首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. An increase in human population and associated changes in land use have caused an increase in groundwater nitrate concentrations throughout central Florida. Within the region, this nitrate‐laden groundwater returns to the surface via numerous large springs that serve as the origin of flow for many coastal streams and rivers. These rivers can exhibit strong nitrate gradients because of the high nutrient uptake potential of the rivers. 2. We hypothesised that downstream declines in nitrate concentrations would be manifested spatially as increases in the δ15N of the residual pool of nitrate, macrophytes and periphyton as a consequence of isotopic fractionation associated with preferential use of 14NO3. This hypothesis was tested in two spring‐fed river systems, the Chassahowitzka and Homosassa rivers, along Florida's central Gulf of Mexico coast. 3. In general, δ15N values of nitrate, macrophytes and periphyton increased with decreasing fraction of nitrate remaining in each of the two study systems. The fractionation associated with nitrate uptake by macrophytes and associated periphyton was determined from the relationship between δ15N of both constituents of the macrophyte community and the fraction of nitrate removed from the system. Values for fractionation by macrophytes and periphyton ranged from 1.9‰ to 3.6‰ and from 0.7‰ to 2.5‰, respectively.  相似文献   

3.
4.
1.  The δ13C and δ15N signatures of zooplankton vary with dissolved organic carbon (DOC), but inconsistent and limited taxonomic resolution of previous studies have masked differences that may exist among orders, genera or species and are attributable to dietary and/or habitat differences. Here we investigate differences among the isotopic signatures of five zooplankton taxa ( Daphnia , Holopedium , large Calanoida, small Calanoida and Cyclopoida) in Precambrian shield lakes with a sixfold range of DOC concentration.
2.  δ13C signatures of Daphnia , small calanoids and large calanoids became more depleted with increasing lake DOC, whereas Holopedium and cyclopoid δ13C became enriched with increasing DOC concentration.
3.  The variability of δ13C and δ15N isotopic signatures among zooplankton groups was reduced in high-DOC, compared to low-DOC lakes, especially for δ13C. Differences in δ13C and POM-corrected δ15N accounted for up to 33.7% and 19.5% of the variance, respectively, among lakes of varying DOC concentration.
4.  The narrow range of signatures found in higher DOC lakes suggests that different taxa have similar food sources and/or habitats. In contrast, the wide range of signatures in low-DOC lakes suggests that different taxa are exploiting different food sources and/or habitats. Together with the variable trends in zooplankton isotopic signatures along our DOC gradient, these results suggest that food web dynamics within the zooplankton community of temperate lakes will change as climate and lake DOC concentrations change.  相似文献   

5.
Leaves produced in 2004 of 422 species of Eucalyptus whose natural habitat is southern Australia were sampled at the Currency Creek Arboretum in South Australia where the annual (mainly winter) rainfall is about 400 mm. Tree height, leaf area, leaf dry weight, leaf nitrogen (N) concentration and leaf carbon isotope ratio (δ13C) were measured and the specific leaf area (SLA) calculated. Among the 422 species, the SLA varied from 1.5 to 8.8 m2 kg?1 and N concentration varied from 0.6 to 2.1%, much greater than in 64 species collected along an aridity transect from southwestern Western Australia to central Australia in 2003. Also, the range of leaf δ13C values was similar in the common garden to that across the aridity transect. For the 45 species present in both studies, the SLA and leaf N concentration in the common garden were similar to those measured in leaves along the aridity transect, indicating that these characteristics are inherent in the species and vary little with environment. The variation in leaf δ13C in the common garden was just as great as along the transect, but the values measured in the one location were poorly correlated with those along the transect. This was not expected, as the variation in δ13C at one common site in South Australia was anticipated to be less than along the aridity gradient where annual rainfall varied from 250 to 1200 mm. Path analysis on the 45 species common to both studies indicated that rainfall did not have a direct effect on δ13C, but the differences in δ13C resulted from indirect effects of rainfall on SLA and N concentration. δ13C was negatively correlated with SLA but positively correlated with N. Thus, both effects may compensate for each other so that no significant relationship between δ13C and rainfall was observable. However, there is a large degree of variation of δ13C at any level of rainfall. The origin and ecological implications of this observation are discussed.  相似文献   

