首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental and clinical findings have shown that administration of adrenoceptor antagonists alleviated different aspects of drug withdrawal and dependence. The present study tested the hypothesis that changes in CREB activation and phosphorylated TORC1 levels in the hypothalamic paraventricular nucleus (PVN) after naloxone-precipitated morphine withdrawal as well as the HPA axis activity arises from α(1)- and/or β-adrenoceptor activation. The effects of morphine dependence and withdrawal on CREB phosphorylation (pCREB), phosphorylated TORC1 (pTORC1), and HPA axis response were measured by Western-blot, immunohistochemistry and radioimmunoassay in rats pretreated with prazosin (α(1)-adrenoceptor antagonist) or propranolol (β-adrenoceptor antagonist). In addition, the effects of morphine withdrawal on MHPG (the main NA metabolite at the central nervous system) and NA content and turnover were evaluated by HPLC. We found an increase in MHPG and NA turnover in morphine-withdrawn rats, which were accompanied by increased pCREB immunoreactivity and plasma corticosterone concentrations. Levels of the inactive form of TORC1 (pTORC1) were decreased during withdrawal. Prazosin but not propranolol blocked the rise in pCREB level and the decrease in pTORC1 immunoreactivity. In addition, the HPA axis response to morphine withdrawal was attenuated in prazosin-pretreated rats. Present results suggest that, during acute morphine withdrawal, NA may control the HPA axis activity through CREB activation at the PVN level. We concluded that the combined increase in CREB phosphorylation and decrease in pTORC1 levels might represent, in part, two of the mechanisms of CREB activation at the PVN during morphine withdrawal.  相似文献   

2.
The obese Zucker (fa/fa) rat is characterized by hyperphagia, hyperinsulinemia, an increase in fat deposition, and a hyperactivity in the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis in fa/fa rats is hypersensitive to stressful experimental conditions. Food deprivation even leads to a stress reaction in obese fa/fa rats. The present study was conducted to investigate the role of corticosterone in obese rats on the basal, fasting, and postprandial metabolic rate as well as on the central expression of the thyrotropin-releasing hormone (TRH) in these conditions. In addition, the study was aimed at clarifying whether the high levels of corticosterone in obese rats are responsible for the induction of the stress reaction to food deprivation in these animals. The present results demonstrate that whole body fat oxidation and postprandial metabolic responses in obese Zucker rats were improved by adrenalectomy (ADX). At the level of the central nervous system, ADX reversed a decrease in TRH mRNA expression in the paraventricular hypothalamus (PVH) detected in fasting animals. Considering all feeding conditions, the obese rats demonstrated lower TRH mRNA levels compared with lean animals. ADX resulted in an enhanced postprandial activation of the parvocellular PVH. In contrast, the magnocellular part of the PVH was less responsive to refeeding in ADX animals. Finally, ADX failed to prevent the stress response of obese rats to food deprivation. The present results provide evidence that the removal of adrenals resolve some of the metabolic defects encountered in obese Zucker rats. They also demonstrate that not all the abnormalities of the obese Zucker rats are attributable to the hyperactivity of the HPA axis.  相似文献   

