首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Salt stress is a major factor limiting plant growth and productivity. Salicylic acid (SA) has been shown to ameliorate the adverse effects of environmental stress on plants. To investigate the protective role of SA in ameliorating salt stress on Torreya grandis (T. grandis) trees, a pot experiment was conducted to analyze the biomass, relative water content (RWC), chlorophyll content, net photosynthesis (Pn), gas exchange parameters, relative leakage conductivity (REC), malondialdehyde (MDA) content, and activities of superoxide dismutase (SOD) and peroxidase (POD) of T. grandis under 0.2% and 0.4% NaCl conditions with and without SA.

Methodology/Principal Findings

The exposure of T. grandis seedlings to salt conditions resulted in reduced growth rates, which were associated with decreases in RWC and Pn and increases in REC and MDA content. The foliar application of SA effectively increased the chlorophyll (chl (a+b)) content, RWC, net CO2 assimilation rates (Pn), and proline content, enhanced the activities of SOD, CAT and POD, and minimized the increases in the REC and MDA content. These changes increased the capacity of T. grandis in acclimating to salt stress and thus increased the shoot and root dry matter. However, when the plants were under 0% and 0.2% NaCl stress, the dry mass of the shoots and roots did not differ significantly between SA-treated plants and control plants.

Conclusions

SA induced the salt tolerance and increased the biomass of T. grandis cv. by enhancing the chlorophyll content and activity of antioxidative enzymes, activating the photosynthetic process, and alleviating membrane injury. A better understanding about the effect of salt stress in T. grandis is vital, in order gain knowledge over expanding the plantations to various regions and also for the recovery of T. grandis species in the future.  相似文献   

2.

Key Message

The critical level for SO 2 susceptibility of Populus × canescens is approximately 1.2 μL L ?1 SO 2 . Both sulfite oxidation and sulfite reduction and assimilation contribute to SO 2 detoxification.

Abstract

In the present study, uptake, susceptibility and metabolism of SO2 were analyzed in the deciduous tree species poplar (Populus × canescens). A particular focus was on the significance of sulfite oxidase (SO) for sulfite detoxification, as SO has been characterized as a safety valve for SO2 detoxification in herbaceous plants. For this purpose, poplar plants were exposed to different levels of SO2 (0.65, 0.8, 1.0, 1.2 μL L?1) and were characterized by visible injuries and at the physiological level. Gas exchange parameters (stomatal conductance for water vapor, CO2 assimilation, SO2 uptake) of the shoots were compared with metabolite levels (sulfate, thiols) and enzyme activities [SO, adenosine 5′-phosphosulfate reductase (APR)] in expanding leaves (80–90 % expanded). The critical dosage of SO2 that confers injury to the leaves was 1.2 μL L?1 SO2. The observed increase in sulfur containing compounds (sulfate and thiols) in the expanding leaves strongly correlated with total SO2 uptake of the plant shoot, whereas SO2 uptake rate was strongly correlated with stomatal conductance for water vapor. Furthermore, exposure to high concentration of SO2 revealed channeling of sulfite through assimilatory sulfate reduction that contributes in addition to SO-mediated sulfite oxidation to sulfite detoxification in expanding leaves of this woody plant species.  相似文献   

3.

Key message

The Amazonian tree Senna reticulata showed an increase in photosynthesis and starch content under elevated [CO 2 ] that led an increment in biomass after 90 days. Elevated [CO 2 ] was also capable of reducing the negative effect of waterlogging.

Abstract

Tree species from the Amazonian floodplains have to cope with low oxygen availability due to annual pulses of inundation that can last up to 7 months. Species capable of adapting to flooding and/or waterlogged conditions usually partition their storage to favor starch and allocate it to roots, where carbohydrates are used to maintain respiration rates during waterlogging. In spite of climate change, virtually nothing is known about how elevated atmospheric CO2 concentration ([CO2]) will affect plants when combined with waterlogging. In this work, we used open top chambers to evaluate the effect of elevated [CO2] during a period of terrestrial phase and in subsequent combination with waterlogged conditions to determine if the surplus carbon provided by elevated [CO2] may improve the waterlogging tolerance of the fast-growing Amazonian legume tree Senna reticulata. During the terrestrial phase, photosynthesis was ca. 28 % higher after 30, 45 and 120 days of elevated [CO2], and starch content in the leaves was, on average, 49 % higher than with ambient [CO2]. Total biomass was inversely correlated to the starch content of leaves, indicating that starch might be the main carbohydrate source for biomass production during the terrestrial phase. This response was more pronounced under elevated [CO2], resulting in 30 % more biomass in comparison to ambient [CO2] plants. After 135 days at elevated [CO2] an inversion has been observed in total biomass accumulation, in which ambient [CO2] presented a greater increment in total biomass in comparison to elevated [CO2], indicating negative effects on growth after long-term CO2 exposure. However, plants with elevated [CO2]/waterlogged displayed a greater increment in biomass in comparison with ambient [CO2]/waterlogged that, unlike during the terrestrial phase, was unrelated to starch reserves. We conclude that S. reticulata displays mechanisms that make this species capable of responding positively to elevated [CO2] during the first pulse of growth. This response capacity is also associated with a “buffering effect” that prevents the plants from decreasing their biomass under waterlogged conditions.  相似文献   

