首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Marine tufa‐columns, formed by the hydrated carbonate mineral ikaite, present a unique alkaline microbial habitat only found in Ikka Fjord (SW‐Greenland). The outermost parts of the ikaite columns exhibit a multitude of physico‐chemical gradients, and the porous ikaite is colonized by endolithic phototrophic biofilms serving as a substrate for grazing epifauna, where scraping by sea urchins affects overall column‐topography. We present a detailed study of the optical microenvironment, spatial organization, and photosynthetic activity of endolithic phototrophs within the porous ikaite crystal matrix. Cyanobacteria and diatoms formed distinctly coloured zones and were closely associated with ikaite‐crystals via excretion of exopolymers. Scalar‐irradiance measurements showed strong attenuation of visible light (400–700 nm), where only ~1% of incident irradiance remained at 20 mm depth. Transmission spectra showed in vivo absorption signatures of diatom and cyanobacterial photopigments, which were confirmed by HPLC‐analysis. Variable‐chlorophyll‐fluorescence‐imaging showed active photosynthesis with high‐light acclimation in the outer diatom layer, and low‐light acclimation in the underlying cyanobacterial part. Phototrophs in ikaite thus thrive in polymer‐bound endolithic biofilms in a complex gradient microhabitat experiencing constant slow percolation of highly alkaline phosphate‐enriched spring water mixing with cold seawater at the tufa‐column‐apex. We discuss the potential role of these biofilms in ikaite column formation.  相似文献   

2.
Abstract Zonations of photosynthesis and photopigments in artificial cyanobacterial mats were studied with (i) oxygen and pH microsensors, (ii) fiber-optic microprobes for field radiance, scalar irradiance, and PSII fluorescence, and (iii) a light microscope equipped with a spectrometer for spectral absorbance and fluorescence measurements. Our analysis revealed the presence of several distinct 1–2 mm thick cyanobacterial layers mixed with patches of anoxygenic photosynthetic bacteria. Strong attenuation of visible light confined the euphotic zone to the uppermost 3 mm of the mat, where oxygen levels of 3–4 times air saturation and a pH peak of up to pH 8.8 were observed under saturating irradiance (413 μmol photon m−2 s−1). Oxygen penetration was 5 mm in light and decreased to 1 mm in darkness. Volumetric oxygen consumption in the photic and aphotic zones of illuminated mat was 5.5 and 2.9 times higher, respectively, than oxygen consumption in dark incubated mats. Scalar irradiance reached 100–150% of incident irradiance in the upper 0.5 mm of the mat due to intense scattering in the matrix of cells, exopolymers, and carbonate precipitates. In deeper mat layers scalar irradiance decreased nearly exponentially, and highest attenuation coefficients of 6–7 mm−1 were found in cyanobacterial layers, where photosynthesis and photopigment fluorescence also peaked. Visible light was attenuated >100 times more strongly than near infrared light. Microscope spectrometry on thin sections of mats allowed detailed spectral absorbance and fluorescence measurements at defined positions relative to the mat surface. Besides strong spectral signals of cyanobacterial photopigments (Chl a and phycobiliproteins), the presence of both green and purple photosynthetic bacteria was evident from spectral signals of Bchl a and Bchl c. Microprofiles of photopigment absorbance correlated well with microdistributions of phototrophs determined in an accompanying study. Received: 20 December 1999; Accepted: 10 June 2000; Online Publication: 28 August 2000  相似文献   

3.
Seasonal changes in light and physicochemical conditions have strong impacts on cyanobacteria, but how they affect community structure, metabolism, and biogeochemistry of cyanobacterial mats remains unclear. Light may be particularly influential for cyanobacterial mats exposed to sulphide by altering the balance of oxygenic photosynthesis and sulphide-driven anoxygenic photosynthesis. We studied temporal shifts in irradiance, water chemistry, and community structure and function of microbial mats in the Middle Island Sinkhole (MIS), where anoxic and sulphate-rich groundwater provides habitat for cyanobacteria that conduct both oxygenic and anoxygenic photosynthesis. Seasonal changes in light and groundwater chemistry were accompanied by shifts in bacterial community composition, with a succession of dominant cyanobacteria from Phormidium to Planktothrix, and an increase in diatoms, sulphur-oxidizing bacteria, and sulphate-reducing bacteria from summer to autumn. Differential abundance of cyanobacterial light-harvesting proteins likely reflects a physiological response of cyanobacteria to light level. Beggiatoa sulphur oxidation proteins were more abundant in autumn. Correlated abundances of taxa through time suggest interactions between sulphur oxidizers and sulphate reducers, sulphate reducers and heterotrophs, and cyanobacteria and heterotrophs. These results support the conclusion that seasonal change, including light availability, has a strong influence on community composition and biogeochemical cycling of sulphur and O2 in cyanobacterial mats.  相似文献   