3.
4.
Previous report from our laboratory showed that morphine produces a stimulatory effect of hypothalamic noradrenaline (NA) turnover concurrently with enhanced pituitary-adrenal response after its acute injection and during withdrawal. In the present work we have studied the effects of acute and chronic administration of the kappa agonist U-50,488H as well as the influence of U-50,488H withdrawal on the activity of hypothalamic NA and dopamine (DA) neurons and on the activity of hypothalamic-pituitary-adrenal (HPA) axis. A single dose of U-50,488H (15 mg/kg i.p.) significantly increased hypothalamic NA and decreased DA turnover at the time of an enhanced corticosterone release. Rats rendered tolerant to the kappa agonist by administration of U-50,488H twice a day for 4 days showed no changes in corticosterone secretion. Additionally, a decrease in both hypothalamic MHPG (the cerebral NA metabolite) production and NA turnover was observed, whereas DOPAC concentration and DA turnover were enhanced, which indicate the development of tolerance towards the neuronal and endocrine actions of U-50,488H. After naloxone (3 mg/kg s.c.) administration to U-50,488H-tolerant rats, we found neither behavioural signs of physical dependence nor changes in hypothalamic catecholaminergic neurotransmission. In addition, corticosterone secretion was not altered in U-50,488H withdrawn rats. Present data clearly indicate that tolerance develops towards the NA turnover accelerating and DA turnover decreasing effect of U-50,488H. Importantly and by contrast to mu agonists, present results demonstrate that U-50,488H withdrawal produce no changes in hypothalamic catecholamines turnover or in corticosterone release (an index of the hypothalamus-pituitary-adrenal activity), which indicate the absence of neuroendocrine dependence on the kappa agonist. As has been proposed, this would suggest that the mu and the kappa receptor be regulated through different cellular mechanisms, as kappa agonists have a lower proclivity to induce dependence.  相似文献   

5.
6.
Mechanisms of increase in diazepam binding inhibitor (DBI) mRNA expression in mouse cerebrocortical neurons after sustained morphine exposure were investigated. Increases in DBI and its mRNA expressions induced by sustained morphine (0.3 μM) exposure for 3 days were completely abolished by naloxone and nifedipine, but not by ω-agatoxin VIA and ω-conotoxin GIVA. Increase in [3H]diltiazem binding to the particulate fractions from the morphine-treated neurons was due to increased Bmax value with no changes in Kd value. Western blot analysis on l-type high voltage-gated calcium channel (HVCC) subunits revealed the increased expressions of α1C, α1D, and α2/δ1 subunits and decreased of β4 subunit expression, whereas expression of N- and P/Q-type HVCC subunits was not changed. These results indicate that morphine-induced increase in DBI mRNA expression is mediated via increased Ca2+ entry through up-regulated l-type HVCCs.  相似文献   

7.
Both the hypothalamus-pituitary-adrenal (HPA) axis and the extrahypothalamic brain stress system are key elements of the neural circuitry that regulates the negative states during abstinence from chronic drug exposure. Orexins have recently been hypothesized to modulate the extended amygdala and to contribute to the negative emotional state associated with dependence. This study examined the impact of chronic morphine and withdrawal on the lateral hypothalamic (LH) orexin A (OXA) gene expression and activity as well as OXA involvement in the brain stress response to morphine abstinence. Male Wistar rats received chronic morphine followed by naloxone to precipitate withdrawal. The selective OX1R antagonist SB334867 was used to examine whether orexins' activity is related to somatic symptoms of opiate withdrawal and alterations in HPA axis and extended amygdala in rats dependent on morphine. OXA mRNA was induced in the hypothalamus during morphine withdrawal, which was accompanied by activation of OXA neurons in the LH. Importantly, SB334867 attenuated the somatic symptoms of withdrawal, and reduced morphine withdrawal-induced c-Fos expression in the nucleus accumbens (NAc) shell, bed nucleus of stria terminalis, central amygdala and hypothalamic paraventricular nucleus, but did not modify the HPA axis activity. These results highlight a critical role of OXA signalling, via OX1R, in activation of brain stress system to morphine withdrawal and suggest that all orexinergic subpopulations in the lateral hypothalamic area contribute in this response.  相似文献   

