首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Breeding for fusarium head blight (FHB) resistance of wheat is a continuous challenge for plant breeders. Resistance to FHB is a quantitative trait, governed by several to many genes and modulated by environmental conditions. The presented study was undertaken to assess the effect on improving FHB resistance and on possible unwanted side effects (‘linkage drag’) of two resistance QTL, namely Fhb1 and Qfhs.ifa-5A, from the spring wheat line CM-82036 when transferred by marker-assisted backcrossing into several European winter wheat lines. To achieve these goals, we developed and evaluated fifteen backcross-two–derived families based on nine European winter wheat varieties as recipients and the FHB resistant variety CM-82036 as resistance donor. The QTL Qfhs.ifa-5A had a relatively small impact on increasing FHB resistance. On average lines with Fhb1 plus Qfhs.ifa-5A combined were only slightly more resistant compared to lines with Fhb1 alone. The obtained results suggest that the effect of the spring wheat–derived QTL on improving FHB resistance increases in the order Qfhs.ifa-5A < Fhb1 ≤ Qfhs.ifa-5A plus Fhb1 combined. The genetic background of the recipient line had a large impact on the resistance level of the obtained lines. No systematic negative effect of the spring wheat–derived QTL on grain yield, thousand grain weight, hectoliter weight and protein content was found. The use of spring wheat–derived FHB resistance QTL for breeding high yielding cultivars with improved FHB resistance appears therefore highly promising.  相似文献   

2.
3.
4.
5.
Fusarium head blight (FHB, scab) causes severe yield and quality losses, but the most serious concern is the mycotoxin contamination of cereal food and feed. The cultivation of resistant varieties may contribute to integrated control of this fungal disease. Breeding for FHB resistance by conventional selection is feasible, but tedious and expensive. The aim of this work was to detect QTLs for combined type I and type II resistance against FHB and estimate their effects in comparison to the QTLs identified previously for type II resistance. A population of 364, F1 derived doubled-haploid (DH) lines from the cross 'CM-82036' (resistant)/'Remus' (susceptible) was evaluated for components of FHB resistance during 2 years under field conditions. Plants were inoculated at anthesis with a conidial suspension of Fusarium graminearum or Fusarium culmorum. The crop was kept wet for 20 h after inoculation by mist-irrigation. Disease severity was assessed by visual scoring. Initial QTL analysis was performed on 239 randomly chosen DH lines and extended to 361 lines for putative QTL regions. Different marker types were applied, with an emphasis on PCR markers. Analysis of variance, as well as simple and composite interval mapping, revealed that two genomic regions were significantly associated with FHB resistance. The two QTLs on chromosomes 3B (Qfhs.ndsu-3BS) and 5A (Qfhs.ifa-5A) explained 29 and 20% of the phenotypic variance, respectively, for visual FHB severity. Qfhs.ndsu-3BS appeared to be associated mainly with resistance to fungal spread, and Qfhs.ifa-5A primarily with resistance to fungal penetration. Both QTL regions were tagged with flanking SSR markers. These results indicate that FHB resistance was under the control of two major QTLs operating together with unknown numbers of minor genes. Marker-assisted selection for these two major QTLs appears feasible and should accelerate the development of resistant and locally adapted wheat cultivars.  相似文献   

6.
Fusarium head blight (FHB) caused by Fusarium graminearum and F. culmorum is a devastating disease with high effects on grain yield and quality. We developed spring wheat lines incorporating the highly effective FHB resistance quantitative trait loci (QTL) Fhb1 and Qfhs.ifa‐5A. Whether these QTL lead to competition within Fusarium populations in the field resulting in isolates with higher aggressiveness has not been analysed. The aims of this study were to determine (i) the aggressiveness potential of F. graminearum and F. culmorum isolates, (ii) competition effects of these isolates in binary mixtures and (iii) the stability of resistant hosts. Six F. graminearum, two F. culmorum isolates and seven binary mixtures containing these isolates were tested for their aggressiveness and mycotoxin production at two locations in South Germany in 2007 and 2008. Host lines were four spring wheat lines containing the resistance QTL Fhb1 and/or Qfhs.ifa‐5A or none of them and one standard variety. Re‐isolates were sampled from plots inoculated with the binary mixtures to identify the percentage of each isolate in the mixture by simple sequence repeat markers. Resistant host lines reacted as expected and had a high stability to all isolates and mixtures. Only less important host × mixture interactions were detected. Aggressiveness among isolates and mixtures was significantly different. Type and amount of mycotoxin and high single isolate aggressiveness were not necessarily advantageous in the mixture. However, both F. culmorum isolates outcompeted F. graminearum isolates. Significant deviations from the inoculated 1 : 1 proportions occurred in 34 of 49 cases, illustrating that competition effects appeared in the mixtures. These differences depended mainly on the year and not on the level of host resistance. We conclude that resistance should not be affected by the Fusarium isolates and mixtures.  相似文献   

