a set of MAPKs that interact with MKP1, and show that the activity level of one of these, MPK6, is regulated by MKP1 in vivo. Moreover, using expression profiling, we identified a specific group of genes that probably represent targets of MKP1 regulation. Surprisingly, the identity of these genes and interacting MAPKs suggested involvement of MKP1 in salt stress responses. Indeed, mkp1 plants have increased resistance to salinity. Thus MKP1 apparently plays a pivotal role in the integration and fine-tuning of plant responses to various environmental challenges.  相似文献   

6.
MAP kinase phosphatase 5 (MKP5) is a member of the mitogen-activated protein kinase phosphatase (MKP) family and selectively dephosphorylates JNK and p38. We have determined the crystal structure of the catalytic domain of human MKP5 (MKP5-C) to 1.6 A. In previously reported MKP-C structures, the residues that constitute the active site are seriously deviated from the active conformation of protein tyrosine phosphatases (PTPs), which are accompanied by low catalytic activity. High activities of MKPs are achieved by binding their cognate substrates, representing substrate-induced activation. However, the MKP5-C structure adopts an active conformation of PTP even in the absence of its substrate binding, which is consistent with the previous results that MKP5 solely possesses the intrinsic activity. Further, we identify a sequence motif common to the members of MKPs having low catalytic activity by comparing structures and sequences of other MKPs. Our structural information provides an explanation of constitutive activity of MKP5 as well as the structural insight into substrate-induced activation occurred in other MKPs.  相似文献   

7.
8.
9.
Wancket LM  Frazier WJ  Liu Y 《Life sciences》2012,90(7-8):237-248
Mitogen-activated protein kinases (MAPKs) are key regulators of cellular physiology and immune responses, and abnormalities in MAPKs are implicated in many diseases. MAPKs are activated by MAPK kinases through phosphorylation of the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr domain, where Xaa represents amino acid residues characteristic of distinct MAPK subfamilies. Since MAPKs play a crucial role in a variety of cellular processes, a delicate regulatory network has evolved to control their activities. Over the past two decades, a group of dual specificity MAPK phosphatases (MKPs) has been identified that deactivates MAPKs. Since MAPKs can enhance MKP activities, MKPs are considered as an important feedback control mechanism that limits the MAPK cascades. This review outlines the role of MKP-1, a prototypical MKP family member, in physiology and disease. We will first discuss the basic biochemistry and regulation of MKP-1. Next, we will present the current consensus on the immunological and physiological functions of MKP-1 in infectious, inflammatory, metabolic, and nervous system diseases as revealed by studies using animal models. We will also discuss the emerging evidence implicating MKP-1 in human disorders. Finally, we will conclude with a discussion of the potential for pharmacomodulation of MKP-1 expression.  相似文献   

10.
11.
ZBP-89-induced apoptosis is p53-independent and requires JNK   总被引:1,自引:0,他引:1  
ZBP-89 induces apoptosis in human gastrointestinal cancer cells through a p53-independent mechanism. To understand the apoptotic pathway regulated by ZBP-89, we identified downstream signal transduction targets. Ectopic expression of ZBP-89 induced apoptosis through the mitochondrial pathway and was accompanied by activation of all three MAP kinase subfamilies: JNK1/2, ERK1/2 and p38 MAP kinase. ZBP-89-induced apoptosis was markedly enhanced by ERK inhibition with U0126. In contrast, inhibiting JNK with a JNK1-specific peptide inhibitor or dominant-negative JNK2 expression abrogated ZBP-89-mediated apoptosis. The p38 inhibitor SB202190 had no effect on ZBP-89-induced cell death. Protein dephosphorylation assays revealed that ZBP-89 activates JNK via repression of JNK dephosphorylation. Oligonucleotide microarray analyses revealed that ectopic expression of ZBP-89 downregulated expression of the dual-specificity phosphatase MKP6. Overexpression of MKP6 blocked ZBP-89-induced JNK phosphorylation and PARP cleavage. In addition, ectopic expression of ZBP-89 repressed Bcl-xL and Mcl-1 expression, but had no effect on Bcl-2. Silencing ZBP-89 with small interfering RNA enhanced both Bcl-xL and Mcl-1 expression. Taken together, ZBP-89-mediated apoptosis occurs via a p53-independent mechanism that requires JNK activation.  相似文献   

