首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human alveolar macrophages are unique in that they have an extended life span in contrast to precursor monocytes. In evaluating the role of sphingolipids in alveolar macrophage survival, we found high levels of sphingosine, but not sphingosine-1-phosphate. Sphingosine is generated by the action of ceramidase(s) on ceramide, and alveolar macrophages have high constitutive levels of acid ceramidase mRNA, protein, and activity. The high levels of acid ceramidase were specific to alveolar macrophages, because there was little ceramidase protein or activity (or sphingosine) in monocytes from matching donors. In evaluating prolonged survival of alveolar macrophages, we observed a requirement for constitutive activity of ERK MAPK and the PI3K downstream effector Akt. Blocking acid ceramidase but not sphingosine kinase activity in alveolar macrophages led to decreased ERK and Akt activity and induction of cell death. These studies suggest an important role for sphingolipids in prolonging survival of human alveolar macrophages via distinct survival pathways.  相似文献   

2.
Summary Alveolar macrophages, which play a central role in lung defense, produce cytokines that help orchestrate local inflammatory responses. In sepsis and other pathological conditions, bacterial lipopolysaccharide endotoxin can induce alveolar macrophages (AM) to release proinflammatory cytokines, including tumor necrosis factor-alpha, interleukin-1, and interleukin-6. Studying the mechanisms that control alveolar macrophage cytokine production may lead to better therapies for conditions involving inflammatory lung injury. We and others have noted significant differences between alveolar macrophages and peritoneal macrophages, but large numbers of human or murine alveolar macrophages are rarely available for detailed mechanistic studies. We have obtained three murine alveolar macrophage cell lines (AMJ2C8, AMJ2C11, and AMJ2C20) and have begun to characterize their cytokine responses to proinflammatory stimuli. We measured the effects of endotoxin, interferon gamma, and the combination of the two on production of tumor necrosis factor, interleukin-1 beta, and interleukin-6 in each line. We also studied the expression of the endotoxin receptor CD14 by these cells, and investigated the effect of serum on their endotoxin responsiveness. We show here that all three of the cell lines responded in a manner comparable to that of primary murine alveolar macrophages. Observed variations between these lines may reflect the documented heterogeneity seen in populations of primary alveolar macrophages. These cell lines should expand the repertoire of tools available to investigators studying regulation of murine alveolar macrophage responses.  相似文献   

3.
In patients requiring mechanical ventilation for acute lung injury or acute respiratory distress syndrome (ARDS), tidal volume reduction decreases mortality, but the mechanisms of the protective effect have not been fully explored. To test the hypothesis that alveolar macrophage activation is an early and critical event in the initiation of ventilator-induced lung injury (VILI), rats were ventilated with high tidal volume (HV(T)) for 10 min to 4 h. Alveolar macrophage counts in bronchoalveolar lavage (BAL) fluid decreased 45% by 20 min of HV(T) (P < 0.05) consistent with activation-associated adhesion. Depletion of alveolar macrophages in vivo with liposomal clodronate significantly decreased permeability and pulmonary edema following 4 h of HV(T) (P < 0.05). BAL fluid from rats exposed to 20 min of HV(T) increased nitric oxide synthase activity nearly threefold in na?ve primary alveolar macrophages (P < 0.05) indicating that soluble factors present in the air spaces contribute to macrophage activation in VILI. Media from cocultures of alveolar epithelial cell monolayers and alveolar macrophages exposed to 30 min of stretch in vitro also significantly increased nitrite production in na?ve macrophages (P < 0.05), but media from stretched alveolar epithelial cells or primary alveolar macrophages alone did not, suggesting alveolar epithelial cell-macrophage interaction was required for the subsequent macrophage activation observed. These data demonstrate that injurious mechanical ventilation rapidly activates alveolar macrophages and that alveolar macrophages play an important role in the initial pathogenesis of VILI.  相似文献   