4.
海洋碳迁移转化与主要化学驱动因子的相互关系   总被引:3,自引:0,他引:3  
分析了化学驱动因子对海洋碳迁移转化过程的影响.海洋碳迁移转化与各种化学驱动因子参与的生物地球化学过程密切相关.营养盐水平、pH、溶解氧浓度(DO)、氧化还原电位(Eh)、SO42-及硫电位(Es)等主要化学驱动因子的消长导致了海洋化学环境的变化,进而对海洋碳的迁移转化产生影响.在营养盐的供给和生物吸收情况良好的海域,CO2由于光合作用,并通过沉降有机物的氧化,不断被转移到海水深层,使得海水中的CO2分压(PCO2)降低,CO2的海-气交换量和有机碳输出通量增大,从使该海域表现为CO2的汇.由于CO2的溶解与吸收以及有机物的降解造成了海洋环境的日益酸化,引起了海水中碳酸盐溶解度增大;沉积物中酸碱环境的变化也与有机物的矿化以及碳酸盐的溶解、沉淀过程密切相关.此外,DO、Eh、SO42-及Es的变化与水体中有机碳的矿化分解过程和碳在沉积层中沉积埋葬过程相耦合.在水体中,高DO、高Eh利于有机碳向无机碳转化;而在DO和Eh较低的沉积环境中,高SO42-不利于有机碳的埋葬与保存.  相似文献   

5.
Sediment reduction is frequently proposed to increase available phosphorus (P) but several studies found also decreases. Another important factor for P liberation is the pH. We investigated the relative importance of Eh and pH on P cycling in reforested mangroves. Sediment P compounds, pH and Eh were analysed over depth along five transects of two areas in the Saigon River Delta and compared with leaf P levels. A three-dimensional spatial approach was used to investigate pH and Eh effects on P compound distribution at different sediment depth and locate layers of predominant P uptake. Along an inundation gradient, submergence durations of 254 to 2 days per year caused a large Eh gradient within the top 20 cm, whereas Eh response was small within 20–45 cm depth. At individual layers, a correlation between Eh and Al/Fe–P was only found in the upper depth interval (0–20 cm). No significant effect of Eh or Al/Fe–P on Morgan-P (available P) was detected. Minor effects on P composition changes by the Eh were caused through generally strongly reduced sediment at deeper layers (>20 cm). In contrast, pH variations produced extreme differences in both, Ca–P and available P content at layers of apparently predominant P uptake (>20 cm). As available P was correlated with Ca–P (p < 0.001), leaf P (p < 0.001) and pH (non linear correlation) it is likely that the pH sensitive Ca–P fraction is a more effective source for mangrove tree growth than Al/Fe–P. The predominant pH effect on P uptake within these reforested mangroves differs from a proposed reduction-governed P cycling in wetlands.  相似文献   

6.
Sediment physicochemical properties most likely control the reforestation success on degraded mangrove sites. Our objectives were (1) to determine the nutritional status of reforested mangrove stands; (2) to investigate the effects of the redox potential (Eh) and pH on phosphorus (P) and nitrogen (N) cycling; and (3) to assess the effect of pH on P speciation. Five transects were studied in replanted stands of the Saigon River Delta, Vietnam. Spatial gradients of sediment Eh and pH were affected by the tidal regime and pyrite oxidation. Sediment Al/Fe-P correlated with Eh or pH, depending on the sediment layer, whereas Ca-P, Morgan-P (available P) and leaf P were influenced by the pH. The highest concentrations of Al/Fe-P were recorded at pH 6.5 probably due to adsorption effects. Sediment Ca-P increased strongly at pH below 4 and above 6, reflecting the different pH-dependent solubilities of individual Ca-P mineral species as shown by a newly developed method for P species quantification. A strong increase of available P and leaf P above pH 6, and positive correlations of available P vs Ca-P (P?<?0.001) and leaf P (P?=?0.004) suggest that the Morgan’s reagent for available P determination solubilizes mainly thermodynamically less stable Ca-P compounds, which seem to fuel P plant uptake. Since foliar and sediment N:P ratios were influenced mainly by pH, shifts in pH likely cause limitation transitions. Overall, sediment pH rather than Eh was found to control the nutrient status.  相似文献   

