首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mimetridium cryptum is a slender, elongated, New Zealand seaanemone. It shows fast contractions in the retractor musclesof its mesenteries, oral disc radial muscles, and tentacle longitudinalmuscles. The nervous system shows considerable regional differentiationin orientation of neurons, range of diameters of nerve fibers,and density of nerve net. Fast-contracting muscles are overlainby relatively dense nerve net, with many nerve fibers of morethan 2 ,µ diameter; slow-contracting muscles are overlainby a sparse nerve net whose nerve fibers are about 1µin diameter. A tendency for nerve fibers to run parallel ismarked in some regions. Individual neurons may run from onestructure to another, and even pass from the endoderm of themesenteries to the ectoderm of the oral disc.  相似文献   

2.
The nervous system of Actinia equina was studied by routinehistological methods and by metallic impregnation techniques.Some preliminary results from electron microscopy are included. The organization of the nervous system of this species is morecomplex than that of other anthozoans; it consists of two interconnectednerve plexuses which are developed to differing degrees in variousparts of the body. These are: (1) a superficial (outer) plexuslying in the ectoderm, and (2) a deeper (inner) plexus constitutingthe main nerve net, lying in the mesoderm. The former is composedof bipolar and multipolar nerve cells, and the latter of multipolarcells. Receptor cells in the ectoderm make contact with fibersof the ectodermal plexus. Processes from the mesodermal plexusrun out to the muscle fibers. Connections between the receptor cells and the nerve processesof the superficial plexus and between the processes of the cteeperplexus and the muscle fibers appear to be of the discontinuous(synaptic) type. In the nerve nets themselves, although someconnections resembling synapses have been seen, most of thenerve elements stand in direct connection with one another,so that the system must be regarded as at least partly syncytial.Evidence is given for the growth of the nerve net, in step withthe general growth of the animal, by division of nuclei followedby their movement apart within the syncytium. The distribution of the nerve elements in various parts of thebody, the interconnections between these regions, and the cytologicalcharacteristics of the cells are described. Ways in which excitationcould pass from one part to another are discussed.  相似文献   

3.
The taste disc of the red-bellied toad Bombina orientalis (Discoglossidae) has been investigated by light and electron microscopy and compared with that of Rana pipiens (Ranidae). Unlike the frog, B. orientalis possesses a disc-shaped tongue that cannot be ejected for capture of prey. The taste discs are located on the top of fungiform papillae. They are smaller than those in Ranidae, and are not surrounded by a ring of ciliated cells. Ultrastructurally, five types of cells can be identified (mucus cells, wing cells, sensory cells, and both Merkel cell-like basal cells and undifferentiated basal cells). Mucus cells are the main secretory cells of the taste disc and occupy most of the surface area. Their basal processes do not synapse on nerve fibers. Wing cells have sheet-like apical processes and envelop the mucus cells. They contain lysosomes and multivesicular bodies. Two types of sensory cells reach the surface of the taste disc; apically, they are distinguished by either a brush-like arrangement of microvilli or a rod-like protrusion. They are invaginated into lateral folds of mucus cells and wing cells. In contrast to the situation in R. pipiens, sensory cells of B. orientalis do not contain dark secretory granules in the perinuclear region. Synaptic connections occur between sensory cells (presynaptic sites) and nerve fibers. Merkel cell-like basal cells do not synapse onto sensory cells, but synapse-like connections exist between Merkel cell-like basal cells (presynaptic site) and nerve fibers.  相似文献   

4.
Evidence supporting the presence of nerve cells in the columnand tentacles of Pacliycerianthiis is described. G. F. Gwilliamhas shown that electrical stimuli can be transmitted to theectodermal muscle by the intact epithelium and subepithelialnetwork of the ectoderm of the column. In these preparationsthe ectodermal muscle, mesogloea, and endoderm were cut. Incontrast, preparations in which the ectodermal muscle has beenleft intact and the epithelium and subepithelial network cutdo not show such transmission. The author and Gwilliam have independently used different silverstain methods to demonstrate large cells, piobably nerve cells,with cell bodies in the base of the epithelium and with fibersrunning into the subepithelial network. The author has foundsimilar bipolar cells in the tentacles and column by using macerationtechniques. These cells are compared with other cell types foundin the tentacles.  相似文献   