4.
Bioactive N-acylethanolamines, including anandamide (an endocannabinoid), N-palmitoylethanolamine (an anti-inflammatory substance), and N-oleoylethanolamine (an anorexic substance) are enzymatically hydrolyzed to fatty acids and ethanolamine. Fatty acid amide hydrolase plays a major role in this reaction. In addition, we cloned cDNA of an isozyme termed "N-acylethanolamine-hydrolyzing acid amidase (NAAA)" [K. Tsuboi, Y.-X. Sun, Y. Okamoto, N. Araki, T. Tonai, N. Ueda, Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase, J. Biol. Chem. 280 (2005) 11082-11092]. Previous biochemical analyses suggested the expression of NAAA in macrophage cells and various rat tissues including lung and brain. To clarify the physiological significance of NAAA, here we immunochemically studied NAAA for the first time. We developed an antibody specific for rat NAAA, and by Western blotting revealed that NAAA is glycosylated and subjected to specific proteolysis. In alveolar macrophages isolated from rat lung, NAAA was immunocytochemically localized in lysosomes. In the whole lung tissue, only alveolar macrophages were immunostained for NAAA. Conformably, the mRNA and protein levels and activity of NAAA in alveolar macrophages were much higher than those in the whole lung tissue. In brain, intraventricular macrophages were positively stained with anti-NAAA antibody, while microglia appeared to be negative. These results strongly suggested the importance of macrophages as an expression site of NAAA in rat tissues.  相似文献   

5.
Fatty acid-derived inflammatory mediators are considered to play an important role in airway hyperresponsiveness of asthmatic patients. The pulmonary macrophage may be an important source for these mediators in airway tissue. We investigated the metabolism of arachidonic acid and linoleic acid by human bronchoalveolar lavage cells, mainly comprising pulmonary macrophages. Arachidonic was mainly metabolized by 5-lipoxygenase, giving rise to the formation of leukotriene B4 and 5-hydroxy-eicosatetraenoic acid (5-HETE). Linoleic acid was converted to 5 major metabolites, including the 9-hydroxy and 13-hydroxy derivatives, 9- and 13-hydroxy-octadecadienoic acid (9- and 13-HODE). The formation of HODEs could be inhibited by cyclooxygenase inhibitors as well as lipoxygenase inhibitors, indicating that both enzymic species play a role in the generation of HODEs.  相似文献   

6.
The metabolic pathway of phospholipids is one of the most important physiologic pathways in Mycobacterium tuberculosis, a typical intracellular bacterium. The hemolytic phospholipase lip gene (Rv0183) is one of 24 phospholipase genes that have been demonstrated to play critical roles in the metabolism of phospholipids in M.?tuberculosis. Quantitative RT-PCR and flow cytometry were used to elucidate the immunological and pathogenic implications of the Rv0183 gene on the inflammatory response following persistent expression of Rv0183 in mouse alveolar macrophage RAW264.7 cells. Our results demonstrate that a time-course-dependent ectopic expression of Rv0183 significantly elevated the expression of IL-6, NF-κB, TLR-2, TLR-6, TNFα, and MyD88 in these alveolar macrophage cells. Furthermore, the persistent expression of Rv0183 induced RAW264.7 cell apoptosis in vitro. These findings demonstrate that the expression of Rv0183 induces an inflammatory response and cell apoptosis in the host cells, suggesting that Rv0183 may play an important role in the virulence and pathogenesis of M.?tuberculosis infection.  相似文献   