7.
The responses of hypersaline microbial mats to the addition of acetate, glycolate or glucose were investigated using oxygen, pH and sulphide microsensors. Changes in community structure were investigated with molecular techniques. Acetate addition inhibited respiration in the photic zone, stimulated respiration in the aphotic zone and had no effect on gross photosynthesis. Glycolate addition strongly increased both respiration and gross photosynthesis in the photic zone. Thus, glycolate and acetate were probably consumed in those regions of the mat where these substrates are usually formed. Moreover, photosynthesis was only stimulated by increased respiration and concomitant CO2 production in the photic zone which indicates that the photosynthetic and respiratory populations must be present in close proximity to each other. Glucose addition had an unexpected negative effect on the microbial population, strongly inhibiting both respiration and gross photosynthesis within hours. After four days, oxygen profiles in the light were equal to those measured in the dark. After replacing the water phase with unamended water, photosynthesis and respiration recovered within a week. None of the physiological changes were accompanied by detectable shifts in the cyanobacterial or the overall microbial community. The mechanism of inhibition of photosynthesis by glucose requires further investigation.  相似文献   

8.
We studied the diel migrations of several species of microorganisms in a hypersaline, layered microbial mat. The migrations were quantified by repeated coring of the mat with glass capillary tubes. The resulting minicores were microscopically analyzed by using bright-field and epifluorescence (visible and infrared) microscopy to determine depths of coherent layers and were later dissected to determine direct microscopic counts of microorganisms. Microelectrode measurements of oxygen concentration, fiber optic microprobe measurements of light penetration within the mat, and incident irradiance measurements accompanied the minicore sampling. In addition, pigment content, photosynthesis and irradiance responses, the capacity for anoxygenic photosynthesis, and gliding speeds were determined for the migrating cyanobacteria. Heavily pigmented Oscillatoria sp. and Spirulina cf. subsalsa migrated downward into the mat during the early morning and remained deep until dusk, when upward migration occurred. The mean depth of the migration (not more than 0.4 to 0.5 mm) was directly correlated with the incident irradiance over the mat surface. We estimated that light intensity at the upper boundary of the migrating cyanobacteria was attenuated to such an extent that photoinhibition was effectively avoided but that intensities which saturated photosynthesis were maintained through most of the daylight hours. Light was a cue of paramount importance in triggering and modulating the migration of the cyanobacteria, even though the migrating phenomenon could not be explained solely in terms of a light response. We failed to detect diel migration patterns for other cyanobacterial species and filamentous anoxyphotobacteria. The sulfide-oxidizing bacterium Beggiatoa sp. migrated as a band that followed low oxygen concentrations within the mat during daylight hours. During the nighttime, part of this population migrated toward the mat surface, but a significant proportion remained deep.  相似文献   

9.
10.
Carbon assimilation and leaf water status were studied in sugar beet (Beta vulgaris L., Klein E-type multigerm) leaves during a light period in which illumination either increased rapidly to full irradiance or changed gradually in a sinusoidal manner as generally occurs during a natural day. A light regimen that simulated the light of a natural day was produced by adjusting irradiance with a neutral-density filter under the control of a computer. Under this light regimen, photosynthesis, transpiration, and stomatal conductance followed the irradiance pattern very closely and ribulose bisphosphate carboxylase was nearly fully activated. When illumination was increased rapidly at the beginning of a light period, transpiration also increased quickly, causing leaves to wilt to some extent. The activation state of ribulose bisphosphate carboxylase increased to only 52%, but ribulose bisphosphate level was nearly twice as high as during the simulated natural day. In spite of the differences in activation state and ribulose bisphosphate levels, photosynthesis rates were very similar under both regimens. Nevertheless, differences in parameters between leaves under the two irradiance regimens can affect how a plant responds to internal or external factors, and therefore, the rate at which irradiance increases at the beginning of a light period is an important consideration when interpreting data.  相似文献   