5.
The fine structure of the lateral line organ of the Japanese sea eel Lyncozymba nystromi has been studied with the electron microscope. The sensory epithelium of the lateral line organ consists of a cluster of two major types of cells, the sensory hair cells and the supporting cells. The sensory cell is a slender element with a flat upper surface provided with sensory hairs, Two different types of synapses are distinguished on the basal surface of the receptor cell. The first type is an ending without vesicles and the second type is an ending with many vesicles. These are presumed to correspond to the afferent and the efferent innervations of the lateral line organ. The fine structure of the supporting cells and the morphological relationship between the supporting cells and the receptor cells were observed. The possible functions of the supporting cells are as follows: (a) mechanical and metabolic support for the receptor cell; (b) isolation of the individual receptor cell; (c) mucous secretion and probably cupula formation; (d) glial function for the intraepithelial nerve fibers. Both myelinated and unmyelinated fibers were found in the lateral line nerve. The mode of penetration of these fibers into the epithelium was observed.  相似文献   

6.
We examined deuterostome invertebrates, the sea urchin and amphioxus, and an extant primitive vertebrate, the lamprey, for the presence of structures expressing the HNK-1 carbohydrate and serotonin. In sea urchin embryos and larvae, HNK-1 positive cells were localized in the ciliary bands and in their precursor ectoderm. Serotonergic cells were exclusively observed in the apical organs. In juvenile amphioxus, primary sensory neurons in the dorsal nerve cords were HNK-1 immunoreactive. The juvenile amphioxus nerve cords contained anti-serotonin immunoreactive nerve fibers that seem to be the Rohde axons extending from amphioxus interneurons, the Rohde cells. In lamprey embryos, migrating neural crest cells and primary sensory neurons, including Rohon-Beard cells, expressed the HNK-1 carbohydrate. Lamprey larvae (ammocoetes) contained cell aggregates expressing both the HNK-1 carbohydrate and serotonin in the pronephros and in the regions adjacent to the gut epithelium. Some of these cell aggregates were present in the anti-serotonin positive visceral motor nerve net. Motor neurons and Müller fibers were serotonergic in ammocoetes. Comparison of the expression patterns of HNK-1 carbohydrate among sea urchins, amphioxus and lampreys seem to suggest the possible evolutionary origin of the neural crest, that is, ciliary bands in dipleurula-type ancestors evolved into primary sensory neurons in chordate ancestors, as inferred from Garstang's auricularia hypothesis, and the neural crest originated from the primary sensory neurons.  相似文献   

7.
The anatomy of the labyrinth and the structure of the macula utriculi of the teleost fish (burbot) Lota vulgaris was studied by dissection, phase contrast, and electron microscopy. The innervating nerve fibers end at the bottom of the sensory cells where two types of nerve endings are found, granulated and non-granulated. The ultrastructure and organization of the sensory hair bundles are described, and the finding that the receptor cells are morphologically polarized by the presence of an asymmetrically located kinocilium in the sensory hair bundle is discussed in terms of directional sensitivity. The pattern of orientation of the hair cells in the macula utriculi was determined, revealing a complicated morphological polarization of the sensory epithelium. The findings suggest that the interplay of sensory responses is intimately related to the directional sensitivity of the receptor cells as revealed by their morphological polarization. The problem of efferent innervation is discussed, and it is concluded that the positional information signaled by the nerve fibers innervating the vestibular organs comprises an intricate pattern of interacting afferent and efferent impulses  相似文献   

8.
Neurosecretion and Molting in Some Parasitic Nematodes   总被引:1,自引:0,他引:1  
The adult female of Ascaris lumbricoides possesses a numberof nerve cells containing material which stains with paraldehyde-fuchsin.Among others, most of the primary sensory cells in the lipsare fuchsinophilic. Ascaris does not survive outside its host,so that it is impossible to ascribe a function to these cells. Phocanema decipiens possesses similar cells in the dorsal andventral ganglia which exhibit a cycle of secretion correlatedwith the burst of cytological activity which accompanies thedeposition of the new cuticle. Ligation experiments have demonstratedthat a new cuticle can be deposited in the absence of theseneurosecretory cells. Our most recent experiments suggest thatthe neurosecretory cells may control the release of leucineaminopeptidase in the excretory gland, a substance which isthought to be responsible for ecdysis.  相似文献   

9.
Neuromuscular transmission has been studied in detail by variousauthors in neurogenic hearts of decapod and stomatopod crustaceans,horseshoe crabs, and spiders. In these hearts, bursts of impulsesgenerated in the cardiac ganglion at regular intervals producedepolarizations of the muscle fibers. Each depolarization isassociated with a heart contraction. The depolarization is composedof many excitatory junction potentials (ejp's), each producedby a single nerve impulse. There is no evidence in Homarus,Squilla, or Limulus hearts that single ejp's or composites ofejp's give rise to regenerative membrane responses; in thesehearts, spontaneous depolarizations never overshoot the zeroreference level. Overshooting occurs in certain crab and crayfishhearts, and it is possible that muscle fibers of these heartsproduce regenerative membrane events. The muscle fibers of Limulus, Tachypleus and Homarus heartsare polyneuronally innervated. Pulse stimuli applied to nerve branches evoke ejp's that facilitatein hearts of Squilla and Homarus. In addition to facilitationin Homarus, there is also depression; at certain frequenciesof stimulation both facilitation and depression can be observed.Experiments in tarantula, Limulus, and Homarus hearts show thatL-glutamic acid mimics the natural transmitter substance.  相似文献   