7.
Macrophages have established roles in tumor growth and metastasis, but information about their role in lung tumor promotion is limited. To assess the role of macrophages in lung tumorigenesis, we developed a method of minimally invasive, long-term macrophage depletion by repetitive intratracheal instillation of liposomal clodronate. Compared with controls treated with repetitive doses of PBS-containing liposomes, long-term macrophage depletion resulted in a marked reduction in tumor number and size at 4 mo after a single i.p. injection of the carcinogen urethane. After urethane treatment, lung macrophages developed increased M1 macrophage marker expression during the first 2-3 wk, followed by increased M2 marker expression by week 6. Using a strategy to reduce alveolar macrophages during tumor initiation and early promotion stages (weeks 1-2) or during late promotion and progression stages (weeks 4-16), we found significantly fewer and smaller lung tumors in both groups compared with controls. Late-stage macrophage depletion reduced VEGF expression and impaired vascular growth in tumors. In contrast, early-stage depletion of alveolar macrophages impaired urethane-induced NF-κB activation in the lungs and reduced the development of premalignant atypical adenomatous hyperplasia lesions at 6 wk after urethane injection. Together, these studies elucidate an important role for macrophages in lung tumor promotion and indicate that these cells have distinct roles during different stages of lung carcinogenesis.  相似文献   

8.
Inflammation is a beneficial host response to foreign challenge involving numerous soluble factors and cell types, including polymorphonuclear granulocytes or neutrophils. Programmed cell death (apoptosis) of neutrophils has been documented in vitro as well as in vivo, and is thought to be important for the resolution of inflammation, as this process allows for engulfment and removal of senescent cells prior to their necrotic disintegration. Studies in recent years have begun to unravel the mechanism of macrophage clearance of apoptotic cells, and evidence has accrued for a critical role of externalization and oxidation of plasma membrane phosphatidylserine, and its subsequent recognition by macrophage receptors, in this process. Activated neutrophils generate vast amounts of reactive oxygen species for the purpose of killing ingested micro-organisms, and these reactive metabolites may also modulate the life-span, as well as the clearance, of the neutrophil itself. This review aims to address the latter topic, as well as to summarize current knowledge on the molecular mechanisms of neutrophil apoptosis and macrophage clearance of these cells at the site of inflammation.  相似文献   

9.
Regulation of the inflammatory infiltrate is critical to the successful outcome of pneumonia. Alveolar macrophage apoptosis is a feature of pneumococcal infection and aids disease resolution. The host benefits of macrophage apoptosis during the innate response to bacterial infection are incompletely defined. Because NO is required for optimal macrophage apoptosis during pneumococcal infection, we have explored the role of macrophage apoptosis in regulating inflammatory responses during pneumococcal pneumonia, using inducible NO synthase (iNOS)-deficient mice. iNOS(-/-) mice demonstrated decreased numbers of apoptotic macrophages as compared with wild-type C57BL/6 mice following pneumococcal challenge, greater recruitment of neutrophils to the lung and enhanced expression of TNF-alpha. Pharmacologic inhibition of iNOS produced similar results. Greater pulmonary inflammation was associated with greater levels of early bacteremia, IL-6 production, lung inflammation, and mortality within the first 48 h in iNOS(-/-) mice. Labeled apoptotic alveolar macrophages were phagocytosed by resident macrophages in the lung and intratracheal instillation of exogenous apoptotic macrophages decreased neutrophil recruitment in iNOS(-/-) mice and decreased TNF-alpha mRNA in lungs and protein in bronchial alveolar lavage, as well as chemokines and cytokines including IL-6. These changes were associated with a lower probability of mice becoming bacteremic. This demonstrates the potential of apoptotic macrophages to down-regulate the inflammatory response and for the first time in vivo demonstrates that clearance of apoptotic macrophages decreases neutrophil recruitment and invasive bacterial disease during pneumonia.  相似文献   

10.
Receptors for immune complexes have been localized on rabbit alveolar macrophages with scanning electron microscopy by exposing the cells first to a soluble immune complex composed of horseradish peroxidase and antibody to horseradish peroxidase, and then incubating with a benzidine-containing substrate that yields crystalline reaction product. Receptors were visualized by this means as sites of attachment of laminated slender crystals that were easily distinguished from macrophage surface structures. Receptors appeared most abundant on cytoplasmic veils and pseudopods and in the perinuclear region of macrophages minimally spread over the coverslip. Further macrophage spreading was associated with lighter receptor staining.  相似文献   