7.
A major fusarium head blight (FHB) resistance gene Fhb1 (syn. Qfhs.ndsu-3BS) was fine mapped on the distal segment of chromosome 3BS of spring wheat (Triticum aestivum L.) as a Mendelian factor. FHB resistant parents, Sumai 3 and Nyubai, were used as sources of this gene. Two mapping populations were developed to facilitate segregation of Qfhs.ndsu-3BS in either a fixed resistant (Sumai 3*5/Thatcher) (S/T) or fixed susceptible (HC374/3*98B69-L47) (HC/98) genetic background (HC374 = Wuhan1/Nyubai) for Type II resistance. Type II resistance (disease spread within the spike) was phenotyped in the greenhouse using single floret injections with a mixture of macro-conidia of three virulent strains of Fusarium graminearum. Due to the limited heterogeneity in the genetic background of the crosses and based on the spread of infection, fixed recombinants in the interval between molecular markers XGWM533 and XGWM493 on 3BS could be assigned to discrete “resistant” and “susceptible” classes. The phenotypic distribution was bimodal with progeny clearly resembling either the resistant or susceptible parent. Marker order for the two maps was identical with the exception of marker STS-3BS 142, which was not polymorphic in the HC/98 population. The major gene Fhb1 was successfully fine mapped on chromosome 3BS in the same location in the two populations within a 1.27-cM interval (S/T) and a 6.05-cM interval (HC/98). Fine mapping of Fhb1 in wheat provides tightly linked markers that can reduce linkage drag associated with marker-assisted selection of Fhb1 and assist in the isolation, sequencing and functional identification of the underlying resistance gene.  相似文献   

8.
We investigated the hypothesis that resistance to deoxynivalenol (DON) is a major resistance factor in the Fusarium head blight (FHB) resistance complex of wheat. Ninety-six double haploid lines from a cross between 'CM-82036' and 'Remus' were examined. The lines were tested for DON resistance after application of the toxin in the ear, and for resistances to initial infection and spread of FHB after artificial inoculation with Fusarium spp. Toxin application to flowering ears induced typical FHB symptoms. Quantitative trait locus (QTL) analyses detected one locus with a major effect on DON resistance (logarithm of odds = 53.1, R2 = 92.6). The DON resistance phenotype was closely associated with an important FHB resistance QTL, Qfhs.ndsu-3BS, which previously was identified as governing resistance to spread of symptoms in the ear. Resistance to the toxin was correlated with resistance to spread of FHB (r = 0.74, P < 0.001). In resistant wheat lines, the applied toxin was converted to DON-3-O-glucoside as the detoxification product. There was a close relation between the DON-3-glucoside/DON ratio and DON resistance in the toxin-treated ears (R2 = 0.84). We conclude that resistance to DON is important in the FHB resistance complex and hypothesize that Qfhs.ndsu-3BS either encodes a DON-glucosyl-transferase or regulates the expression of such an enzyme.  相似文献   

9.
A major quantitative trait locus (QTL), Qfhs.ndsu-3BS, for resistance to Fusarium head blight (FHB) in wheat has been identified and verified by several research groups. The objectives of this study were to construct a fine genetic map of this QTL region and to examine microcolinearity in the QTL region among wheat, rice, and barley. Two simple sequence repeat (SSR) markers (Xgwm533 and Xgwm493) flanking this QTL were used to screen for recombinants in a population of 3,156 plants derived from a single F7 plant heterozygous for the Qfhs.ndsu-3BS region. A total of 382 recombinants were identified, and they were genotyped with two more SSR markers and eight sequence-tagged site (STS) markers. A fine genetic map of the Qfhs.ndsu-3BS region was constructed and spanned 6.3 cM. Based on replicated evaluations of homozygous recombinant lines for Type II FHB resistance, Qfhs.ndsu-3BS, redesignated as Fhb1, was placed into a 1.2-cM marker interval flanked by STS3B-189 and STS3B-206. Primers of STS markers were designed from wheat expressed sequence tags homologous to each of six barley genes expected to be located near this QTL region. A comparison of the wheat fine genetic map and physical maps of rice and barley revealed inversions and insertions/deletions. This suggests a complex microcolinearity among wheat, rice, and barley in this QTL region.  相似文献   