4.

Key message

Typical toxic symptom only occurred in B-toxic C. grandis leaves. B-toxicity induced PCD of C. grandis leaf phloem tissue. The lower leaf free B might contribute to the higher B-tolerance of C. sinensis.

Abstract

Seedlings of ‘Xuegan’ (Citrus sinensis) and ‘Sour pummelo’ (Citrus grandis) differing in boron (B)-tolerance were irrigated with nutrient solution containing 10 (control) or 400 (B-toxic) μM H3BO3 for 15 weeks. Thereafter, the effects of B-toxicity on leaf photosynthesis, chlorophyll, plant B absorption and distribution, root and leaf anatomy were investigated to elucidate the possible B-tolerant mechanisms of Citrus plants. Typical toxic symptom only occurred in B-toxic C. grandis leaves. Similarly, B-toxicity only affected C. grandis photosynthesis and chlorophyll. Although total B concentration in B-toxic roots and leaves was similar between the two species, leaves from B-toxic C. grandis plant middle had higher free B and lower bound B as compared with those from C. sinensis. Effects of B-toxicity on leaf structure were mainly limited to the mesophyll cells and the phloem of leaf veins. Although irregular cell wall thickening was observed in leaf cortex cells and phloem tissue of B-toxic C. grandis and C. sinensis leaves, exocytosis only occurred in the companion cells and the parenchyma cells of B-toxic C. sinensis leaf phloem. Also, B-toxicity induced cell death of phloem tissue through autophagy in C. grandis leaf veins. B-toxicity caused death of root epidermal cells of the two Citrus species. B-toxicity restrained degradation of middle lamella, but did not alter ultrastructure of Golgi apparatus and mitochondria in root elongating zone cells. In conclusion, C. sinensis was more tolerant to B-toxicity than C. grandis. The lower leaf free B and higher bound B might contribute to the higher B-tolerance of C. sinensis.  相似文献   

5.

Key message

Sensitivity to Erysiphe in Noccaea praecox with low metal supply is related to the failure in enhancing SA. Cadmium protects against fungal-infection by direct toxicity and/or enhanced fungal-induced JA signaling.

Abstract

Metal-based defense against biotic stress is an attractive hypothesis on evolutionary advantages of plant metal hyperaccumulation. Metals may compensate for a defect in biotic stress signaling in hyperaccumulators (metal-therapy) by either or both direct toxicity to pathogens and by metal-induced alternative signaling pathways. Jasmonic acid (JA) and salicylic acid (SA) are well-established components of stress signaling pathways. However, few studies evaluate the influence of metals on endogenous concentrations of these defense-related hormones. Even less data are available for metal hyperaccumulators. To further test the metal-therapy hypothesis we analyzed endogenous SA and JA concentrations in Noccaea praecox, a cadmium (Cd) hyperaccumulator. Plants treated or not with Cd, were exposed to mechanical wounding, expected to enhance JA signaling, and/or to infection by biotrophic fungus Erysiphe cruciferarum for triggering SA. JA and SA were analyzed in leaf extracts using LC–ESI(?)–MS/MS. Plants without Cd were more susceptible to fungal attack than plants receiving Cd. Cadmium alone tended to increase leaf SA but not JA. Either or both fungal attack and mechanical wounding decreased SA levels and enhanced JA in the Cd-rich leaves of plants exposed to Cd. High leaf Cd in N. praecox seems to hamper biotic-stress-induced SA, while triggering JA signaling in response to fungal attack and wounding. To the best of our knowledge, this is the first report on the endogenous JA and SA levels in a Cd-hyperaccumulator exposed to different biotic and abiotic stresses. Our results support the view of a defect in SA stress signaling in Cd hyperaccumulating N. praecox.  相似文献   

6.

