共查询到20条相似文献,搜索用时 0 毫秒
1.
The current protein structure database contains unfavorable Asn/Gln amide rotamers in the order of 20%. Here, we derive a set of self-consistent potential functions to identify and correct unfavorable rotamers. Potentials of mean force for all heavy atoms are compiled from a database of high-resolution protein crystal structures. Starting from erroneous data, a refinement-correction cycle quickly converges to a self-consistent set of potentials. The refinement is entirely driven by the deposited structure data and does not involve any assumptions on molecular interactions or any artificial constraints. The refined potentials obtained in this way identify unfavorable rotamers with high confidence. Since the state of Asn/Gln rotamers is largely determined by hydrogen bond interactions, the features of the respective potentials are of interest in terms of molecular interactions, protein structure refinement, and prediction. The Asn/Gln rotamer assignment is available as a public web service intended to support protein structure refinement and modeling. 相似文献
2.
Hydrogen-deuterium exchange of the primary amide, isobutyramide, was investigated as a model for asparagine and glutamine-NH2 exchange in a protein. A simple amide was chosen since the structures of several well-characterized proteins show most of these residues to be exposed to solvent. Isobutyramide-exchange data were obtained in 1:1 D2O:dioxane solutions using a near-infrared method. The rate data were strictly pseudo-first order and yielded an average of 95% exchange of the primary amide hydrogens. In analogy with secondary amides, the pD dependence of the rate constants was characteristic of specific acid and base catalysis. In addition, analysis of the rate-pD profile for isobutyramide indicated a significant uncatalyzed exchange reaction. Temperature-dependence studies of the first-order rate constants at a fixed pD yielded an apparent activation energy of 19.3 kcal/mole. Predicted half-life times for the exposed primary amide hydrogens in proteins, based on these exchange parameters, indicate that asparagine and glutamine side chains generally would contribute to the overall rate data only below 15°C and then only for approximately 1 pD unit around the point of minimum reaction velocity. 相似文献
3.
Tobias Harsch Philipp Schneider Bärbel Kieninger Harald Donaubauer Hans Robert Kalbitzer 《Journal of biomolecular NMR》2017,67(2):157-164
Side chain amide protons of asparagine and glutamine residues in random-coil peptides are characterized by large chemical shift differences and can be stereospecifically assigned on the basis of their chemical shift values only. The bimodal chemical shift distributions stored in the biological magnetic resonance data bank (BMRB) do not allow such an assignment. However, an analysis of the BMRB shows, that a substantial part of all stored stereospecific assignments is not correct. We show here that in most cases stereospecific assignment can also be done for folded proteins using an unbiased artificial chemical shift data base (UACSB). For a separation of the chemical shifts of the two amide resonance lines with differences ≥0.40 ppm for asparagine and differences ≥0.42 ppm for glutamine, the downfield shifted resonance lines can be assigned to Hδ21 and Hε21, respectively, at a confidence level >95%. A classifier derived from UASCB can also be used to correct the BMRB data. The program tool AssignmentChecker implemented in AUREMOL calculates the Bayesian probability for a given stereospecific assignment and automatically corrects the assignments for a given list of chemical shifts. 相似文献
4.
Simone Ciofi-Baffoni Angelo Gallo Riccardo Muzzioli Mario Piccioli 《Journal of biomolecular NMR》2014,58(2):123-128
A crucial factor for the understanding of structure-function relationships in metalloproteins is the identification of NMR signals from residues surrounding the metal cofactor. When the latter is paramagnetic, the NMR information in the proximity of the metal center may be scarce, because fast nuclear relaxation quenches signal intensity and coherence transfer efficiency. To identify residues at a short distance from a paramagnetic center, we developed a modified version of the 15N-HSQC experiment where (1) an inversion recovery filter is added prior to HSQC, (2) the INEPT period has been optimized according to fast relaxation of interested spins, (3) the inverse INEPT has been eliminated and signals acquired as antiphase doublets. The experiment has been successfully tested on a human [Fe2S2] protein which is involved in the biogenesis of iron-sulfur proteins. Thirteen HN resonances, unobserved with conventional HSQC experiments, could be identified. The structural arrangement of the protein scaffold in the proximity of the Fe/S cluster is fundamental to comprehend the molecular processes responsible for the transfer of Fe/S groups in the iron-sulfur protein assembly machineries. 相似文献
5.