11.
In this paper, the influence of culture conditions (irradiance, temperature, pH, and dissolved oxygen) on the photosynthesis rate of Scenedesmus almeriensis cultures is analyzed. Short-run experiments were performed to study cell response to variations in culture conditions, which take place in changing environments such as outdoor photobioreactors. Experiments were performed by subjecting diluted samples of cells to different levels of irradiance, temperature, pH, and dissolved oxygen concentration. Results demonstrate the existence of photoinhibition phenomena at irradiances higher than 1,000 μE/m2 s; in addition to reduced photosynthesis rates at inadequate temperatures or pH—the optimal values being 35 °C and 8, respectively. Moreover, photosynthesis rate reduction at dissolved oxygen concentrations above 20 mg/l is demonstrated. Data have been used to develop an integrated model based on considering the simultaneous influence of irradiance, temperature, pH, and dissolved oxygen. The model fits the experimental results in the range of culture conditions tested, and it was validated using data obtained by the simultaneous variation of two of the modified variables. Furthermore, the model fits experimental results obtained from an outdoor culture of S. almeriensis performed in an open raceway reactor. Results demonstrate that photosynthetic efficiency is modified as a function of culture conditions, and can be used to determine the proximity of culture conditions to optimal values. Optimal conditions found (T?=?35 °C, pH?=?8, dissolved oxygen concentration <20 mg/l) allows to maximize the use of light by the cells. The developed model is a powerful tool for the optimal design and management of microalgae-based processes, especially outdoors, where the cultures are subject to daily culture condition variations.  相似文献   

12.
Mathematical models of light attenuation and canopy photosynthesis suggest that crop photosynthesis increases by more uniform vertical irradiance within crops. This would result when a larger proportion of total irradiance is applied within canopies (interlighting) instead of from above (top lighting). These irradiance profiles can be generated by Light Emitting Diodes (LEDs). We investigated the effects of interlighting with LEDs on light interception, on vertical gradients of leaf photosynthetic characteristics and on crop production and development of a greenhouse‐grown Cucumis sativus‘Samona’ crop and analysed the interaction between them. Plants were grown in a greenhouse under low natural irradiance (winter) with supplemental irradiance of 221 µmol photosynthetic photon flux m?2 s?1 (20 h per day). In the interlighting treatment, LEDs (80% Red, 20% Blue) supplied 38% of the supplemental irradiance within the canopy with 62% as top lighting by High‐Pressure Sodium (HPS)‐lamps. The control was 100% top lighting (HPS lamps). We measured horizontal and vertical light extinction as well as leaf photosynthetic characteristics at different leaf layers, and determined total plant production. Leaf mass per area and dry mass allocation to leaves were significantly greater but leaf appearance rate and plant length were smaller in the interlighting treatment. Although leaf photosynthetic characteristics were significantly increased in the lower leaf layers, interlighting did not increase total biomass or fruit production, partly because of a significantly reduced vertical and horizontal light interception caused by extreme leaf curling, likely because of the LED‐light spectrum used, and partly because of the relatively low irradiances from above.  相似文献   