11.
Neutrophil infiltration is the first step in eradication of bacterial infection, but neutrophils rapidly die after killing bacteria. Subsequent accumulation of macrophage lineage cells, such as alveolar macrophages (AMs), is essential to remove dying neutrophils, which are a source of injurious substances. Macrophage lineage cells can promote tissue repair, by producing potential growth factors including hepatocyte growth factor (HGF). However, it remains elusive which factor activates macrophage in these processes. Intratracheal instillation of Pseudomonas aeruginosa caused neutrophil infiltration in the airspace; subsequently, the numbers of total AMs and neutrophil ingested AMs were increased. Bronchoalveolar lavage (BAL) fluid levels of monocyte chemoattractant protein (MCP)-1/CC chemokine ligand-2 (CCL2), a potent macrophage-activating factor, were increased before the increases in the number of AM ingesting neutrophils and HGF levels in BAL fluid. Immunoreactive MCP-1 proteins were detected in alveolar type II epithelial cells and AMs only after P. aeruginosa infection. The administration of anti-MCP-1/CCL2 Abs reduced the increases in the number of AM-ingesting neutrophils and HGF levels in BAL fluid, and eventually aggravated lung tissue injury. In contrast, the administration of MCP-1/CCL2 enhanced the increases in the number of AM ingesting neutrophils and HGF levels in BAL fluid, and eventually attenuated lung tissue injury. Furthermore, MCP-1/CCL2 enhanced the ingestion of apoptotic neutrophils and HGF production by a mouse macrophage cell line, RAW 267.4, in a dose-dependent manner. Collectively, MCP-1/CCL2 has a crucial role in the resolution and repair processes of acute bacterial pneumonia by enhancing the removal of dying neutrophils and HGF production by AMs.  相似文献   

12.
Alveolar macrophages have recently been postulated as being involved in the aetiology of adult respiratory distress syndrome (ARDS). To evaluate their role, basal cyclic AMP levels and responsiveness of adenylyl cyclase alveolar macrophages were determined at four intermediate stages of developing respiratory distress in piglets using a protocol with repeated lung lavage. Examination of alveolar cells recovered from the subsequent lavages reveals an influx of granulocytes (neutrophils and eosinophils) within 1 h of two intensive lung lavages. During the developing respiratory distress the basal cyclic AMPlevel of alveolar macrophages increases and adenylyl cyclase responsiveness to prostaglandin E(2) (PGE(2)) and isoprelanaline diminishes. The previously observed impairment of macrophage activity can then be explained at a subcellular level.  相似文献   

13.
The cell type predominantly infected by maedi-visna virus (MVV) is the macrophage, and we have looked at the ability of MVV-infected macrophages to interact with cytotoxic T lymphocytes (CTL), important effector cells against virus infections. MVV-specific CTL precursors were detected, after in vitro culture with MVV antigen and recombinant human interleukin-2, in peripheral blood lymphocytes of all MVV-infected sheep. MVV-infected monocyte-derived macrophages and alveolar macrophages were able to stimulate CTL activity in vitro and were targets for these activated CTL. The major effector cell population using MVV-infected macrophage targets was CD8+ lymphocytes, although another population, lymphokine-activated killer cells, may also have been involved. There was no direct cytotoxic activity found in alveolar lymphocytes from MVV-infected sheep without lung lesions.  相似文献   