10.
The fine structure of the ectodermal and endodermal muscle layers of Hydra magnipapillata has been analyzed by scanning electron microscopy after hydrolytic removal of the mesoglea with NaOH and subsequent exposure of the basal and lateral aspects of the layers by mechanical dissection. The ectodermal muscle layer consists of fibrous processes of epithelial cells extending longitudinally to the body axis, whereas the endodermal muscle layer comprises cells with hexagonal bases and several strands of myonemes oriented circularly. In each layer, the muscular elements tightly interdigitate, extending a continuous muscle sheet along the mesoglea. The ectodermal and endodermal muscle sheets communicate with each other via foliate microprojections penetrating the mesoglea. On the lateral aspect of the ectodermal epithelium, spiny nerve fibers run along the upper surface of the muscle processes. The spines are often attached to muscle processes, suggesting that the former monitor muscle contraction. Nerve fibers occasionally come into contact with the mesoglea through narrow gaps between the muscle processes. In the hypostomal ectoderm, a small spindle-shaped cell, probably sensory in nature, extends an apical cilium and a long basal process.  相似文献   

11.
12.

Introduction

Although the prevalence of arthritis dramatically increases with age, the great majority of preclinical studies concerning the mechanisms that drive arthritic joint pain have been performed in young animals. One mechanism hypothesized to contribute to arthritic pain is ectopic nerve sprouting; however, neuroplasticity is generally thought to be greater in young versus old nerves. Here we explore whether sensory and sympathetic nerve fibers can undergo a significant ectopic nerve remodeling in the painful arthritic knee joint of geriatric mice.

Methods

Vehicle (saline) or complete Freund's adjuvant (CFA) was injected into the knee joint of 27- to 29-month-old female mice. Pain behaviors, macrophage infiltration, neovascularization, and the sprouting of sensory and sympathetic nerve fibers were then assessed 28 days later, when significant knee-joint pain was present. Knee joints were processed for immunohistochemistry by using antibodies raised against CD68 (monocytes/macrophages), PECAM (endothelial cells), calcitonin gene-related peptide (CGRP; sensory nerve fibers), neurofilament 200 kDa (NF200; sensory nerve fibers), tyrosine hydroxylase (TH; sympathetic nerve fibers), and growth-associated protein 43 (GAP43; nerve fibers undergoing sprouting).

Results

At 4 weeks after initial injection, CFA-injected mice displayed robust pain-related behaviors (which included flinching, guarding, impaired limb use, and reduced weight bearing), whereas animals injected with vehicle alone displayed no significant pain-related behaviors. Similarly, in the CFA-injected knee joint, but not in the vehicle-injected knee joint, a remarkable increase was noted in the number of CD68+ macrophages, density of PECAM+ blood vessels, and density and formation of neuroma-like structures by CGRP+, NF200+, and TH+ nerve fibers in the synovium and periosteum.

Conclusions

Sensory and sympathetic nerve fibers that innervate the aged knee joint clearly maintain the capacity for robust nerve sprouting and formation of neuroma-like structures after inflammation/injury. Understanding the factors that drive this neuroplasticity, whether this pathologic reorganization of nerve fibers contributes to chronic joint pain, and how the phenotype of sensory and sympathetic nerves changes with age may provide pharmacologic insight and targets for better controlling aging-related joint pain.  相似文献   