13.
Cyanobacteria are prokaryotic organisms with wide morphological and metabolic diversity. By means of photosynthesis, they convert inorganic compounds into biomolecules, which may have commercial interest. In this work, we evaluated 20 cyanobacterial strains regarding their physiological aspects such as growth, photosynthesis and biochemical composition, some of which are revealed here for the first time. The organisms were cultivated in cylindrical photobioreactors (CPBR) for 144 h and the biomass was obtained. The light inside cultures was constant throughout experimental time and maintained at the saturation irradiance (Ik) of each species. Culture pH was maintained within 7.8 and 8.4 by automatic CO2 bubbling. Growth rate, dry biomass, chlorophyll a, carotenoids, phycocyanin, proteins, carbohydrates, lipids, polyhydroxyalkanoate (PHA) and antioxidant activity were determined. The proportionality of the biochemical composition varied among species, as well as the growth rates. Leptolyngbya sp. and Nostoc sp. (CCIBt3249) showed growth rates in the range of 0.7–0.8 d−1, followed by Rhabdorderma sp. (~ 0.6 d−1), and Phormidium sp. (~ 0.5 d−1). High carotenoid content was obtained in Rhabdoderma sp. (4.0 μg mL−1) and phycocyanin in Leptolyngbya sp. (60 μg mL−1). Higher total proteins were found in the genus Geitlerinema (75% DW), carbohydrates in Microcystis navacekii (30% DW) and lipids in Phormidium sp. (15% DW). Furthermore, Aphanocapsa holsatica showed the highest antioxidant activity (65%) and Sphaerocavum brasiliense, Microcystis aeruginosa, Nostoc sp. (CCIBt3249) and A. holsatica higher levels of PHA (~ 2% DW). This study reports on the biochemical composition of cyanobacteria that can impact the biotechnology of their production, highlighting potential strains with high productivity of specific biomolecules.  相似文献   

14.
Rare earth elements (REEs) entering plant cells can directly interact with peroxidase in plants, which is the structural basis for the decrease in the activity of peroxidase. Different cellular compartments have different pH values. However, little information is available regarding the direct interaction between REEs and peroxidase in plants at different pH values. Here, we investigated the charge distribution on the surface of horseradish peroxidase (HRP) molecule as well as the interaction of terbium ion (Tb3+, one type of REEs) and HRP at different pH values. Using the molecular dynamics simulation, we found that when the pH value was from 4.0 to 8.0, a large amount of negative charges were intensively distributed on the surface of HRP molecule, and thus, we speculated that Tb3+ with positive charges might directly interact with HRP at pH 4.0–8.0. Subsequently, using ultraviolet-visible spectroscopy, we demonstrated that Tb3+ could directly interact with HRP in the simulated physiological solution at pH 7.0 and did not interact with HRP in other solutions at pH 5.0, pH 6.0 and pH 8.0. In conclusion, we showed that the direct interaction between Tb3+ and HRP molecule depended on the pH value of cellular compartments.  相似文献   

15.
Weber B  Graf T  Bass M 《Planta》2012,236(1):129-139
Biological soil crusts, formed by an association of soil particles with cyanobacteria, lichens, mosses, fungi and bacteria in varying proportions, live in or directly on top of the uppermost soil layer. To evaluate their role in the global carbon cycle, gas exchange measurements were conducted under controlled conditions. Moss-dominated soil crusts were first analyzed as moss tufts on soil, then the mosses were removed and the soil was analyzed separately to obtain the physiological response of both soil and individual moss stems. Net photosynthetic response of moss stems and complete crusts was decreased by insufficient and excess amounts of water, resulting in optimum curves with similar ranges of optimum water content. Light saturation of both sample types occurred at high irradiance, but moss stems reached light compensation and saturation points at lower values. Optimum temperatures of moss stems ranged between 22 and 27°C, whereas complete crusts reached similar net photosynthesis between 7 and 27°C. Under optimum conditions, moss stems reached higher net photosynthesis (4.0 vs. 2.8 μmol m?2 s?1) and lower dark respiration rates (?0.9 vs. ?2.4 μmol m?2 s?1). Respiration rates of soil without moss stems were high (up to ?2.0 μmol m?2 s?1) causing by far lower absolute values of NP/DR ratios of soil crusts as compared to moss stems. In carbon balances, it therefore has to be clearly distinguished between measurements of soil crust components versus complete crusts. High rates of soil respiration may be caused by leaching of mosses, creating high-nutrient microsites that favor microorganism growth.  相似文献   