10.
Resistance to Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe in wheat (Triticum aestivum L.) was identified in disomic chromosome substitution and translocation lines, into which chromosome 7el2 had been introgressed from wheatgrass, Thinopyrum ponticum. In this study, two chromosome substitution lines with different origins (designated as el1 and el2) and with different reactions to infection by F. graminearum were crossed to develop a segregating mapping population. The objectives of this study were to determine the effectiveness of this type II resistance and map it on chromosome 7el2. Type II resistance to FHB was characterized in the F2, F2:3 families, F4:5 plants and F5:6 recombinant inbred lines developed by single-seed descent; and the population was characterized in the F2 and F5 with DNA markers along the long arm of 7el. Composite interval mapping revealed a FHB resistance QTL, designated Qfhs.pur-7EL, located in the distal region of the long arm of 7el2 and delimited with flanking markers XBE445653 and Xcfa2240. Additive effects of Qfhs.pur-7EL reduced the number of diseased spikelets per spike following inoculation of one floret in four experiments by 1.5–2.6 and explained 15.1–32.5% of the phenotypic variation in the populations. Several STS-derived and EST-derived PCR or CAPS markers were developed in this chromosomal region, and showed the specificity of 7el2 compared to an array of wheat lines possessing other sources of FHB resistance. These markers are useful in an effort to shorten the chromosome segment of 7el2 and to use for marker-assisted introgression of this resistance into wheat.  相似文献   

11.

Background

Fusarium head blight (FHB), mainly caused by Fusarium graminearum, substantially reduces wheat grain yield and quality worldwide. Proteins play important roles in defense against the fungal infection. This study characterized differentially expressed proteins between near-isogenic lines (NILs) contrasting in alleles of Fhb1, a major FHB resistance gene in wheat, to identify proteins underlining FHB resistance of Fhb1.

Methods

The two-dimensional protein profiles were compared between the Fusarium-inoculated spikes of the two NILs collected 72 h after inoculation. The protein profiles of mock- and Fusarium-inoculated Fhb1+NIL were also compared to identify pathogen-responsive proteins.

Results

Eight proteins were either induced or upregulated in inoculated Fhb1+NIL when compared with mock-inoculated Fhb1+NIL; nine proteins were either induced or upregulated in the Fusarium-inoculated Fhb1+NIL when compared with Fusarium-inoculated Fhb1NIL. Proteins that were differentially expressed in the Fhb1+NIL, not in the Fhb1NIL, after Fusarium inoculation included wheat proteins for defending fungal penetration, photosynthesis, energy metabolism, and detoxification.

Conclusions

Coordinated expression of the identified proteins resulted in FHB resistance in Fhb1+NIL. The results provide insight into the pathway of Fhb1-mediated FHB resistance.  相似文献   

12.
Fusarium head blight (FHB) is a severe global wheat disease that may cause severe yield losses, especially during epidemic years. Transforming the regulatory genes in the metabolic pathways of disease resistance into wheat via transgenic methods is one way to improve resistance to FHB. ScNPR1 (Secale cereale‐NPR1), a regulatory gene for systemic acquired resistance (SAR), was isolated from S. cereale cv Jingzhouheimai and transformed into the moderately FHB‐susceptible wheat variety Ningmai 13. RT‐PCR analysis indicated that the ScNPR1 gene was stably expressed in transgenic plants. An evaluation of the resistance to FHB revealed that six ScNPR1 transgenic lines (NP1, NP2, NP3, NP4, NP5 and NP6) exhibited significantly higher FHB resistance than the wild‐type wheat Ningmai 13 and the null‐segregated plants. The expression of pathogenesis‐related (PR) genes after Fusarium graminearum inoculation was earlier or higher than those in the wild‐type variety Ningmai 13. The high expression in the early stages of PR genes should account for the enhanced FHB resistance in the transgenic lines. Our results suggest that overexpression of ScNPR1 could be used to improve FHB resistance in wheat.  相似文献   