12.
Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) negatively regulate MAPK activity. In the present study, we have identified a novel MKP, designated MKP-7, and mapped it to human chromosome 12p12. MKP-7 possesses a long C-terminal stretch containing both a nuclear export signal and a nuclear localization signal, in addition to the rhodanese-like domain and the dual specificity phosphatase catalytic domain, both of which are conserved among MKP family members. When expressed in mammalian cells MKP-7 protein was localized exclusively in the cytoplasm, but this localization became exclusively nuclear following leptomycin B treatment or introduction of a mutation in the nuclear export signal. These findings indicate that MKP-7 is the first identified leptomycin B-sensitive shuttle MKP. Forced expression of MKP-7 suppressed activation of MAPKs in COS-7 cells in the order of selectivity, JNK p38 > ERK. Furthermore, a mutant form MKP-7 functioned as a dominant negative particularly against the dephosphorylation of JNK, suggesting that MKP-7 works as a JNK-specific phosphatase in vivo. Co-immunoprecipitation experiments and histological analysis suggested that MKP-7 determines the localization of MAPKs in the cytoplasm.  相似文献   

13.
The p53 tumor suppressor gene plays an important role during induction of apoptosis in cancer. In contrast, NF-κB prevents apoptosis in response to chemotherapeutic agents and is a critical regulator of cell survival. Despite the riches of information on the regulation of wild-type p53 function by phosphorylation, nothing is known about the modulation of mutant p53 activity by phosphorylation. Here we report that inhibition of NF-κB in DU145 prostate cancer cells results in p53 mutant phosphorylation at serine 15 (Ser15), leading to an increase of p53 stability, DNA binding and gain of function. Serine 15-phosphorylation is due to GADD45a-dependent induction of JNK kinase, which can be blocked by SP600125, a JNK kinase inhibitor. Furthermore, inhibition of GADD45a by small interfering RNA blocks JNK activation and abrogates Ser15 phosphorylation. Together, these results highlight the importance of Ser15 phosphorylation in regulating the oncogenic function of mutant p53 and apoptosis induction in the context of the NF-κB/IκB signaling pathway.  相似文献   

14.
We have studied apoptosis of gastrointestinal epithelial cells by examining the receptor-mediated and DNA damage-induced pathways using TNF-α and camptothecin (CPT), respectively. TNF-α requires inhibition of antiapoptotic protein synthesis by cycloheximide (CHX). CHX also results in high levels of active JNK, which are necessary for TNF-induced apoptosis. While CPT induces apoptosis, the increase in JNK activity was not proportional to the degree of apoptosis. Thus the mechanism of activation of JNK and its role in apoptosis are unclear. We examined the course of JNK activation in response to a combination of TNF-α and CPT (TNF + CPT), which resulted in a three- to fourfold increase in apoptosis compared with CPT alone, indicating an amplification of apoptotic signaling pathways. TNF + CPT caused apoptosis by activating JNK, p38, and caspases-8, -9, and -3. TNF-α stimulated a transient phosphorylation of JNK1/2 and ERK1/2 at 15 min, which returned to basal by 60 min and remained low for 4 h. CPT increased JNK1/2 activity between 3 and 4 h. TNF + CPT caused a sustained and robust JNK1/2 and ERK1/2 phosphorylation by 2 h, which remained high at 4 h, suggesting involvement of MEKK4/7 and MEK1, respectively. When administered with TNF + CPT, SP-600125, a specific inhibitor of MEKK4/7, completely inhibited JNK1/2 and decreased apoptosis. However, administration of SP-600125 at 1 h after TNF + CPT failed to prevent JNK1/2 phosphorylation, and the protective effect of SP-600125 on apoptosis was abolished. These results indicate that the persistent activation of JNK might be due to inhibition of JNK-specific MAPK phosphatase 1 (MKP1). Small interfering RNA-mediated knockdown of MKP1 enhanced TNF + CPT-induced activity of JNK1/2 and caspases-9 and -3. Taken together, these results suggest that MKP1 activity determines the duration of JNK1/2 and p38 activation and, thereby, apoptosis in response to TNF + CPT.  相似文献   

15.
Induction of Fas expression by DNA-damaging agents is dependent on the expression of functional p53, and has been suggested to play an important role in apoptosis induction. JNK (c-Jun N-terminal kinase), which is capable of phosphorylating p53, is also involved in apoptotic signaling induced by various apoptotic stimuli. Here, we report that although Fas induction is closely linked to the expression of wild type p53, it is not correlated with JNK activation induced by apoptotic stimuli. JNK activation does not necessarily lead to Fas expression, even in cells containing wild type p53. In addition, Fas expression can be induced without significant JNK activation. Furthermore, induction of Fas expression is not sufficient for apoptosis induction; however, it may sensitize cells to Fas-ligation induced apoptosis.  相似文献   