8.
G Torres  C Rivier 《Life sciences》1992,51(13):1041-1048
The role of multiple (iv) injections of cocaine on the rat hypothalamic-pituitary-adrenal (HPA) axis was examined using four different temporal regimens of drug exposure. In intact rats, cocaine (5 mg/kg) consistently stimulated the secretion of adrenocorticotropin hormone (ACTH) and corticosterone over a 6 hr interval regimen. In all experimental groups, administration of the vehicle alone failed to measurably alter the secretion of the aforementioned hormones. When rats where exposed to the drug over a 4 hr interval regimen, a modest attenuation of ACTH, but not corticosterone, secretion was observed following the third and last cocaine injection. To test whether the attenuation of ACTH secretion to cocaine administration was caused by corticosterone-mediated negative feedback, the response of intact and adrenalectomized (ADX) rats over 2 hr and 1 hr interval regimens was compared. In intact rats, both drug interval regimens resulted in a significant attenuation of ACTH secretion following, the second and third injections of the drug. ADX rats, on the other hand, exhibited significant increases in ACTH levels following either interval regimens, though we observed a modest blunting of pituitary responsiveness to the 1 hr regimen. From these results we conclude that in intact rats the activity of the HPA axis is significantly attenuated in response to multiple, acute cocaine injections, and that this decreased response may be at least in part caused by a negative corticoid feedback mechanism.  相似文献   

9.
Estradiol (E2) plays an important role in controlling the homeostasis of body fluids. Several studies have reported the involvement of the hypothalamic pituitary adrenal axis (HPA) in the homeostatic control of hydromineral balance and the influence of estrogens on the modulation of this system. Nevertheless, until now, the physiological relevance of HPA axis activity on the hydromineral balance in females has not yet been fully elucidated. Therefore, the objective of the present study was to evaluate the effects of E2 (20 μg/animal) pretreatment on neuroendocrine and hydroelectrolyte changes induced by adrenalectomy (ADX) with or without glucocorticoid hormone replacement (corticosterone, CORT; 10 mg/kg) in ovariectomized rats (OVX). The results show that sodium appetite, natriuresis and the elevated plasma angiotensin II (ANG II) concentration induced by ADX were attenuated by E2 pretreatment. Additionally, a reduction of AT1 mRNA expression in the subfornical organ (SFO) and an increase in plasma atrial natriuretic peptide (ANP) concentrations by E2 pretreatment were observed. E2 pretreatment reversed the reduction in water intake induced by ADX in ADX CORT-replaced rats. Moreover, E2 pretreatment attenuated corticotropin releasing factor (CRF) mRNA expression in the paraventricular nucleus (PVN) induced by ADX. In contrast, E2 pretreatment increased CRF mRNA expression in the PVN in ADX CORT-replaced rats. Taken together, these results suggest that E2 has an important role in the modulation of behavioral and neuroendocrine responses involved in the maintenance of body fluid homeostasis in ADX rats with or without glucocorticoid replacement therapy.  相似文献   

10.
Elevated plasma levels of prolactin (PRL) have been reported in several physiological and pathological conditions, such as lactation, prolactinoma, and dopaminergic antipsychotic drug uses. Although PRL is a calcium-regulating hormone that stimulates intestinal calcium absorption in lactating rats, whether PRL is capable of stimulating calcium absorption in male rats has been elusive. Herein, the transepithelial calcium transport and electrical characteristics were determined in ex vivo duodenal tissues of male rats by Ussing chamber technique. We found that PRL receptors were abundantly present in the basolateral membrane of the duodenal epithelial cells. PRL (200–800 ng/mL) markedly increased the active duodenal calcium transport in a dose-dependent fashion without effect on the transepithelial resistance. The PRL-enhanced active duodenal calcium transport was completely abolished by L-type calcium channel blocker (nifedipine) as well as inhibitors of the major basolateral calcium transporters, namely plasma membrane Ca2+-ATPase and Na+/Ca2+ exchanger. Several intracellular mediators, such as JAK2, MEK, PI3K and Src kinase, were involved in the PRL-enhanced transcellular calcium transport. Moreover, PRL also stimulated the paracellular calcium transport in the duodenum of male rats in a PI3K-dependent manner. In conclusion, PRL appeared to be a calcium-regulating hormone in male rats by enhancing the L-type calcium channel-mediated transcellular and the paracellular passive duodenal calcium transport. This phenomenon could help restrict or alleviate negative calcium balance and osteoporosis that often accompany hyperprolactinemia in male patients.  相似文献   