The error rate of asparagine (Asn) and glutamine (Gln) amide rotamers in protein crystal structures is in the order of 20% and as a consequence the current Protein Database (PDB) contains approximately half a million incorrect Asn and Gln side-chain rotamers. Here we present NQ-Flipper, a web service based on knowledge-based potentials of mean force to automatically detect and correct erroneous rotamers. We achieve excellent agreement with expert curated data. 相似文献
6.
7.
The methodological accessibility to solution structure and dynamic investigation of paramagnetic metallobiomolecules has afforded the ability to tackle the redox pairs of electron transfer proteins of which at least one is paramagnetic, to study the orientation effects of high magnetic fields on paramagnetic biomolecules, and finally to study the role of metal-based cofactors in protein folding and stability. 相似文献
8.
9.
Utilization of the amide groups of asparagine and 2-hydroxysuccinamic Acid by young pea leaves
下载免费PDF全文

The fate of nitrogen originating from the amide group of asparagine in young pea leaves (Pisum sativum) has been studied by supplying [15N-amide]asparagine and its metabolic product, 2-hydroxysuccinamate (HSA) via the transpiration stream. Amide nitrogen from asparagine accumulated predominantly in the amide group of glutamine and HSA, and to a lesser extent in glutamate and a range of other amino acids. Treatment with 5-diazo,4-oxo-L-norvaline (DONV) a deamidase inhibitor, caused a decrease in transfer of label to glutamine-amide. Virtually no 15N was detected in HSA of leaves supplied with asparagine and the transaminase inhibitor aminooxyacetate. When [15N]HSA was supplied to pea leaves, most of the label was also found in the amide group of glutamine and this transfer was blocked by the addition of methionine sulfoximine, which caused a large increase in NH3 accumulation. DONV was not specific for asparaginase, and inhibited the deamidation of HSA, causing a decrease in transfer of 15N into glutamine-amide, NH3, and other amino acids. It is concluded from these results that use of the amide group of asparagine as a nitrogen source for young pea leaves involves deamidation of both asparagine and its transamination product HSA (possibly also oxosuccinamate). The amide group, released as ammonia, is then reassimilated via the glutamine synthetase/glutamate synthase system. 相似文献
10.
11.
12.
13.
《Analytical biochemistry》1963,6(2):144-152
- 1.1. A comparatively simple enzymic microcolorimetric method has been described for determining total glutamine and asparagine in blood.
- 2.2. The method is extremely sensitive and small amounts of blood can be used, especially in case of small laboratory animals.
- 3.3. Good recovery has been achieved for glutamine and asparagine both in blood and in pure solutions. 相似文献
14.
Recent applications of NMR spectroscopy in plant metabolomics 总被引:2,自引:0,他引:2
Recent research has established NMR as a key method for high-throughput comparative analysis of plant extracts. We discuss recent examples of the use of NMR to provide metabolomic data for various applications in plant science and look forward to the key role that NMR will play in data provision for plant systems biology. 相似文献
15.
An experimental method to selectively label side-chain NH2 groups of glutamine and asparagine in proteins with 15N is proposed. This selective labeling method enables to observe only 15NH2 resonances and thus, to discriminate between 15NH and 15NH2 resonances in a 1H-detected heteronuclear correlation spectrum. This method gives results with approximately two times higher sensitivity than those obtained by elaborate pulse sequences such as DEPT-HSQC and will be useful for studying the molecular interaction involving the side chains of Asn and Gln residues. 相似文献
16.
A residue of gamma-N-methylasparagine (gamma-NMA) is found at position beta-72 of many phycobiliproteins. delta-N-Methylglutamine is present in some bacterial ribosomal proteins. gamma-NMA was synthesized by reacting the omega-methyl ester of aspartate with methylamine and delta-N-methylglutamine by reaction of pyroglutamate with methylamine. These derivatives and the omega-methyl esters of aspartate and glutamate were characterized by melting point, by thin-layer chromatography, by amino acid analysis, by NMR spectroscopy, and after conversion to the phenylthiohydantoin (PTH) derivative. The gamma-NMA residues in peptides from allophycocyanin, C-phycocyanin, and B-phycoerythrin were stable under the conditions of automated sequential gas-liquid phase Edman degradation. On HPLC, PTH-gamma-NMA co-eluted with PTH-serine and was accompanied by a minor component eluting just prior to dimethylphenylthiourea. Similar results were obtained on manual derivatization of synthetic gamma-NMA to prepare the PTH derivative. The PTH-delta-N-methylglutamine standard eluted near the position of dimethylphenylthiourea under the usual conditions employed for the identification of PTH-amino acid derivatives in automated protein sequencing. 相似文献
17.