6.
Collection of minimally invasive biopsy samples has become an important method to establish normal stable isotopes reference ranges in various wildlife species. Baseline data enhance the understanding of feeding ecology, habitat use, and potential food limitation in apparently healthy, free‐ranging cetaceans. Epidermis and muscle were collected from subsistence‐hunted northern Alaskan bowhead (n= 133 epidermis/134 muscle) and beluga whales (n= 42/49) and subsistence‐hunted Russian gray whales (n= 25/17). Additional samples were obtained from gray whales stranded in California (n= 18/11) during mortality events (1999, 2000). Both δ15N and δ13C are trophic position and benthic/pelagic feeding indicators, respectively, in muscle and epidermis. Epidermis is generally enriched in 15N over muscle, while epidermal 13C is more depleted. Lipid extraction does not alter δ15N in either tissue, but affects epidermal δ13C. Nitrogen‐15 is enriched in muscle, but not epidermis of stranded compared to subsistence‐hunted gray whales, indicating probable protein catabolism and nutritional stress in stranded whales. Similarly, epidermal δ13C of harvested whales is lower than in stranded whales, suggesting depleted lipid stores and/or food limitation in stranded animals. Epidermal isotope signatures are similar in both present‐day bowheads and in an ancient sample from the Northern Bering Sea region. Although only one specimen, this suggests trophic level of the ancient whale compares to modern bowheads after a millennium.  相似文献   

7.
Widespread species often occur across a range of climatic conditions, through a combination of local genetic adaptations and phenotypic plasticity. Species with greater phenotypic plasticity are likely to be better positioned to cope with rapid anthropogenic climate changes, while those displaying strong local adaptations might benefit from translocations to assist the movement of adaptive genes as the climate changes. Eucalyptus tricarpa occurs across a climatic gradient in south‐eastern Australia, a region of increasing aridity, and we hypothesized that this species would display local adaptation to climate. We measured morphological and physiological traits reflecting climate responses in nine provenances from sites of 460 to 1040 mm annual rainfall, in their natural habitat and in common gardens near each end of the gradient. Local adaptation was evident in functional traits and differential growth rates in the common gardens. Some traits displayed complex combinations of plasticity and genetic divergence among provenances, including clinal variation in plasticity itself. Provenances from drier locations were more plastic in leaf thickness, whereas leaf size was more plastic in provenances from higher rainfall locations. Leaf density and stomatal physiology (as indicated by δ13C and δ18O) were highly and uniformly plastic. In addition to variation in mean trait values, genetic variation in trait plasticity may play a role in climate adaptation.  相似文献   

8.
Leaf carbon isotope discrimination (delta13C) was widely considered to directly reflect the rainfall environment in which the leaf developed, but recent observations have queried this. The relationship between delta13C and rainfall was explored in Eucalyptus species growing along a rainfall gradient in Australia. The leaves of 43 species of Eucalyptus and the closely related Corymbia species produced in 2003 were sampled in September 2004 at 50 sites and grouped into 15 locations along a rainfall gradient in southwest Western Australia. At 24 sites, the same species and same trees were sampled as in a study in September 2003 when leaves produced in 2002 were sampled. The rainfall in 2004 was on average 190 mm (range 135-270 mm) higher at all locations than in 2003. In the leaves sampled in 2004, the mean carbon isotope discrimination (delta13C) across the 15 locations decreased 2.9 per thousand per 1000 mm of rainfall, the specific leaf area (SLA) increased by 2.9 m2 kg(-1) per 1000 mm of rainfall and the nitrogen (N) content decreased by 1.56 g m(-2) per 1000 mm of rainfall. In contrast, a comparison between the leaves produced in the drier 2002 year compared with the wetter 2003 year showed that there was a strong correlation (r2= 0.85) between the SLA values between years and a trend for higher values with increasing SLA, but the values of delta(13)C were on average only 0.38 per thousand lower (more negative) at all locations in the wetter year, equivalent to a decrease of 2.0 per thousand per 1000 mm of rainfall. The results suggest that while there may be constitutive differences in leaf morphology, SLA and N content per unit area, increasing rainfall or cloudiness associated with higher rainfall increases SLA and decreases N content per unit area. We conclude that rainfall does not directly influence delta13C, but induces leaf morphological and physiological changes that affect the resultant delta13C.  相似文献   