11.
12.
The authors have studied mechanisms which could be involved in the sustained activation of the hypothalamus–pituitary–adrenal (HPA) axis during continuous infusion of rats with recombinant human interleukin-1β (IL-1β). First, the effects of 3 days of intracerebroventricular (i.c.v.) infusion of rats with IL-1 on plasma adrenocorticotropin (ACTH) and corticosterone (B) levels were investigated. Thereafter, changes in plasma ACTH and B levels were followed in rats intraperitoneally (i.p.) infused with IL-1β after immunoneutralization of corticotropin-releasing hormone (CRH), hypophysectomy (HPX), macrophage depletion using dichloromethylene diphosphonate (Cl2MDP)-containing liposomes, adrenalectomy (ADX) and dexamethasone (DEX) administration, respectively. Infusion of IL-1β i.c.v., even in doses as low as 0.1 μg/day, induced significant increases in plasma ACTH and B levels. HPX and ADX rats died within 18 h after starting the IL-1β infusion (0.5 μg/day). Immunoneutralization of CRH significantly decreased and macrophage depletion significantly increased the stimulation of the HPA axis by IL-1 (4.0 μg/day). Administration of high doses of DEX completely abolished the stimulation of the HPA axis by IL-1β (2.0 μg/day). The present study demonstrates that lower doses of IL-1β were able to activate the HPA axis when infused i.c.v. compared with i.p. Regarding stimulation of the HPA axis by chronic i.p. infusion of IL-1β the present study: (1) provides evidence that the CRH system is involved; (2) provides no evidence for a direct stimulatory effect of IL-1β on the release of B by the adrenal gland which is of sufficient magnitude to resist the stress of chronic i.p. IL-1β infusion; (3) shows that endogenous macrophage-derived mediators, induced by i.p. IL-1β infusion, express an overall inhibitory rather than a stimulatory effect on the activity of the HPA axis; (4) demonstrates that exogenous administration of DEX blocks the effect of IL-1β, which fits well in the concept of an immunoregulatory feedback between IL-1β and glucocorticoids.  相似文献   

13.
The neuroendocrine and behavioral effects of Tyr-d-Ala-Gly-Phe-d-Nle-Arg-Phe (DADN), a more stable derivative of the endogenous opiate Met-enkephalin related peptide Met5-enkephalin-Arg6-Phe7 were investigated in mice. The behavioral experiments consisted of monitoring the horizontal (square crossing) and vertical (rearing) locomotion in the open field system. To evaluate the effect of the heptapeptide on the hypothalamo-pituitary-adrenal (HPA) axis, the plasma corticosterone level was measured. DADN induced dose-dependent increases in locomotion and rearing 30 min after intracerebroventricular injection and also elicited marked activation of the hormonal stress response. To elucidate the receptors involved in the mediation of these actions, animals were pretreated with the nonselective opioid antagonist naloxone, the selective κ-receptor antagonist nor-binaltorphimine or the μ1-receptor blocker naloxonazine. Both the HPA activation and the behavioral responses were diminished by the preadministration of naloxone. Nor-binaltorphimine did not display a significant effect, while naloxonazine completely abolished the hyperactivity and the corticosterone elevation elicited by the analog. These findings suggest that μ-receptors predominate in the mediation of the neuroendocrine actions of DADN, while κ-receptors do not play a significant role.  相似文献   