N]NMR determination of asparagine and glutamine nitrogen utilization for synthesis of storage protein in developing cotyledons of soybean in culture
下载免费PDF全文

Solid-state [15N]NMR was used to measure the use of the amide and amino nitrogens of glutamine and asparagine for synthesis of storage protein in cotyledons of soybean (Glycine max L. cv. Elf) in culture. No major discrimination in the incorporation of the amide or amino nitrogens of glutamine into protein is apparent, but the same nitrogens of asparagine are used with a degree of specificity. During the first seven days in culture with asparagine as the sole nitrogen source, the amino nitrogen donates approximately twice as much nitrogen to protein as does the amide nitrogen. The use of the amide nitrogen increases with longer periods of culture. The reduced use of the amide nitrogen was confirmed by its early appearance as ammonium in the culture medium. The amide nitrogen of asparagine was found at all times to be an essential precursor for protein because of its appearance in protein in residues whose nitrogens were not supplied by the amino nitrogen. In addition, methionine sulfoximine inhibited growth completely on asparagine, indicating that some ammonium assimilation is essential for storage protein synthesis. These results indicate that in a developing cotyledon, a transaminase reaction is of major importance in the utilization of asparagine for synthesis of storage protein and that, at least in the early stages of cotyledon development, reduced activities of ammonium-assimilating enzymes in the cotyledon tissue or in other tissues of the seed or pod may be a limiting factor in the use of asparagine-amide nitrogen. 相似文献
18.
Hongling Huang Saar Vandekeere Joanna Kalucka Laura Bierhansl Annalisa Zecchin Ulrike Brüning Asjad Visnagri Nadira Yuldasheva Jermaine Goveia Bert Cruys Katleen Brepoels Sabine Wyns Stephen Rayport Bart Ghesquière Stefan Vinckier Luc Schoonjans Richard Cubbon Mieke Dewerchin Peter Carmeliet 《The EMBO journal》2017,36(16):2334-2352
Endothelial cell (EC) metabolism is emerging as a regulator of angiogenesis, but the precise role of glutamine metabolism in ECs is unknown. Here, we show that depriving ECs of glutamine or inhibiting glutaminase 1 (GLS1) caused vessel sprouting defects due to impaired proliferation and migration, and reduced pathological ocular angiogenesis. Inhibition of glutamine metabolism in ECs did not cause energy distress, but impaired tricarboxylic acid (TCA) cycle anaplerosis, macromolecule production, and redox homeostasis. Only the combination of TCA cycle replenishment plus asparagine supplementation restored the metabolic aberrations and proliferation defect caused by glutamine deprivation. Mechanistically, glutamine provided nitrogen for asparagine synthesis to sustain cellular homeostasis. While ECs can take up asparagine, silencing asparagine synthetase (ASNS, which converts glutamine‐derived nitrogen and aspartate to asparagine) impaired EC sprouting even in the presence of glutamine and asparagine. Asparagine further proved crucial in glutamine‐deprived ECs to restore protein synthesis, suppress ER stress, and reactivate mTOR signaling. These findings reveal a novel link between endothelial glutamine and asparagine metabolism in vessel sprouting. 相似文献
19.
20.
New assignments of three previously undetected amide proton NMR resonance lines in bovine pancreatic trypsin inhibitor are reported. These are the peptide amide proton of Gly-37 and the primary amide protons of Asn-44. Specific assignments of Asn-44 and Asn-43 HE and HZ resonances are also reported. The Gly-37 NH and Asn-44 HZ resonances are shifted upfield to 4.3 and 3.4 ppm, respectively, by the ring current of the Tyr-35 aromatic group, while Asn-44 HE resonates at 7.8 ppm. The abnormal chemical shifts of Asn-44 HZ and Gly-37 NH indicate that both NH's interact with the pi-electron cloud of the Tyr-35 ring. This is consistent with their location in the crystal structure. The resonances are resolved by differential labeling techniques and are studied by combined use of NOE and exchange difference spectroscopy. 相似文献