9.
10.
Climate is an important factor limiting tree distributions and adaptation to different thermal environments may influence how tree populations respond to climate warming. Given the current rate of warming, it has been hypothesized that tree populations in warmer, more thermally stable climates may have limited capacity to respond physiologically to warming compared to populations from cooler, more seasonal climates. We determined in a controlled environment how several provenances of widely distributed Eucalyptus tereticornis and E. grandis adjusted their photosynthetic capacity to +3.5°C warming along their native distribution range (~16–38°S) and whether climate of seed origin of the provenances influenced their response to different growth temperatures. We also tested how temperature optima (Topt) of photosynthesis and Jmax responded to higher growth temperatures. Our results showed increased photosynthesis rates at a standardized temperature with warming in temperate provenances, while rates in tropical provenances were reduced by about 40% compared to their temperate counterparts. Temperature optima of photosynthesis increased as provenances were exposed to warmer growth temperatures. Both species had ~30% reduced photosynthetic capacity in tropical and subtropical provenances related to reduced leaf nitrogen and leaf Rubisco content compared to temperate provenances. Tropical provenances operated closer to their thermal optimum and came within 3% of the Topt of Jmax during the daily temperature maxima. Hence, further warming may negatively affect C uptake and tree growth in warmer climates, whereas eucalypts in cooler climates may benefit from moderate warming.  相似文献   

11.
Tayasu  Ichiro 《Ecological Research》1998,13(3):377-387
In this paper, I review carbon and nitrogen isotopic (natural abundance levels) studies of termites. The carbon isotope ratio of CH4 emitted from termites, together with the emission rates of CO2, CH4 and H2, showed several trends corresponding to the kinds of symbiotic microbes and feeding habits. The fraction of methane oxidized in the nest structure was estimated by comparing carbon isotope ratio of CH4 emitted from the nest with that produced by termites in the nest. Symbiotic nitrogen fixation in the gut of termites has been shown to have a significant contribution to the nitrogen economy in some wood-feeding termites. The carbon isotope ratio distinguishes between C4 from C3 plants, and the fractional contribution of grass in the diet can thereby be estimated. The carbon and nitrogen isotope ratios in termites are discernible among soil-feeders, fungus cultivators and wood-feeders. Wood/soil-interface feeders have intermediate values between wood- and soil-feeders, and thus carbon and nitrogen stable isotope ratios are assumed to characterize the degree of humification of the material consumed by termites. It is suggested that carbon and nitrogen isotope ratios are useful indicators of the functional position of termites in the decomposition process. A similar isotope pattern has been obtained in earthworms, suggesting that isotope signatures might be useful parameters in investigating detritivorous animals in general.  相似文献   

12.
Isotopic studies of wild primates have used a wide range of tissues to infer diet and model the foraging ecologies of extinct species. The use of mismatched tissues for such comparisons can be problematic because differences in amino acid compositions can lead to small isotopic differences between tissues. Additionally, physiological and dietary differences among primate species could lead to variable offsets between apatite carbonate and collagen. To improve our understanding of the isotopic chemistry of primates, we explored the apparent enrichment (ε*) between bone collagen and muscle, collagen and fur or hair keratin, muscle and keratin, and collagen and bone carbonate across the primate order. We found that the mean ε* values of proteinaceous tissues were small (≤1‰), and uncorrelated with body size or phylogenetic relatedness. Additionally, ε* values did not vary by habitat, sex, age, or manner of death. The mean ε* value between bone carbonate and collagen (5.6 ± 1.2‰) was consistent with values reported for omnivorous mammals consuming monoisotopic diets. These primate-specific apparent enrichment values will be a valuable tool for cross-species comparisons. Additionally, they will facilitate dietary comparisons between living and fossil primates.  相似文献   

13.
The eastern hive bee Apis cerana is a major honeybee species in Asia providing numerous ecosystem services. Understanding how much the honeybees depend on natural and human-influenced plants and landscapes in different climates is important could contribute to evaluate how wild honeybees use food resources and to measure the ecosystem services. We investigated the effects of land use and climate changes on stable nitrogen and carbon isotope ratios in wild populations of A. cerana. In populations from 139 individual sites throughout Japan, we measured nitrogen (δ15N) and carbon (δ13C) stable isotope ratios and analyzed the effects of land use and climate. Our results showed that forested areas and annual precipitation had significant effects on δ15N, and that paddy fields and urban areas had significant effects on δ13C. These results suggest that A. cerana sensibly uses available food resources in the various environments and that stable nitrogen and carbon isotope ratios clearly reflect the effects of land use and climate changes on the populations of A. cerana. Thus, stable nitrogen and carbon isotope ratios in A. cerana, which widely distributes in Asia, can be used as indicators of the environments, such as land use and climate, of an area within its foraging range.  相似文献   