16.
17.
Ochratoxin A (OTA), one of the major food-borne mycotoxins, induces apoptosis in various types of cells. Induction of apoptosis is suggested to be one of the major cellular mechanisms behind OTA-induced diverse toxic effects. However, the molecular mechanisms involved, especially the role of p53 in OTA-induced apoptosis have not been clearly elucidated. In the present study, we find that p53 activation exerts pro-survival function to inhibit apoptosis induction in MARC-145, Vero monkey kidney cells and HEK293 human kidney cells in response to ochratoxin A treatment. We further demonstrate that the pro-survival activity of p53 is attributed to its ability to suppress JNK activation that mediates apoptotic signaling through down-regulation of Bcl-xL. To our knowledge, this is first report of pro-survival role of p53 in OTA-induced apoptosis in kidney epithelial cells. Our findings provide a novel insight into the mechanisms of OTA-induced apoptosis in kidney epithelial cells.  相似文献   

18.
Deng M  Chen P  Liu F  Fu S  Tang H  Fu Y  Xiong Z  Hui S  Ji W  Zhang X  Zhang L  Gong L  Hu X  Hu W  Sun S  Liu J  Xiao L  Liu WB  Xiao YM  Liu SJ  Liu Y  Li DW 《Current molecular medicine》2012,12(8):901-916
The tumor suppressor p53 is a master regulator of apoptosis and also plays a key role in cell cycle checking. In our previous studies, we demonstrated that p53 directly regulates Bak in mouse JB6 cells (Qin et al. 2008. Cancer Research. 68(11):4150) and that p53-Bak signaling axis plays an important role in mediating EGCG-induced apoptosis. Here, we demonstrate that the same p53-Bak apoptotic signaling axis executes an essential role in regulating lens cell differentiation. First, during mouse lens development, p53 is expressed and differentially phosphorylated at different residues. Associated with p53 expression, Bak is also significantly expressed during mouse lens development. Second, human p53 directly regulates Bak promoter and Bak expression in p53 knockout mice (p53-/-) was significantly downregulated. Third, during in vitro bFGF-induced lens cell differentiation, knockdown of p53 or Bak leads to significant inhibition of lens cell differentiation. Fourth, besides the major distribution of Bak in cytoplasm, it is also localized in the nucleus in normal lens or bFGF-induced differentiating lens cells. Finally, p53 and Bak are co-localized in both cytoplasm and nucleus, and their interaction regulates the stability of p53. Together, these results demonstrate for the first time that the p53-Bak apoptotic signaling axis plays an essential role in regulating lens differentiation.  相似文献   

19.
Kim Y  Rice AE  Denu JM 《Biochemistry》2003,42(51):15197-15207
The dual specificity mitogen-activated protein kinase phosphatase MKP3 downregulates mitogenic signaling through dephosphorylation of extracellular signal-regulated kinase (ERK). Like other MKPs, MKP3 consists of a noncatalytic N-terminal domain and a catalytic C-terminal domain. ERK binding to the N-terminal noncatalytic domain of MKP3 has been shown to increase (up to 100-fold) the catalytic activity of MKP3 toward small artificial substrates. Here, we address the function of the N-terminal domain of MKP3 in either inter- or intramolecular dephosphorylation of pERK (phosphorylated ERK) and the stoichiometry of the MKP3/pERK Michaelis complex. These are important mechanistic distinctions given the observation that ERK exists in a monomer/dimer equilibrium that is shifted toward the dimer when phosphorylated and given that MKP3 undergoes catalytic activation toward other substrates when bound to ERK. Wild-type and engineered mutants of ERK and MKP3, binding analyses, reaction kinetics, and chemical cross-linking studies were used to demonstrate that the monomer of MKP3 binds to the monomeric form of pERK and that MKP3 within the resulting heterodimer performs intramolecular dephosphorylation of pERK. This study provides the first direct evidence that MKP3 utilizes intramolecular dephosphorylation between a complex consisting of one molecule each of MKP3 and ERK. Catalytic activation and substrate tethering by MKP3 lead to a >or=4000-fold rate enhancement (k(cat)/K(m)) for dephosphorylation of pERK.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号