13.
Summary The sensory innervation of the pineal organ of adult Lacerta viridis has been investigated. Some specimens of Lacerta muralis lillfordi were also used. In the pineal epithelium, a small number of nerve cell pericarya of a sensory type are present. They lie either solitary or in small clusters close to the basement membrane. The axons originating from the nerve cell bodies, i. e. the pineal sensory nerve fibers, first course in the intraepithelial nerve fiber layer which is only locally present and contains a restricted number of unmyelinated fibers. In Lacerta viridis, the pineal fibers generally leave the epithelium at the proximal part of the organ proper. They then form small bundles which run along the outer surface of the basement membrane in the leptomeningeal connective tissue covering. At the proximal end of the pineal stalk the single bundles assemble constituting the pineal nerve. In Lacerta muralis the fibers leave the pineal epithelium at the proximal end of the stalk running farther down within the epithelium. Many fibers become myelinated after leaving the pineal epithelium. The pineal nerve runs ventralward in the midplane just caudal to the habenular commissure to which no fibers are given off. Continuing their ventralward course between the habenular commissure and the rostral end of the posterior commissure which is traversed by some of them, the pineal fibers reach the dorsal border of the subcommissural organ. Small separate aberrant pineal bundles traverse the posterior commissure at various more caudal levels. Having reached the dorsal border of the subcommissural organ, part of the pineal fibers continue their ventralward course directly running along the lateral sides of this organ to reach the periventricular nerve fiber layer lateral and ventral to it. A restricted number of fibers first turns in a caudal direction running between the base of the posterior commissure and the base of the subcommissural organ before turning ventralward to reach the periventricular layer. Most probably, pineal fibers do neither join the posterior commissural system nor innervate the subcommissural organ. Once having reached the periventricular layer, some pineal fibers curve in a rostral direction while others, before doing so, send a collateral in a caudal direction. Both, the main fibers and the collaterals, contribute to the formation of the periventricular layer. The sites of termination of the pineal fibers could not be ascertained.From the presence of intraepithelial sensory nerve cell bodies and from literature data on the ultrastructure of pineal neurosensory cells it is concluded that the adult pineal organ of Lacerta has a, although rudimentary, (photo)sensory function. The demonstration by our guest-worker Dr. W. B. Quay, of the intraepithelial presence of a tryptamine compound, probably serotonin, points, moreover, to a secretory function of this organ.In adult Lacerta a well-developed parietal nerve connects the parietal eye with the left lateral habenular nucleus. It traverses the habenular commissure.In gratitude and with admiration this paper is dedicated to Prof. Berta Scharrer and to the memory of Prof. Ernst Scharrer.  相似文献   

14.
Laboratory-reared larvae of the sea anemone Urticina (= Tealia) crassicornis have been examined by electron microscopy prior to and following settlement on algal substrata. At 18 days postfertilization, the free-swimming planula larva measures about 600 μm long. A stomodaeal invagination occurs at the narrow end of the larva and connects with a solid mass of endoderm in the core region. The endoderm possesses septa with well-developed myonemes and is situated subjacent to a thin sheet of mesoglea. The uniformly ciliated ectoderm that constitutes the outer layer of the larva contains: (1) spirocysts, (2) nematocysts, (3) mucus, (4) three types of membrane-bound granules, (5) a basiepithelial nerve plexus, and (6) a few nongranular cells that may represent sensory neurons. Within several minutes after the introduction of the algal substratum, the planula characteristically directs its broadened aboral end toward the alga and secretes a refractile sheet of material. As the aboral end attaches to the substratum, the larva becomes noticeably shorter along its oral-aboral axis, presumably owing to the contractions of myonemes that are located within the endodermal septa. All three types of granules and the ectodermal mucoid substances are exocytosed during settlement, but spirocysts and nematocysts characteristically remain undischarged. Ovoid, PAS+ granules are believed to be at least partly responsible for adhesion, since these granules are concentrated at the aboral end prior to settlement and are somewhat similar in ultrastructure to putative viscid granules produced by other species. Contrary to a previous report based on light microscopy, no discrete sensory organ is evident in serial sections of the aboral ectoderm. The ability of planulae to detect suitable substrata appears to depend instead on sparsely distributed sensory cells that occur throughout the larval ectoderm.  相似文献   

15.
Abstract. Neurons of sea anemone tentacles receive stimuli via sensory cells and process and transmit information via a plexus of nerve fibers. The nerve plexus is best revealed by scanning electron microscopy of epidermal peels of the tentacles. The nerve plexus lies above the epidermal muscular layer where it appears as numerous parallel longitudinal and short interconnected nerve fibers in Calliactis parasitica . Bipolar and multipolar neurons are present and neurites form interneuronal and neuromuscular synaptic contacts. Transmission electron microscopy of cross sections of tentacles of small animals, both C. parasitica and Aiptasia pallida , reveals bundles of 50–100 nerve fibers lying above groups of longitudinal muscle fibers separated by intrusions of mesoglea. Smaller groups of 10–50 slender nerve fibers are oriented at right angles to the circular muscle formed by the bases of the digestive cells. The unmyelinated nerve fibers lack any glial wrapping, although some bundles of epidermal fibers are partially enveloped by cytoplasmic extensions of the muscle cells; small gastrodermal nerve bundles lie between digestive epithelial cells above their basal myonemes. A hypothetical model for sensory input and motor output in the epidermal and gastrodermal nerve plexuses of sea anemones is proposed.  相似文献   