13.
Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease in wheat (Triticum aestivum) that results in substantial yield losses and mycotoxin contamination. Reliable genetic resources for FHB resistance in wheat are lacking. In this study, we characterized glycoside hydrolase 12 (GH12) family proteins secreted by F. graminearum. We established that two GH12 proteins, Fg05851 and Fg11037, have functionally redundant roles in F. graminearum colonization of wheat. Furthermore, we determined that the GH12 proteins Fg05851 and Fg11037 are recognized by the leucine-rich-repeat receptor-like protein RXEG1 in the dicot Nicotiana benthamiana. Heterologous expression of RXEG1 conferred wheat responsiveness to Fg05851 and Fg11037, enhanced wheat resistance to F. graminearum and reduced levels of the mycotoxin deoxynivalenol in wheat grains in an Fg05851/Fg11037-dependent manner. In the RXEG1 transgenic lines, genes related to pattern-triggered plant immunity, salicylic acid, jasmonic acid, and anti-oxidative homeostasis signalling pathways were upregulated during F. graminearum infection. However, the expression of these genes was not significantly changed during infection by the deletion mutant ΔFg05851/Fg11037, suggesting that the recognition of Fg05851/Fg11037 by RXEG1 triggered plant resistance against FHB. Moreover, introducing RXEG1 into three other different wheat cultivars via crossing also conferred resistance to F. graminearum. Expression of RXEG1 did not have obvious deleterious effects on plant growth and development in wheat. Our study reveals that N. benthamiana RXEG1 remains effective when transferred into wheat, a monocot, which in turn suggests that engineering wheat with interfamily plant immune receptor transgenes is a viable strategy for increasing resistance to FHB.  相似文献   

14.
Genetic dissection of a major Fusarium head blight QTL in tetraploid wheat   总被引:9,自引:0,他引:9  
The devastating effect of Fusarium head blight (FHB) caused by Fusarium graminearum has led to significant financial losses across the Upper Midwest of the USA. These losses have spurred the need for research in biological, chemical, and genetic control methods for this disease. To date, most of the research on FHB resistance has concentrated on hexaploid wheat (Triticum aestivum L.) lines originating from China. Other sources of resistance to FHB would be desirable. One other source of resistance for both hexaploid wheat and tetraploid durum wheat (T. turgidum L. var. durum) is the wild tetraploid, T. turgidum L. var. dicoccoides (T. dicoccoides). Previous analysis of the `Langdon'-T. dicoccoides chromosome substitution lines, LDN(Dic), indicated that the chromosome 3A substitution line expresses moderate levels of resistance to FHB. LDN(Dic-3A) recombinant inbred chromosome lines (RICL) were used to generate a linkage map of chromosome 3A with 19 molecular markers spanning a distance of 155.2 cM. The individual RICL and controls were screened for their FHB phenotype in two greenhouse seasons. Analysis of 83 RICL identified a single major quantitative trait locus, Qfhs.ndsu-3AS, that explains 37% of the phenotypic or 55% of the genetic variation for FHB resistance. A microsatellite locus, Xgwm2, is tightly linked to the highest point of the QTL peak. A region of the LDN (Dic-3A) chromosome associated with the QTL for FHB resistance encompasses a 29.3 cM region from Xmwg14 to Xbcd828.  相似文献   

15.
In this study, a total of nine different biotransformation products of the Fusarium mycotoxin deoxynivalenol (DON) formed in wheat during detoxification of the toxin are characterized by liquid chromatography—high resolution mass spectrometry (LC-HRMS). The detected metabolites suggest that DON is conjugated to endogenous metabolites via two major metabolism routes, namely 1) glucosylation (DON-3-glucoside, DON-di-hexoside, 15-acetyl-DON-3-glucoside, DON-malonylglucoside) and 2) glutathione conjugation (DON-S-glutathione, “DON-2H”-S-glutathione, DON-S-cysteinyl-glycine and DON-S-cysteine). Furthermore, conjugation of DON to a putative sugar alcohol (hexitol) was found. A molar mass balance for the cultivar ‘Remus’ treated with 1 mg DON revealed that under the test conditions approximately 15% of the added DON were transformed into DON-3-glucoside and another 19% were transformed to the remaining eight biotransformation products or irreversibly bound to the plant matrix. Additionally, metabolite abundance was monitored as a function of time for each DON derivative and was established for six DON treated wheat lines (1 mg/ear) differing in resistance quantitative trait loci (QTL) Fhb1 and/or Qfhs.ifa-5A. All cultivars carrying QTL Fhb1 showed similar metabolism kinetics: Formation of DON-Glc was faster, while DON-GSH production was less efficient compared to cultivars which lacked the resistance QTL Fhb1. Moreover, all wheat lines harboring Fhb1 showed significantly elevated D3G/DON abundance ratios.  相似文献   