Key message

The overexpression of tomato GDP- l -galactose phosphorylase gene enhanced tolerance to chilling stress and reduced photoinhibition of photosystems I and II in transgenic tobacco.

Abstract

Chilling stress is a crucial factor that limits the geographical distribution and yield of chilling-sensitive plants. Ascorbate (AsA) protects plants by scavenging reactive oxygen species and reduces photoinhibition by promoting the conversion of violaxanthin to zeaxanthin in the xanthophyll cycle to dissipate excess excitation energy. Possible mechanisms of AsA for plant photoprotection under chilling stress were investigated by isolating the tomato GDP-l-galactose phosphorylase gene (SlGGP) and producing transgenic tobacco plants with overexpression of SlGGP. The transgenic plants subjected to chilling stress accumulated less H2O2, demonstrated lower levels of ion leakage and malondialdehyde, and acquired higher net photosynthetic rate, higher maximum photochemical efficiency of PSII, and higher D1 protein content compared with the wild-type (WT) plants. The transgenic plants subjected to chilling stress also showed higher GDP-l-galactose phosphorylase activity, increased AsA content as well as ascorbate peroxidase and oxidizable P700 activities than WT plants. Thus, SlGGP overexpression is crucial in promoting AsA synthesis and alleviating photoinhibition of two photosystems.  相似文献   

7.

Key message

The drought tolerance in young oil palm plants is related to greater efficiency in preventing oxidative damage by activating enzymatic and non-enzymatic antioxidant strategies simultaneously.

Abstract

Drought is a major environmental constraint limiting growth and yield of oil palm trees. In this study, two oil palm hybrids (BRS Manicoré and BRS C 2501) were grown in large containers and subjected to a water deficit during 57 days. Leaf gas exchange analysis was combined with an in-depth assessment of the antioxidant system over the drought imposition. Under drought, leaf water potential at predawn (Ψ pd) decreased similarly in both hybrids. In parallel, there were decreases in the net CO2 assimilation rate (A), chlorophyll concentrations and Rubisco total activity. Overall, these decreases were more pronounced in BRS C 2501 than in BRS Manicoré. BRS C 2501 plants triggered more markedly its enzymatic antioxidant system earlier (Ψ pd = ?2.1 MPa) than did BRS Manicoré, but these responses were accompanied by higher concentrations of H2O2 and malondialdehyde in BRS C 2510 than in BRS Manicoré. With the progress of drought stress (Ψ pd = ?2.9 MPa and below), BRS Manicoré was better able to cope with oxidative stress through a more robust antioxidant system. In addition, significant decreases in drought-induced NAD+-malate dehydrogenase activities were only observed in stressed BRS C 2501 plants. Regardless of watering regimes, the total carotenoid, ascorbate and glutathione concentrations were higher in BRS Manicoré than in BRS C 2501. In conclusion, BRS Manicoré is better able to tolerate drought than BRS C 2501 by triggering multiple antioxidant strategies involved both in reactive oxygen species scavenging and dissipation of excess energy and/or reducing equivalents particularly under severe drought stress.
  相似文献   

8.
9.

Aims

Drought is a major growth limiting factor in the majority of terrestrial ecosystems and is expected to become more frequent in the future. Therefore, resolving the drought response of plants under changing climate conditions is crucial to our understanding of future ecosystem functioning. This study responds to the need for experimental research on the combined effects of warming, elevated CO2 and drought, and aims to determine whether the response to drought is altered under future climate conditions.

Methods

Two grassland species, Lolium perenne L. and Plantago lanceolata L., were grown in sunlit climate-controlled chambers. Four climates were simulated: (1) current climate, (2) current climate with drought, (3) a warmer climate with drought, and (4) a climate with combined warming, elevated CO2 and drought.

Results

Warming did not alter the drought response, neither directly through photosynthesis nor indirectly through changes in water consumption. Also for combined warming and elevated CO2 there were no effects on the plant response to drought for any of the measured parameters. However, simultaneous warming and elevated CO2 mitigated the biomass response to drought through a positive pre-drought effect on photosynthesis and biomass response.

Conclusions

Our results indicate that a positive pre-drought effect of combined warming and elevated CO2 has the potential to compensate for drought-induced biomass losses under future climate conditions.  相似文献   

10.
11.
12.
13.

Key message

Physiological characteristics except WUE of H. ammodendron have obvious response to rainfall pulses of 6–12 mm, and rainfall in this range at least is “effective” precipitation for H. ammodendron.