14.
We examined the potential use of natural-abundance stable carbon isotope ratios of lipids for determining substrate usage by sulfate-reducing bacteria (SRB). Four SRB were grown under autotrophic, mixotrophic, or heterotrophic growth conditions, and the delta13C values of their individual fatty acids (FA) were determined. The FA were usually 13C depleted in relation to biomass, with Deltadelta13C(FA - biomass) of -4 to -17 per thousand; the greatest depletion occurred during heterotrophic growth. The exception was Desulfotomaculum acetoxidans, for which substrate limitation resulted in biomass and FA becoming isotopically heavier than the acetate substrate. The delta13C values of FA in Desulfotomaculum acetoxidans varied with the position of the double bond in the monounsaturated C16 and C18 FA, with FA becoming progressively more 13C depleted as the double bond approached the methyl end. Mixotrophic growth of Desulfovibrio desulfuricans resulted in little depletion of the i17:1 biomarker relative to biomass or acetate, whereas growth with lactate resulted in a higher proportion of i17:1 with a greater depletion in 13C. The relative abundances of 10Me16:0 in Desulfobacter hydrogenophilus and Desulfobacterium autotrophicum were not affected by growth conditions, yet the Deltadelta13C(FA - substrate) values of 10Me16:0 were considerably greater during autotrophic growth. These experiments indicate that FA delta13C values can be useful for interpreting carbon utilization by SRB in natural environments.  相似文献   

15.
Leaf carbonisotope discrimination () was measured for three dominant, semi-arid woodland species along a summer monsoon gradient inthe southwestern United States over a 2-year period. We tested the hypothesis that decreased humidity levels during the growing season along this gradient resulted in lower leaf values. Sites of similar elevation along the transect were selected and the range in monsoon contribution to overall annual precipitation varied from 18 to 58%, while total annual precipitation differed by a maximum of only 25% across this gradient. Leaf values in Quercus gambelii were negatively correlated with , a seasonally-weighted estimate of the evaporative humidity gradient, suggesting that stomatal conductance declined as transpiration potential increased. For two other trees that co-occurred along this gradient, Pinus edulis and Juniperus osteosperma, remained relatively constant despite large variation in . These woodland species represent the full spectrum of responses of carbon isotope discrimination to increases in evaporative potential; that of decline where c i /c a (ratio of internal to ambient CO2 concentration) and presumably stomatal conductance decrease, and that of constancy where whole plant internal adjustments allow c i /c a to remain stable.  相似文献   

16.
Net Primary Productivity (NPP) is one of the most important parameters in describing the functioning of any ecosystem and yet it arguably remains a poorly quantified and understood component of carbon cycling in tropical forests, especially outside of the Americas. We provide the first comprehensive analysis of NPP and its carbon allocation to woody, canopy and root growth components at contrasting lowland West African forests spanning a rainfall gradient. Using a standardized methodology to study evergreen (EF), semi‐deciduous (SDF), dry forests (DF) and woody savanna (WS), we find that (i) climate is more closely related with above and belowground C stocks than with NPP (ii) total NPP is highest in the SDF site, then the EF followed by the DF and WS and that (iii) different forest types have distinct carbon allocation patterns whereby SDF allocate in excess of 50% to canopy production and the DF and WS sites allocate 40%–50% to woody production. Furthermore, we find that (iv) compared with canopy and root growth rates the woody growth rate of these forests is a poor proxy for their overall productivity and that (v) residence time is the primary driver in the productivity‐allocation‐turnover chain for the observed spatial differences in woody, leaf and root biomass across the rainfall gradient. Through a systematic assessment of forest productivity we demonstrate the importance of directly measuring the main components of above and belowground NPP and encourage the establishment of more permanent carbon intensive monitoring plots across the tropics.  相似文献   