14.
Various lipoxygenase (LO) products of arachidonic acid (AA) have been found to have potent biological activities and modulate physiological processes in various cells including endocrine cells. However, no studies concerning LO products in adrenocortical cells have been reported. The present study was performed to investigate LO products in rat adrenocortical cells and its role in ACTH-stimulated adrenal steroidogenesis. LO metabolites produced in ACTH-stimulated rat adrenocortical cells prelabeled with [3H]AA was analyzed by reverse phase and straight phase HPLC and two 5-LO products, 5-hydroxyeicosatetraenoic acid (5-HETE) and leukotriene B4 (LTB4) were identified. ACTH-induced 5-HETE and LTB4 production in adrenal cells was dose dependently inhibited by AA861, a specific inhibitor of 5-LO. AA861 reduced ACTH-stimulated corticosteroid production without any change in cyclic AMP formation, while indomethacin did not affect both corticosteroid and cyclic AMP production. Reduced steroidogenesis by AA861 was reversed by the addition of 5-hydroperoxyeicosatetraenoic acid (5-HPETE). Also exogenously added 5-HPETE dose dependently augmented ACTH-stimulated corticosteroid production without any concomitant change in cyclic AMP production. However, 5-HETE and LTB4 had no such effect. These results indicate that 5-LO pathway is present in rat adrenocortical cells and its metabolites, most likely 5-HPETE, may play an important role in adrenal steroidogenesis.  相似文献   

15.
Current concepts of pulmonary sarcoidosis suggest that the alveolar macrophage plays a central role in the pathogenesis of the disease. To help define the population of alveolar macrophages in sarcoidosis, we compared the surface phenotype of alveolar macrophages from patients with sarcoidosis and from normal individuals by using monoclonal antibodies (63D3, OKM1, M phi P-9, M phi S-1, 61D3, and M phi S-39) that detect surface antigens on cells of monocyte/macrophage lineage. Although almost all blood monocytes expressed surface antigens detected by each of these antibodies, only a minority of normal alveolar macrophages expressed the same surface antigens (p less than 0.05, each comparison). However, in sarcoidosis, the percentage of alveolar macrophages expressing these surface antigens was increased (p less than 0.05, each comparison with normal alveolar macrophages). Several findings supported the conclusion that the increased expression of these monocyte-lineage surface antigens on sarcoid alveolar macrophages resulted from increased recruitment of monocytes to the lung in sarcoidosis and not from abnormal "activation" of alveolar macrophages. First, alveolar macrophages expressing these antigens had an immature morphology. Second, in vitro cultivation of blood monocytes and alveolar macrophages in the presence of immune and inflammatory mediators, including mediators known to be present in the lung in sarcoidosis, did not prevent the loss of expression of monocyte-lineage surface antigens from monocytes or induce reexpression of monocyte-lineage surface antigens on alveolar macrophages. Third, the expression of monocyte-lineage surface antigens was only increased on sarcoid macrophages from patients whose lower respiratory tract contained an increased number of T lymphocytes, cells known to release monocyte chemotactic factor in sarcoidosis. Consistent with the knowledge that corticosteroids usually suppress the alveolitis of active sarcoidosis, when the expression of alveolar macrophage surface antigens was evaluated before and during therapy, the percentage of alveolar macrophages expressing monocyte-lineage surface antigens returned to normal after 1 to 3 mo of therapy.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Tartrate-resistant acid phosphatase in human alveolar macrophages   总被引:1,自引:0,他引:1  
T Efstratiadis  D W Moss 《Enzyme》1985,34(3):140-143
Tartrate-resistant acid phosphatase has been extracted from human alveolar macrophages, in which its specific activity is 10-fold that in whole lung. The apparent identity of the alveolar macrophage isoenzyme with that associated with osteoclasts suggests that both types of cell belong to the mononuclear phagocyte system. Within this system, expression of tartrate-resistant acid phosphatase appears to accompany certain kinds of differentiation.  相似文献   

17.
Weanling male Fisher 344 rats were maintained on low selenium basal and Se-supplemented diets for 38 weeks. A several fold reduction in the glutathione peroxidase activity of the lung and liver tissues in rats maintained on low Se basal diet established their Se-deficient status. Analysis of the supernatants from resting pulmonary alveolar macrophage suspensions showed negligible extracellular release of PGE2, TXB2 and LTB4 in both diet groups. A challenge with opsonized zymosan particles increased the release of the same three arachidonic acid metabolites by several fold in both diet groups. The differences between the two diet groups with respect to the secretion of the products of the cyclooxygenase pathway, PGE2 and TXB2 were negligible. By contrast, a significant reduction in the extracellular release of LTB4 was observed in cells from animals on low selenium basal diet. These results suggest a selective inhibition of LTB4 biosynthesis in pulmonary alveolar macrophages by dietary deficiency of selenium.  相似文献   

18.