16.
The ERG of the dragonfly ocellus has been analyzed into four components, two of which originate in the photoreceptor cells, two in the ocellar nerve fibers (Ruck, 1961 a). Component 1 is a sensory generator potential, component 2 a response of the receptor axons. Component 3 is an inhibitory postsynaptic potential, component 4, a discharge of afferent nerve impulses in ocellar nerve fibers. Responses to flickering light are examined in terms of this analytic scheme. It has been found that the generator potential can respond to higher rates of flicker—up to 220/sec.—than can the receptor axon responses, the postsynaptic potential, or the ocellar nerve impulses. The maximum flicker fusion frequency as measured by fusion of the ERG is that of the sensory generator potential itself.  相似文献   

17.
Using the method of the anterograde dextran tetramethylrhodamin transport, there is obtained the topographic picture of branching of inferior cervical nerve axons on fibers of the dorsal longitudinal muscle in Lymnaea stagnalis (L.). Using the retrograde staining, the neuronal bodies sending their processes into this nerve are marked. Manifestations of asymmetry in distribution of neurons stained through the right and left nerves are described. The electron microscopic studies have shown that the main number of the inferior cervical nerve axons is represented by thin fibers presumably belonging to the sensory cells. A part of the nerve fibers and their endings show imunoreactivity to serotonin and acetylcholine. The serotoninergic fibers predominate quantitatively over the cholinergic ones and account for a half of the fibers stained with dextran. A possible functional role of the serotoninergic and cholinergic innervation of the dorsal longitudinal muscle in Lymnaea stagnalis is discussed.Translated from Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, Vol. 40, No. 6, 2004, pp. 569–578.  相似文献   

18.
19.
Regeneration of Rapid Escape Reflex Pathways in Earthworms   总被引:4,自引:0,他引:4  
SYNOPSIS. The medial and lateral giant nerve fibers in the earthworm,Eisenia foetida, regenerate cell-specific connections and recoverthrough-conduction capabilities in as little as 1–2 daysafter ventral nerve cord (VNC) transection Similar cell-specificreconnections between giant fibers occur approximately 4–10days after grafting together two posterior pieces of worms ortransplanting lengths of VNC from donor to recipient worms fromwhich a comparable length of VNC has been removed In the lattercase, touch-sensory and giant motor neurons within the transplantedVNC also regenerate, leading to restoration of escape reflexfunction in segments receiving the transplant Results from heterotopicallytransplanted VNC indicate that both central and peripheral regenerationis cell-specific, but specificity is sufficiently broad to includesegmentally homologous target cells from body regions otherthan those of the transplant origin E. foetida and related speciesmay be useful for studying the extent to which differentiatednervous systems, composed of serially homologous neuronal networks,can be remodelled by experimental manipulations such as graftsand transplants.  相似文献   

20.
Summary Diffuse and synaptic nerve nets are present in the coenenchymal mesoglea and ectoderm of Muricea and Lophogorgia colonies. The nerve nets extend into the polyp column and tentacles maintaining a subectodermalmesogleal position. The density of nerve elements is low in comparison with similar nerve nets found in pennatulids.In the column of the polyp anthocodium, and throughout the oral disk region, neurons cross the mesoglea and enter the polyp endoderm. These neurons presumably connect with the endodermal nerve net which innervates the septal musculature. The trans-mesogleal neurons probably represent the connection between colonial and polyp nervous systems.In the tentacles, longitudinal ectodermal musculature is present with an overlying nerve plexus. These muscles and nerves, as well as tentacular sensory cells, are well represented in the oral side of the tentacles only.Presumed sensory cells form ciliary cone complexes in which one cell possesses an apical cilium. The other cells as well as the centrally located nematocyte contribute microvilli to the cone. The basal portion of the sensory cells is drawn into one or more neurite-like processes which enter the ectodermal nerve plexus. Similar processes form synapses with longitudinal muscle cells and nematocytes. The sensory cells of the ciliary cones presumably include chemoreceptors which can activate or modify nematocyst discharge, local muscle twitches, and tentacle bending.This work was supported by Office of Naval Research Contract N00014-75-C-0242, NSF Grant BMS 74-23242 and General Research Funds of the University of California, Santa Barbara. We wish to thank Dr. Steven K. Fisher for the use of facilities in his lab. This paper is part of a thesis to be submitted by R.A.S. to the Department of Biological Sciences, University of California, Santa Barbara in partial fulfillment of the requirements for the Ph. D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号