14.
Melanocortin system and corticotropin releasing hormone (CRH) are implicated in the control of feeding behavior. Besides its anorexigenic effect on food intake, CRH is one of the most important regulators of hypothalamic-pituitary-adrenal (HPA) axis activity. Therefore, there could be an interplay between HPA axis activity and melanocortin system. We investigated the expression of melanocortin-4 receptor (MC4-R) mRNA in the hypothalamus of rats after 14 days of food restriction or after a fasting-refeeding regimen, in sham or adrenalectomized rats. Male Wistar rats were subjected to free access to food or food ingestion restricted for 2 h a day (8-10 AM) during 14 d, when plasma corticosterone, ACTH, insulin, leptin concentrations, and MC4-R mRNA expression were determined before and after refeeding. Another set of rats was fasted for 48 h, followed by refeeding during 2 or 4 h on the seventh day after adrenalectomy (ADX) or sham surgery. On the day of the experiment, rats were anesthetized and perfused and the brain processed for MC4-R mRNA by in situ hybridization. Long-term reduction of food intake, either secondary to food restriction or adrenalectomy, reduced body weight gain and also leptin and insulin plasma concentrations. Food ingestion reduced MC4-R expression in the paraventricular nucleus in naive rats subjected to food restriction and also in sham rats fasted for 48 h. However, after ADX, MC4-R expression was not changed by refeeding. In conclusion, the present data indicate that MC4-R expression is downregulated by food ingestion and this response could be modulated by glucocorticoid withdrawal.  相似文献   

15.
Single channel patch-clamp recordings show that embryonic rat spinal motoneurons express anomalous L-type calcium channels, which reopen upon repolarization to resting potentials, displaying both short and long reopenings. The probability of reopening increases with increasing voltage of the preceding depolarization without any apparent correlation with inactivation during the depolarization. The probability of long with respect to short reopenings increases with increasing length of the depolarization, with little change in the total number of reopenings and in their delay. With less negative repolarization voltages, the delay increases, while the mean duration of both short and long reopenings decreases, remaining longer than that of the openings during the preceding depolarization. Open times decrease with increasing voltage in the range -60 to +40 mV. Closed times tend to increase at V > 20 mV. The open probability is low at all voltages and has an anomalous bell-shaped voltage dependence. We provide evidence that short and long reopenings of anomalous L-type channels correspond to two gating modes, whose relative probability depends on voltage. Positive voltages favor both the transition from a short-opening to a long-opening mode and the occupancy of a closed state outside the activation pathway within each mode from which the channel reopens upon repolarization. The voltage dependence of the probability of reopenings reflects the voltage dependence of the occupancy of these closed states, while the relative probability of long with respect to short reopenings reflects the voltage dependence of the equilibrium between modes. The anomalous gating persists after patch excision, and therefore our data rule out voltage-dependent block by diffusible ions as the basis for the anomalous gating and imply that a diffusible cytosolic factor is not necessary for voltage-dependent potentiation of anomalous L-type channels.  相似文献   

16.
Regional cerebral glucose utilization (RCGU) and behavior during naloxone precipitated withdrawal were studied in rats made dependent on either sufentanil, a highly selective mu opiate agonist, or morphine. Changes in RCGU during withdrawal in 23 of 24 anatomically related limbic and brainstem structures were indistinguishable between rats dependent on morphine or sufentanil. Linear regression analysis indicated that RCGU changes during withdrawal in these two groups were highly correlated (r=0.95). Withdrawal behaviors (autonomic signs of withdrawal, jumps, weight loss, and incidence of diarrhea) were likewise indistinguishable between the two groups. The correlations of both these measurements of dependence suggest that chronic occupation of mu opiate receptors alone is sufficient to produce dependence that is indistinguishable from morphine dependence.  相似文献   

17.
The effect of opiate receptors blocker naloxone on ACTH and corticosterone secretion in normal, dexamethasone-treated and hypophysectomized rats was studied. A dose-related increase in plasma corticosterone level was found at 45 min after s.c. injection of naloxone in a dose range of 0.25-2.0 mg kg-1. The rise in plasma corticosterone was preceded by a slight increase in plasma ACTH. Acute morphine administration in a relatively low dose (6 mg kg-1 s.c.) induced a significant rise in both plasma ACTH and corticosterone levels. Dexamethasone treatment was followed by low basal corticosterone level, by total inhibition of the stress response and response to morphine injection, while the response to ACTH administration was normal. Under these circumstances as well as in rats 6 days after hypophysectomy, naloxone failed to increase plasma corticosterone levels. It is concluded that a direct stimulation of corticosteroid biosynthesis in adrenal cortex is not involved in the mechanism of naloxone-induced activation of pituitary-adrenocortical function.  相似文献   