16.
The aim of this research was to design and evaluate a hydrophilic matrix system for sustained release of glipizide, a weakly acidic poor soluble drug. A combination of inclusion complexation and microenvironmental pH modification techniques was utilized to improve the dissolution and pH-independent release of glipizide. Hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as the complexation agent while sodium citrate and magnesium oxide (MgO) were used as model pH modifiers. The hydrophilic matrix tablets were prepared by powder direct compression and evaluated by in vitro dissolution study respectively in pH 6.8 and pH 1.2 dissolution media. The formulations containing MgO exhibited increased cumulative drug release from less than 40% in the reference formulation to 90% within 24 h in acidic media (pH 1.2). The release profile in acidic media was similar to the alkaline media (pH 6.8) with a similarity factor (f2) of 55.0, suggesting the weakening of the effect of pH on the dissolution efficiency of glipizide. The release profile fitted well into the Higuchi model and the dominant mechanism of drug release was Fickian diffusion while case II transport/polymer relaxation occurred. In conclusion, combining inclusion complexation agents and pH modifiers had improved the dissolution of glipizide as well as achieved the pH-independent release profile.  相似文献   

17.
18.
Short-term effects of irradiance (0-1560 micromol photons m(-2) s(-1)), temperature (10-25 degrees C), and salinity (40-160) on oxygenic photosynthesis and oxygen consumption in a hypersaline mat (Salin-de-Giraud, France) were investigated with microsensors under controlled laboratory conditions. Dark O(2) consumption rates were mainly regulated by the mass transfer limitations imposed by the diffusive boundary layer. Areal rates of net photosynthesis increased with irradiance and saturated at irradiances >400 micromol photons m(-2) s(-1). At low irradiances, oxygen consumption increased more strongly with temperature than photosynthesis, whereas the opposite was observed at saturating irradiances. Net photosynthesis vs. irradiance curves were almost unaffected by decreasing salinity (100 to 40), whereas increasing salinities (100 to 160) led to a decrease of net photosynthesis at each irradiance. Dark O(2) consumption rates, maximal gross and net photosynthesis at light saturation were relatively constant over a broad salinity range (60-100) and decreased at salinities above the in situ salinity of 100. Within the range of natural variation, temperature was more important than salinity in regulating photosynthesis and oxygen consumption. At higher salinities the inhibitory impact of salinity on these processes and therefore the importance of salinity as a regulating environmental parameter increased, indicating that in more hypersaline systems, salinity has a stronger limiting effect on microbial activity.  相似文献   

19.
In this investigation, the effect of pH (4.0–11.0) on waste-activated sludge (WAS) hydrolysis and acidification in the presence of a biosurfactant rhamnolipid (RL) were studied. The results showed that the hydrolysis and acidification of WAS in the presence of RL at alkaline pH values were more efficient than that at acidic and near-neutral pH values. After 6 h of hydrolysis, the soluble protein and carbohydrate were 1,654.7 and 675.9 mg/L (pH 11.0), and 825.6 and 376.0 mg/L (pH 7.0), whereas the values were only 315.0 and 84.0 mg/L at pH 4.0 and 164.1 and 32.0 mg/L for the blank, respectively. After 2 or 3 days of fermentation, the accumulated short-chain fatty acids (SCFAs) reached the highest and then decreased with a further increase in time at all investigated pH values. The analysis of SCFA compositions showed that acetic, propionic, and iso-valeric acids were the three main products at any pH value. A higher pH contributed to a greater proportion of acetic acid and a lesser proportion of iso-valeric acid; a lower pH resulted in a greater proportion of iso-valeric and lesser proportion of acetic acid in the initial fermentation. The proportions of acetic acid for the system with biosurfactant RL addition were 16.65, 36.33, and 62.94 %, respectively, at pH 4.0, 7.0, and 11.0 after 1 day. Correspondingly, the proportions were 40.34, 12.60, and 11.01 % for iso-valeric acid.  相似文献   

20.
工程聚球藻的psbA基因及其所用载体的启动子Ppsb A均受光质调控,利用该机制可通过光质调控提高聚球藻的光合效率及其外源基因表达率。以转vp28基因聚球藻7002为实验材料,通过优化光强、温度及pH,解除光限制因素并提高光能利用率。通过改变白光、红光及蓝光的比例,调控光质组成及单色光的光强,检测细胞生长、外源基因的表达及psb A基因的转录。研究结果表明:高比例蓝光下,vp28基因的表达率达到2.4%,是纯白光下的3倍,重组蛋白VP28的积累量提高至2倍。高比例红光抑制了psb AII、psb AIII基因及外源基因的表达,但促使生物量在3 d内突破1.5 g/L。本研究为蓝藻的生物制药和工程蓝藻代谢产物的产业化提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号