17.
Exploring the trophic pathway of organic matter within the Mauguio lagoon (southern France, western Mediterranean), we found spatial differences in the isotopic composition (both δ13C and δ15N values) of organic matter sources (primary producers, particulate and sedimentary organic matter), which were mirrored in the upper trophic levels (invertebrates and fish). On average, δ13C was heavier by about 1.5–2‰ in the location under marine influence than in the sites influenced by freshwater discharge. The opposite trend was found for δ15N, which attained maximum values in the north-central zone influenced by freshwater delivery. For both C and N stable isotope ratios, the highest spatial variability was found in organic matter sources (2–3‰), while invertebrates and fish exhibited less variability (\~1–2‰). The differences observed may be related to both anthropogenic (wastewater input) and natural (marine vs. terrestrial inputs) factors. Discharge of wastewater, which affects the innermost location, generally determines an increase in the relative abundance of 15N. In addition, terrestrially derived nutrients and organic matter, which also affect the innermost location, are known to determine a shift towards 13C-depleted values. Our results substantiate the finding that the analysis of carbon and nitrogen stable isotopes can help in elucidating origin and fate of organic matter in coastal lagoons, which are characterised by a great spatial variability and complexity.  相似文献   

18.
The Pantanal of Mato Grosso, Brazil, is a large, seasonal wetland, which exhibits high macrophyte productivity at the beginning of the rainy season, when the floodplain becomes flooded. During inundation, from December through May, there is rapid turnover of decomposing macrophyte litter, which is subsequently colonized and consumed by various organisms. In this paper, the variation in the carbon and nitrogen isotope signatures of decomposing macrophytes and detritus was determined to provide an isotopic baseline for the elucidation of higher trophic levels. Seven abundant macrophyte species, Cyperaceae sp., Pontederia lanceolata, Cabomba furcata, Salvinia auriculata, Eichhornia crassipes, Nymphaea amazonum and Paspalum repens, were exposed in mesocosm decomposition experiments lasting 21 or 100 days. Stable isotope ratios of carbon and nitrogen and the atomic C/N ratios were determined for decomposing plant material, particulate organic matter (POM), the microbial film, and aquatic invertebrate larvae. The 13C values for the macrophytes did not change during decomposition. However, the variability of 15N was high (range of ± 6 ) due to microbial activity. There was no consistent difference in the isotopic signatures of macrophytes and POM. C/N ratios decreased from 17 to 50 in macrophytes, to 7 to 12 in POM. The isotopic signatures and C/N ratios of the microbial film were the same as those of POM. We concluded that heterotrophic processes did not fractionate stable carbon isotopes but caused an increase in the variability of stable nitrogen ratios and a change in the C/N ratios in our experimental system. Therefore, it was not possible to distinguish fresh and senescent material or even POM when used as a food source. The 13C values of the aquatic larvae were closely coupled to those of the carbon source provided.  相似文献   

19.
1. Nitrogen and carbon stable-isotope ratios (δ15N and δ13C) of body tissues, mound/nest materials and dietary substrates were determined in termite species with differing trophic habits, sampled from the Mbalmayo Forest Reserve, southern Cameroon.
2. δ15N of termite tissues was enriched gradually along a spectrum of species representing a trophic gradient from wood- to soil-feeding. Species that could be identified from their general biology and from gut content analysis as feeding on well-rotted wood or as wood/soil interface feeders showed δ15N intermediate between sound-wood-feeders and soil-feeders. It is proposed that δ15N is therefore a possible indicator of the functional position of species in the humification process. Differences in δ13C were also observed between wood-feeding and soil-feeding forms.
3. High values of δ15N in soil-feeding termites suggest that nitrogen fixation is of little importance in these species.
4. A wide range of isotope effects (the difference in isotope ratios between termites and their diet) was observed for both nitrogen (Δδ15N = –1.6 to + 8.8‰) and carbon (Δδ13C = –2.2 to + 3.0‰), which suggests a diversity of nutrient acquisition mechanisms within termites and diverse relationships between termites and their intestinal micro-organisms.  相似文献   

20.
Stable carbon isotopes (δ13C) were determined for autotrophic producers and animals from Lake Baikal (eastern Siberia), the deepest, the oldest and largest body of fresh water in the world. The extensive survey shows that the mean carbon isotope compositions of planktonic and benthic autotrophs differ in Lake Baikal by 21.5 ‰ the largest difference ever observed for lakes, thus giving an easy means to distinguish between pelagic and inshore carbon flows. Furthermore, our data give evidence that inshore macrofauna, which contributes greatly to the diversity within Baikalian animals, is supported by less abundant but highly diversified benthic flora, rather than by phytoplankton or terrigenous organic matter that dominate in the global carbon cycle of the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号