首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thick filaments from leg muscle of tarantula, maintained under relaxing conditions (Mg-ATP and EGTA), were negatively stained and photographed with minimal electron dose. Particles were selected for three-dimensional image reconstruction by general visual appearance and by the strength and symmetry of their optical diffraction patterns, the best of which extend to spacings of 1/5 nm-1. The helical symmetry is such that, on a given layer-line, Bessel function contributions of different orders start to overlap at fairly low resolution and must therefore be separated computationally by combining data from different views. Independent reconstructions agree well and show more detail than previous reconstructions of thick filaments from Limulus and scallop. The strongest feature is a set of four long-pitch right-handed helical ridges (pitch 4 X 43.5 nm) formed by the elongated myosin heads. The long-pitch helices are modulated to give ridges with an axial spacing of 14.5 nm, lying in planes roughly normal to the filament axis and running circumferentially. We suggest that the latter may be formed by the stacking of a subfragment 1 (S1) head from one myosin molecule on an S1 from an axially neighbouring molecule. Internal features in the map indicate an approximate local twofold axis relating the putative heads within a molecule. The heads appear to point in opposite directions along the filament axis and are located very close to the filament backbone. Thus, for the first time, the two heads of the myosin molecule appear to have been visualized in a native thick filament under relaxing conditions.  相似文献   

2.
In this work we examined the arrangement of cross-bridges on the surface of myosin filaments in the A-band of Lethocerus flight muscle. Muscle fibers were fixed using the tannic-acid-uranyl-acetate, ("TAURAC") procedure. This new procedure provides remarkably good preservation of native features in relaxed insect flight muscle. We computed 3-D reconstructions from single images of oblique transverse sections. The reconstructions reveal a square profile of the averaged myosin filaments in cross section view, resulting from the symmetrical arrangement of four pairs of myosin heads in each 14.5-nm repeat along the filament. The square profiles form a very regular right-handed helical arrangement along the surface of the myosin filament. Furthermore, TAURAC fixation traps a near complete 38.7 nm labeling of the thin filaments in relaxed muscle marking the left-handed helix of actin targets surrounding the thick filaments. These features observed in an averaged reconstruction encompassing nearly an entire myofibril indicate that the myosin heads, even in relaxed muscle, are in excellent helical register in the A-band.  相似文献   

3.
We have used electron microscopy and proteolytic susceptibility to study the structural basis of myosin-linked regulation in synthetic filaments of scallop striated muscle myosin. Using papain as a probe of the structure of the head-rod junction, we find that this region of myosin is approximately five times more susceptible to proteolytic attack under activating (ATP/high Ca2+) or rigor (no ATP) conditions than under relaxing conditions (ATP/low Ca2+). A similar result was obtained with native myosin filaments in a crude homogenate of scallop muscle. Proteolytic susceptibility under conditions in which ADP or adenosine 5'-(beta, gamma-imidotriphosphate) (AMPPNP) replaced ATP was similar to that in the absence of nucleotide. Synthetic myosin filaments negatively stained under relaxing conditions showed a compact structure, in which the myosin cross-bridges were close to the filament backbone and well ordered, with a clear 14.5-nm axial repeat. Under activating or rigor conditions, the cross-bridges became clumped and disordered and frequently projected further from the filament backbone, as has been found with native filaments; when ADP or AMPPNP replaced ATP, the cross-bridges were also disordered. We conclude (a) that Ca2+ and ATP affect the affinity of the myosin cross-bridges for the filament backbone or for each other; (b) that the changes observed in the myosin filaments reflect a property of the myosin molecules alone, and are unlikely to be an artifact of negative staining; and (c) that the ordered structure occurs only in the relaxed state, requiring both the presence of hydrolyzed ATP on the myosin heads and the absence of Ca2+.  相似文献   

4.
Thick filaments have been isolated from the striated adductor muscle of the scallop and examined by electron microscopy after negative staining. Many filaments appear intact, and reveal a centrally located bare-zone and a well-defined helical surface array of myosin crossbridges characterized by a 145 A axial period and prominent helical tracks of pitch 480 A. Heavy-metal shadowing shows that these helices are right-handed. A small perturbation of alternate crossbridge levels produces an axial period of 290 A, which is most prominent in a region on either side of the bare-zone. Image analysis reveals that the crossbridge array has 7-fold rotational symmetry, one of the possibilities suggested by earlier X-ray diffraction studies of native filaments in scallop muscle. A low-resolution three-dimensional reconstruction shows elongated surface projections ("crossbridges") that probably represent unresolved pairs of myosin heads. They run almost parallel to the filament surface, but are slewed slightly from the axis so that they lie along the right-handed helical tracks of pitch 480 A. The connection to the filament backbone probably occurs at the end of the crossbridges nearer the bare-zone; thus, their sense of tilt appears to be opposite to that of rigor attachment to actin. The 290 A period arises from a different distribution of crossbridge density at alternate levels; in addition, there are weak connections between the top of one crossbridge and the bottom of the next, 145 A away. The prominence of the 290 A period near the bare-zone suggests that anti-parallel molecular interactions are mainly responsible for this perturbation.  相似文献   