Abstract

In water-limited ecosystems, pulses of rainfall can trigger a cascade of plant physiological responses. Small precipitation events account for a large proportion of the precipitation received in arid regions. Their potential ecological importance, however, has previously been ignored. Here the responses of the physiological characteristics of Haloxylon ammodendron (H. ammodendron) to rainfall were evaluated by rainfall manipulative experiments during the growing season of 2012 in the desert region of Northwestern China. Net Photosynthesis rate (P n), transpiration (Tr), water use efficiency (WUE), stomatal conductance (G s), internal concentration of CO2 (C i), sap flow, leaf water potential (Ψ), and soil volumetric water content (SVWC) were monitored throughout the experimental period. The results showed that the water status of H. ammodendron is highly sensitive to rainfall pulses. P n, Tr, and G s increased with rainfall and then decreased gradually after rainfall. WUE decreases after rainfall and increases in times of increasing drought, although within a narrow range. H. ammodendron has a special buffering ability induced by harsh environmental conditions, particularly the rainfall patterns. Collectively, a 6-mm or greater rainfall amount is “effective” precipitation for H. ammodendron from the perspective of plant physiology. This study result is essential to the theories and practice of combating desertification.  相似文献   

14.
Crop plants are regularly exposed to an array of abiotic and biotic stresses, among them drought stress is a major environmental factor that shows adverse effects on plant growth and productivity. Because of this these factors are considered as hazardous for crop production. Drought stress elicits a plethora of responses in plants resulting in strict amendments in physiological, biochemical, and molecular processes. Photosynthesis is the most fundamental physiological process affected by drought due to a reduction in the CO2 assimilation rate and disruption of primary photosynthetic reactions and pigments. Drought also expedites the generation of reactive oxygen species (ROS), triggering a cascade of antioxidative defense mechanisms, and affects many other metabolic processes as well as affecting gene expression. Details of the drought stress-induced changes, particularly in crop plants, are discussed in this review, with the major points: 1) leaf water potentials and water use efficiency in plants under drought stress; 2) increased production of ROS under drought leading to oxidative stress in plants and the role of ROS as signaling molecules; 3) molecular responses that lead to the enhanced expression of stress-inducible genes; 4) the decrease in photosynthesis leading to the decreased amount of assimilates, growth, and yield; 5) the antioxidant defense mechanisms comprising of enzymatic and non-enzymatic antioxidants and the other protective mechanisms; 6) progress made in identifying the drought stress tolerance mechanisms; 7) the production of transgenic crop plants with enhanced tolerance to drought stress.  相似文献   

15.

Key message

Fifty-three and thirty-nine differentially expressed protein spots were isolated from Mn-toxic Citrus sinensis and Citrus grandis roots, respectively. Mn-toxicity-induced changes in protein profiles greatly differed between the two species.

Abstract

Limited information is available on the manganese (Mn)-toxicity-responsive proteins in plant roots. ‘Sour pummelo’ (Citrus grandis) and ‘Xuegan’ (Citrus sinensis) seedlings were irrigated for 17 weeks with 2 (control) or 600 μM (Mn-toxic) MnSO4. C. sinensis displayed more tolerance to Mn-toxicity than C. grandis, which may be related to more Mn accumulation in roots and less Mn distribution in shoots. Using two-dimensional electrophoresis (2-DE), we isolated 11 up-regulated and 42 down-regulated protein spots from Mn-toxic C. sinensis roots, and 25 up-regulated and 14 down-regulated protein spots from Mn-toxic C. grandis roots. This indicated more metabolic flexibility in C. sinensis roots, thus contributing to the Mn-tolerance of C. sinensis. According to the biological functional properties, these differentially expressed proteins in the two species were classified into the following categories: protein metabolism, nucleic acid metabolism, carbohydrate and energy metabolism, stress responses, cell wall and cytoskeleton, cell transport, signal transduction and fatty acid metabolism. Under Mn-toxicity, proteins involved in nucleic acid metabolism, glycolysis and cell transport were up-regulated in nontolerant C. grandis roots, and down-regulated in tolerant C. sinensis roots. The notable down-regulation of proteins in Mn-toxic C. sinensis roots with less accumulation of carbohydrates may provide an advantage to the net carbon balance by lowering related metabolic processes, and enhancing the Mn-tolerance of C. sinensis. To conclude, there are many important differences in Mn-toxicity-induced changes in protein profiles and metabolic responses between the two species.  相似文献   

16.