Background  

Phospholipase B (PLB) has been reported to be one of the virulence factors for human pathogenic fungi and has also been described as necessary for the early events in infection. Based on these data, we investigated the role of PLB in virulence and modulation of the alveolar pulmonary immune response during infection using an in-vitro model of host-pathogen interaction, i.e. Paracoccidioides brasiliensis yeast cells infecting alveolar macrophage (MH-S) cells.  相似文献   

19.
The alveolar epithelium serves as a barrier between organism and environment and functions as the first line of protection against potential respiratory pathogens. Alveolar type II (TII) cells have traditionally been considered the immune cells of the alveolar epithelium, as they possess immunomodulatory functions; however, the precise role of alveolar type I (TI) cells, which comprise ∼95% of the alveolar epithelial surface area, in lung immunity is not clear. We sought to determine if there was a difference in the response of TI and TII cells to lung injury and if TI cells could actively participate in the alveolar immune response. TI cells isolated via fluorescence activated cell sorting (FACS) from LPS-injured rats demonstrated greater fold-induction of multiple inflammatory mediators than TII cells isolated in the same manner from the same animals. Levels of the cytokines TNF-α, IL-6 and IL-1β from cultured primary rat TI cells after LPS stimulation were significantly increased compared to similarly studied primary rat TII cells. We found that contrary to published reports, cultured TII cells produce relatively small amounts of TNF-α, IL-6 and IL-1β after LPS treatment; the higher levels of cytokine expression from cultured TII cells reported in the literature were likely from macrophage contamination due to traditional non-FACS TII cell isolation methods. Co-culture of TII cells with macrophages prior to LPS stimulation increased TNF-α and IL-6 production to levels reported by other investigators for TII cells, however, co-culture of TI cells and macrophages prior to LPS treatment resulted in marked increases in TNF-α and IL-6 production. Finally, exogenous surfactant blunted the IL-6 response to LPS in cultured TI cells. Taken together, these findings advocate a role for TI cells in the innate immune response and suggest that both TI and TII cells are active players in host defense mechanisms in the lung.  相似文献   

20.
A replicating population of non-monocyte-derived free cells appears in organ-cultured embryonic rat lungs, indistinguishable from alveolar macrophages by classical criteria such as ultrastructure, lysosomal enzyme cytochemistry, and phagocytic behavior. We demonstrate similar events in cultured embryonic hamster lungs and development of macrophage-associated properties on the plasmalemma of these cells in both species. Immunoperoxidase localizations were obtained using monoclonal antibodies against alveolar macrophage antigen (HAM1) in hamsters, and rat macrophage antigen (ED1) and leukocyte-common antigen (OX1) in rats. Fc and C3b receptors were identified in both species by immune rosetting. HAM1 staining, perinuclear in rare cells at explantation, gains definitive surface localization 3-4 days later as cells prepare to emerge through the pleura. ED1 and OX1 cytoplasmic staining first occurs after 24 hr, increases as macrophages multiply and congregate beneath the pleura, and translocates to the plasmalemma of emerged cells. Some glass-adherent cells from lung explants have Fc receptors. The proportion rises sharply for 24 hr and equals fully emerged cells (90-95%) by days 3-4. At first phagocytosis is slow to follow Fc receptor binding, but ingestion time decreases to 3-10 min as macrophages mature. A minority of emerged macrophages bind complement-opsonized erythrocytes, which are rarely taken up. These properties are shared by alveolar macrophages of adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号