5.
Electron microscopy has been used to study the structural changes that occur in the myosin filaments of tarantula striated muscle when they are phosphorylated. Myosin filaments in muscle homogenates maintained in relaxing conditions (ATP, EGTA) are found to have nonphosphorylated regulatory light chains as shown by urea/glycerol gel electrophoresis and [32P]phosphate autoradiography. Negative staining reveals an ordered, helical arrangement of crossbridges in these filaments, in which the heads from axially neighboring myosin molecules appear to interact with each other. When the free Ca2+ concentration in a homogenate is raised to 10(-4) M, or when a Ca2+-insensitive myosin light chain kinase is added at low Ca2+ (10(-8) M), the regulatory light chains of myosin become rapidly phosphorylated. Phosphorylation is accompanied by potentiation of the actin activation of the myosin Mg-ATPase activity and by loss of order of the helical crossbridge arrangement characteristic of the relaxed filament. We suggest that in the relaxed state, when the regulatory light chains are not phosphorylated, the myosin heads are held down on the filament backbone by head-head interactions or by interactions of the heads with the filament backbone. Phosphorylation of the light chains may alter these interactions so that the crossbridges become more loosely associated with the filament backbone giving rise to the observed changes and facilitating crossbridge interaction with actin.  相似文献   

6.
The structure of the cross-striated adductor muscle of the scallop has been studied by electron microscopy and X-ray diffraction using living relaxed, glycerol-extracted (rigor), fixed and dried muscles. The thick filaments are arranged in a hexagonal lattice whose size varies with sarcomere length so as to maintain a constant lattice volume. In the overlap region there are approximately 12 thin filaments about each thick filament and these are arranged in a partially disordered lattice similar to that found in other invertebrate muscles, giving a thin-to-thick filament ratio in this region of 6:1.The thin filaments, which contain actin and tropomyosin, are about 1 μm long and the actin subunits are arranged on a helix of pitch 2 × 38.5 nm. The thick filaments, which contain myosin and paramyosin, are about 1.76 μm long and have a backbone diameter of about 21 nm. We propose that these filaments have a core of paramyosin about 6 nm in diameter, around which the myosin molecules pack. In living relaxed muscle, the projecting myosin heads are symmetrically arranged. The data are consistent with a six-stranded helix, each strand having a pitch of 290 nm. The projections along the strands each correspond to the heads of one or two myosin molecules and occur at alternating intervals of 13 and 16 nm. In rigor muscle these projections move away from the backbone and attach to the thin filaments.In both living and dried muscle, alternate planes of thick filaments are staggered longitudinally relative to each other by about 7.2 nm. This gives rise to a body-centred orthorhombic lattice with a unit cell twice the volume of the basic filament lattice.  相似文献   

7.
Adenosine triphosphate-dependent changes in myosin filament structure have been directly observed in whole muscle by electron microscopy of thin sections of rapidly frozen, demembranated frog sartorius specimens. In the presence of ATP the thick filaments show an ordered, helical array of cross-bridges except in the bare zone. In the absence of ATP they show two distinct appearances: in the region of overlap with actin, there is an ordered, rigorlike array of cross-bridges between the thick and thin filaments, whereas in the nonoverlap region (H-zone) the myosin heads move away from the thick filament backbone and lose their helical order. This result suggests that the presence of ATP is necessary for maintenance of the helical array of cross-bridges characteristic of the relaxed state. The primary effect of ATP removal on the myosin heads appears to be weaken their binding to the thick filament backbone; released heads that are close to an actin filament subsequently form a new actin-based, ordered array.  相似文献   

8.
Myosin filaments isolated from goldfish (Carassius auratus) muscle under relaxing conditions and viewed in negative stain by electron microscopy have been subjected to 3D helical reconstruction to provide details of the myosin head arrangement in relaxed muscle. Previous X-ray diffraction studies of fish muscle (plaice) myosin filaments have suggested that the heads project a long way from the filament surface rather than lying down flat and that heads in a single myosin molecule tend to interact with each other rather than with heads from adjacent molecules. Evidence has also been presented that the head tilt is away from the M-band. Here we seek to confirm these conclusions using a totally independent method. By using 3D helical reconstruction of isolated myosin filaments the known perturbation of the head array in vertebrate muscles was inevitably averaged out. The 3D reconstruction was therefore compared with the X-ray model after it too had been helically averaged. The resulting images showed the same characteristic features: heads projecting out from the filament backbone to high radius and the motor domains at higher radius and further away from the M-band than the light-chain-binding neck domains (lever arms) of the heads.  相似文献   