Background and aims

The beneficial effects of Si have mainly been observed in herbaceous plants, while little is known about its role in deciduous trees. The aim of this work was to evaluate the effect of foliar application of Si on chestnut leaf growth, photosynthesis and water relations in the presence of short, but intense water deficit.

Methods

Sili-K® solution (containing 0.12 % Si and 0.15 % K) was repeatedly (× 3) sprayed onto leaves of potted chestnut plantlets and irrigation was suspended 7 weeks later, for 8 days. Leaf growth, anatomy, as well as physiological and biochemical traits of the plantlets were studied.

Results

Si application enhanced chestnut growth, due to increased photosynthetic traits, including higher chlorophyll content and chlorophyll a to b ratio, photochemical efficiency of PSII, gas exchange (stomatal conductance, transpiration rate, net CO2 assimilation) and oxygen evolution rate. Meanwhile, Si yielded larger and thinner leaves, higher xylem, specific leaf area and transpiration rate, thus being beneficial to the tree in absorbing sunlight energy for photosynthesis and in alleviating heat stress. However, Si also lowered leaf sap osmotic pressure, causing the plant to lose water more quickly, thus being more susceptible to water stress.

Conclusions

Si improved chestnut photosynthesis, growth, and heat stress tolerance, but it also increased the susceptibility to drought.  相似文献   

17.
18.

Key message

Our study provides evidence that neither elevated CO 2 nor elevated O 3 alters the positive asymmetric competition for light and the symmetric competition for water among beech and spruce individuals grown in monoculture. We conclude that the mechanism of competition (i.e. symmetric/asymmetric) above (e.g shading or overtopping effect) and belowground (e.g. non-preemption or foraging) rather than abiotic treatments such as elevated CO 2 , O 3 and CO 2 /O 3 regimes, plays a dominant role for ensuring competitive success among tree saplings.

Abstract

Despite numerous studies conducted on plant responses to increasing CO2 and O3 concentrations, there is still a gap in understanding on how these gasses would affect the mode of competition (e.g., the ability by which larger and smaller plants capture resources) at the individual level of intra-specific beech and spruce saplings. Using empirical data and simulations from the plant-growth model PLATHO, we analyzed underlying mechanisms of competition and extrapolated effects beyond the time span of the experiment. We hypothesized that among juvenile beech and spruce trees planted in monoculture, +CO2 would diminish the positive asymmetric competition for light. Conversely, +O3 would enhance this outcome. In addition, we hypothesized that the symmetric mode of competition belowground for water would remain unchanged, irrespective of +CO2 and/or +O3 treatments. Our results showed that +CO2 and/or +O3 treatments did not alter the mode of competition aboveground for light. Conversely, we accepted our hypothesis that the mode of competition for water would remain unchanged under both treatments. Overall, we conclude that neither +CO2 nor +O3 alters the positive asymmetric competition for light and the symmetric competition for water among beech and spruce individuals grown in monoculture. We further conclude that competitive mechanism above (e.g., shading or overtopping effect) and belowground (e.g., non-preemption or foraging) rather than abiotic treatments, such as elevated CO2, O3 and CO2/O3 regimes, plays a dominant role for ensuring competitive success among tree saplings.  相似文献   

19.
20.

Key message

Stem WC may decline during the day. Zero-flow dT m increases when WC decreases. Use of nighttime dT m in the calculation of sap flux density during the day might introduce errors.

Abstract

There is increasing evidence of diel variation in water content of stems of living trees as a result of changes in internal water reserves. The interplay between dynamic water storage and sap flow is of current interest, but the accuracy of measurement of both variables has come into question. Fluctuations in stem water content may induce inaccuracy in thermal-based measurements of sap flux density because wood thermal properties are dependent on water content. The most widely used thermal method for measuring sap flux density is the thermal dissipation probe (TDP) with continuous heating, which measures the influence of moving sap on the temperature difference between a heated needle and a reference needle vertically separated in the flow stream. The objective of our study was to investigate how diel fluctuations in water content could influence TDP measurements of sap flux density. We analysed the influence of water content on the zero-flow maximum temperature difference, dT m, which is used as the reference for calculating sap flux density, and present results of a dehydration experiment on cut branch segments of American sycamore (Platanus occidentalis L.). We demonstrate both theoretically and experimentally that dT m increases when stem water content declines. Because dT m is measured at night when water content is high, this phenomenon could result in underestimations of sap flux density during the day when water content is lower. We conclude that diel dynamics in water content should be considered when TDP is used to measure sap flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号