16.
Fusarium head blight (FHB) resistance was identified in the alien species Leymus racemosus, and wheat-Leymus introgression lines with FHB resistance were reported previously. Detailed molecular cytogenetic analysis of alien introgressions T01, T09, and T14 and the mapping of Fhb3, a new gene for FHB resistance, are reported here. The introgression line T09 had an unknown wheat-Leymus translocation chromosome. A total of 36 RFLP markers selected from the seven homoeologous groups of wheat were used to characterize T09 and determine the homoeologous relationship of the introgressed Leymus chromosome with wheat. Only short arm markers for group 7 detected Leymus-specific fragments in T09, whereas 7AS-specific RFLP fragments were missing. C-banding and genomic in situ hybridization results indicated that T09 has a compensating Robertsonian translocation T7AL·7Lr#1S involving the long arm of wheat chromosome 7A and the short arm of Leymus chromosome 7Lr#1 substituting for chromosome arm 7AS of wheat. Introgression lines T01 (2n = 44) and T14 (2n = 44) each had two pairs of independent translocation chromosomes. T01 had T4BS·4BL-7Lr#1S + T4BL-7Lr#1S·5Lr#1S. T14 had T6BS·6BL-7Lr#1S + T6BL·5Lr#1S. These translocations were recovered in the progeny of the irradiated line Lr#1 (T5Lr#1S·7Lr#1S). The three translocation lines, T01, T09, and T14, and the disomic addition 7Lr#1 were consistently resistant to FHB in greenhouse point-inoculation experiments, whereas the disomic addition 5Lr#1 was susceptible. The data indicated that at least one novel FHB resistance gene from Leymus, designated Fhb3, resides in the distal region of the short arm of chromosome 7Lr#1, because the resistant translocation lines share a common distal segment of 7Lr#1S. Three PCR-based markers, BE586744-STS, BE404728-STS, and BE586111-STS, specific for 7Lr#1S were developed to expedite marker-assisted selection in breeding programs.  相似文献   

17.
Fusarium head blight (FHB) is a devastating disease of cultivated wheat worldwide. Partial resistance to FHB has been identified in common wheat (Triticum aestivum L.). However, sources of effective FHB resistance have not been found in durum wheat (T. turgidum L. var. durum). A major FHB resistance quantitative trait loci (QTL), Qfhs.ndsu-3AS, was identified on chromosome 3A of T. dicoccoides, a wild relative of durum wheat. Here, we saturated the genomic region containing the QTL using EST-derived target region amplified polymorphism (TRAP), sequence tagged site (STS), and simple sequence repeat (SSR) markers. A total of 45 new molecular marker loci were detected on chromosome 3A and the resulting linkage map consisted of 55 markers spanning a genetic distance of 277.2 cM. Qfhs.ndsu-3AS was positioned within a chromosomal interval of 11.5 cM and is flanked by the TRAP marker loci, Xfcp401 and Xfcp397.2. The average map distance between the marker loci within this QTL region was reduced from 4.9 cM in the previous study to 3.5 cM in the present study. Comparative mapping indicated that Qfhs.ndsu-3AS is not homoeologous to Qfhs.ndsu-3BS, a major FHB QTL derived from the common wheat cultivar Sumai 3. These results facilitate our efforts toward map-based cloning of Qfhs.ndsu-3AS and utilization of this QTL in durum wheat breeding via marker-assisted selection.  相似文献   