18.
The effects of prenatal stress on the hypothalamic-pituitary-adrenal (HPA) axis activity and brain glycocorticoid receptors were studied in neonatal male and female offspring, as well as the influence of neonatal glycocorticoid receptors blockade on hormonal stress reactivity of adult rats. The results showed that there were sexual differences in plasma corticosterone level and corticosteroid binding in the cortex and hypothalamus of 5-day old control rats. Prenatal stress increased basal level of corticosterone in female rats, decreased corticosterone binding in hypothalamus and hippocampus of male and female rats, and increased corticosteroid receptor level in the male cortex. Neonatal administration of glycocorticoid receptor antagonist did not change plasma corticosterone level in 5-day old rats, but prolonged hormonal stress response of the HPA axis in adult male rats and increased hormonal stress response in female ones. The character of the IIPA axis activity of male and female rats with neonatal blockade of glycocorticoid receptors correspond to hormonal stress response of prenatal stressed rats. These data suggest that change of brain glycocorticoid receptors function in neonatal period of development might be one of the mechanisms of prenatal stress influence on the HPA axis activity in the adulthood.  相似文献   

19.
Detrimental consequences of prenatal stress include increased hypothalamic-pituitary-adrenal (HPA) function, anxiety and depression-like behavior in adult offspring. To identify the role of maternal corticosterone milieu in the fetal programming of adult function, we measured these same behavioral and hormonal endpoints after maternal adrenalectomy (ADX) and replacement with normal or moderately high levels of corticosterone (CORT). Adult male and female offspring exhibited differing HPA responses to maternal ADX. In female offspring of ADX mothers, exaggerated plasma ACTH stress responses were reversed by the higher, but not the lower, dose of maternal CORT. In contrast, male offspring of both ADX and ADX dams with higher CORT replacement showed exaggerated ACTH stress responses. Hypothalamic glucocorticoid receptor (GR) expression was decreased in these latter groups, while hippocampal GR increased only in the ADX offspring. Activity of young offspring of ADX dams replaced with the higher dose of CORT decreased in the open field test of exploration/anxiety, while immobility behavior of adult offspring in the forced swim test of depression increased following maternal ADX or higher levels of CORT replacement. Interestingly, for some measures, none or moderately high CORT replacement resulted in similar deficits in this study. These findings are in accord with consequences of prenatal stress or prenatal dexamethasone exposure, suggesting that a common mechanism may underlie the effects of too low or too high maternal glucocorticoids on adult HPA function and behavior.  相似文献   

20.
R M Eisenberg 《Life sciences》1983,32(14):1547-1552
Clonidine has been used successfully in the treatment of opiate dependence. The discomforting effects of withdrawal are attenuated by the drug. The question of whether the more central process of dependence is affected by clonidine was tested in the present study. Change in plasma corticosterone was used as the indication of the stress of acute withdrawal from morphine. Conscious, unrestrained male rats showed a dose-related, though somewhat delayed, increase in plasma corticosterone after clonidine (0.01-0.1 mg/kg). The suggested mechanism for this effect involves presynaptic inhibition of noradrenergic neurons inhibiting CRF (corticotropin-releasing factor) release. Similar animals showed an elevation of plasma corticosterone after naloxone (0.4 mg/kg) was administered 3 hrs following a single morphine-priming (10 mg/kg). The naloxone-precipitated response was unaffected by clonidine (0.04 mg/kg). This dose of clonidine did not substitute for morphine-priming to produce the naloxone-precipitated response. The data suggests that clonidine elevated plasma corticosterone by an indirect mechanism. Further, the stress associated with acute withdrawal is unaffected by clonidine suggesting that the drug does not alter dependence development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号