18.
Fusarium head blight (FHB) is one of the most important fungal wheat diseases worldwide. Understanding the genetics of FHB resistance is key to facilitate the introgression of different FHB resistance genes into adapted wheat. The objective of this project was to study the FHB resistance QTL on chromosome 6B, quantify the phenotypic variation, and qualitatively map the resistance gene as a Mendelian factor. The FHB resistant parent BW278 (AC Domain*2/Sumai 3) was used as the source of the resistance allele. A large recombinant inbred line (RIL) mapping population was developed from the cross BW278/AC Foremost. The population segregated for three known FHB resistance QTL located on chromosomes 3BSc, 5A, and 6B. Molecular markers on chromosome 6B (WMC104, WMC397, GWM219), 5A (GWM154, GWM304, WMC415), and 3BS (WMC78, GWM566, WMC527) were amplified on approximately 1,440 F2:7 RILs. The marker information was used to select 89 RILs that were fixed homozygous susceptible for the 3BSc and 5A FHB QTLs and were recombinant in the 6B interval. Disease response was evaluated on 89 RILs and parental checks in the greenhouse and field nurseries. Dual floret injection (DFI) was used in greenhouse trials to evaluate disease severity (DS). Macroconidial spray inoculations were used in field nurseries conducted at two locations in southern Manitoba (Carman and Glenlea) over two years 2003 and 2004, to evaluate disease incidence, disease severity, visual rating index, and Fusarium-damaged kernels. The phenotypic distribution for all five-disease infection measurements was bimodal, with lines resembling either the resistant or susceptible checks and parents. All of the four field traits for FHB resistance mapped qualitatively to a coincident position on chromosome 6BS, flanked by GWM133 and GWM644, and is named Fhb2. The greenhouse-DS trait mapped 2 cM distal to Fhb2. Qualitative mapping of Fhb2 in wheat provides tightly linked markers that can reduce linkage drag associated with marker assisted selection of Fhb2 and aid the pyramiding of different resistance loci for wheat improvement.  相似文献   

19.
Fusarium head blight (FHB) is a destructive disease that reduces wheat grain yield and quality. To date, the quantitative trait locus on 3BS (Fhb1) from Sumai 3 has shown the largest effect on FHB resistance. Single nucleotide polymorphism (SNP) is the most common form of genetic variation and is suitable for high-throughput marker-assisted selection (MAS). We analyzed SNPs derived from 23 wheat expressed sequence tags (ESTs) that previously mapped near Fhb1 on chromosome 3BS. Using 71 Ning 7840/Clark BC7F7 recombinant inbred lines and the single-base extension method, we mapped seven SNP markers between Xgwm533 and Xgwm493, flanking markers for Fhb1. Five of the SNPs explained 45–54% of the phenotypic variation for FHB resistance. Haplotype analysis of 63 wheat accessions from eight countries based on SNPs in EST sequences, simple sequence repeats, and sequence tagged sites in the Fhb1 region identified four major groups: (1) US-Clark, (2) Asian, (3) US-Ernie, and (4) Chinese Spring. The Asian group consisted of Chinese and Japanese accessions that carry Fhb1 and could be differentiated from other groups by marker Xsnp3BS-11. All Sumai 3-related accessions formed a subgroup within the Asian group and could be sorted out by Xsnp3BS-8. The SNP markers identified in this study should be useful for MAS of Fhb1 and fine mapping to facilitate cloning of the Fhb1 resistance gene.  相似文献   

20.
Fusarium head blight (FHB) is a disease of the floral tissues of wheat and barley for which highly resistant varieties are not available. Thus, there is a need to identify genes/mechanisms that can be targeted for the control of this devastating disease. Fusarium graminearum is the primary causal agent of FHB in North America. In addition, it also causes Fusarium seedling blight. Fusarium graminearum can also cause disease in the model plant Arabidopsis thaliana. The Arabidopsis–F. graminearum pathosystem has facilitated the identification of targets for the control of disease caused by this fungus. Here, we show that resistance against F. graminearum can be enhanced by flg22, a bacterial microbe-associated molecular pattern (MAMP). flg22-induced resistance in Arabidopsis requires its cognate pattern recognition receptor (PRR) FLS2, and is accompanied by the up-regulation of WRKY29. The expression of WRKY29, which is associated with pattern-triggered immunity (PTI), is also induced in response to F. graminearum infection. Furthermore, WRKY29 is required for basal resistance as well as flg22-induced resistance to F. graminearum. Moreover, constitutive expression of WRKY29 in Arabidopsis enhances disease resistance. The PTI pathway is also activated in response to F. graminearum infection of wheat. Furthermore, flg22 application and ectopic expression of WRKY29 enhance FHB resistance in wheat. Thus, we conclude that the PTI pathway provides a target for the control of FHB in wheat. We further show that the ectopic expression of WRKY29 in wheat results in shorter stature and early heading time, traits that are important to wheat breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号