9.
Myosin filaments isolated from scallop striated muscle have been activated by calcium-containing solutions, and their structure has been examined by electron microscopy after negative staining. The orderly helical arrangement of myosin projections characteristic of the relaxed state is largely lost upon activation. The oblique striping that arises from alignment of elongated projections along the long-pitched helical tracks is greatly weakened, although a 145 A axial periodicity is sometimes partially retained. The edges of the filaments become rough, and the myosin heads move outwards as their helical arrangement becomes disordered. Crossbridges at various angles appear to link thick and thin filaments after activation. The transition from order to disorder is reversible and occurs over a narrow range of free calcium concentration near pCa 5.7. Removal of nucleotide, as well as dissociation of regulatory light chains, also disrupts the ordered helical arrangement of projections. We suggest that the relaxed arrangement of the projections is probably maintained by intermolecular interactions between myosin molecules, which depend on the regulatory light chains. Calcium binding changes the interactions between light chains and the rest of the head, activating the myosin molecule. Intermolecular contacts between molecules may thus be altered and may propagate activation cooperatively throughout the thick filament.  相似文献   

10.
Contraction of skeletal muscle is regulated by structural changes in both actin-containing thin filaments and myosin-containing thick filaments, but myosin-based regulation is unlikely to be preserved after thick filament isolation, and its structural basis remains poorly characterized. Here, we describe the periodic features of the thick filament structure in situ by high-resolution small-angle x-ray diffraction and interference. We used both relaxed demembranated fibers and resting intact muscle preparations to assess whether thick filament regulation is preserved in demembranated fibers, which have been widely used for previous studies. We show that the thick filaments in both preparations exhibit two closely spaced axial periodicities, 43.1 nm and 45.5 nm, at near-physiological temperature. The shorter periodicity matches that of the myosin helix, and x-ray interference between the two arrays of myosin in the bipolar filament shows that all zones of the filament follow this periodicity. The 45.5-nm repeat has no helical component and originates from myosin layers closer to the filament midpoint associated with the titin super-repeat in that region. Cooling relaxed or resting muscle, which partially mimics the effects of calcium activation on thick filament structure, disrupts the helical order of the myosin motors, and they move out from the filament backbone. Compression of the filament lattice of demembranated fibers by 5% Dextran, which restores interfilament spacing to that in intact muscle, stabilizes the higher-temperature structure. The axial periodicity of the filament backbone increases on cooling, but in lattice-compressed fibers the periodicity of the myosin heads does not follow the extension of the backbone. Thick filament structure in lattice-compressed demembranated fibers at near-physiological temperature is similar to that in intact resting muscle, suggesting that the native structure of the thick filament is largely preserved after demembranation in these conditions, although not in the conditions used for most previous studies with this preparation.  相似文献   

11.
The distribution of myosin heads on the surface of frog skeletal muscle thick filaments has been determined by computer processing of electron micrographs of isolated filaments stained with tannic acid and uranyl acetate. The heads are arranged in three strands but not in a strictly helical manner and so the structure has cylindrical symmetry. This accounts for the "forbidden" meridional reflections seen in diffraction patterns. Each layer-line therefore represents the sum of terms of Bessel orders 0, +/- 3, +/- 6, +/- 9 and so on. These terms interact so that, unlike a helical object without terms from overlapping Bessel orders, as the azimuth is changed, the amplitude on a layer-line at a particular radius varies substantially and its phase does not alter linearly. Consequently, a three-dimensional reconstruction cannot be produced from a single view. We have therefore used tilt series of three individual filaments to decompose the data on layer-lines 0 to 6 into terms of Bessel orders up to +/- 9 using a least-squares procedure. These data had a least-squares residual of 0.32 and enabled a three-dimensional reconstruction to be obtained at a nominal resolution of 6 nm. This showed, at a radius of about 10 nm, three strands of projecting morphological units with three units spaced along each strand every 42.9 nm axially. We have identified these units with pairs of myosin heads. Successive units along a strand are perturbed axially, azimuthally and radially from the positions expected if the structure was perfectly helical. This may simply be a consequence of steric restrictions in packing the heads on the thick filament surface, but could also reflect an underlying non-helical arrangement of myosin tails, which would be consistent with the thick filament shaft being constructed from three subfilaments in which the tails were arranged regularly. There was also material at a radius of about 6 nm spaced 42.9 nm axially, which we tentatively identified with accessory proteins. The filament shaft had a pronounced pattern of axial staining.  相似文献   

12.
We have produced three dimensional reconstructions, at a nominal resolution of 5 nm, of thick filaments from scorpion and Limulus skeletal muscle, both of which have a right-handed four-stranded helical arrangement of projecting subunits. In both reconstructions there was a distinct division of density within projecting subunits consistent with the presence of two myosin heads. Individual myosin heads appeared to be curved, with approximate dimensions of 16 X 5 X 5 nm and seemed more massive at one end. Our reconstructions were consistent with the two heads in a projecting subunit being arranged either antiparallel or parallel to each other and directed away from the bare zone. Although we cannot exclude the second of these interpretations, we favor the first as being more consistent with both filament models and also because it would enable easy phosphorylation of light chains. The antiparallel interpretation requires that the two heads within a subunit derive from different myosin molecules. In either interpretation, the two heads have different orientations relative to the thick filament shaft.  相似文献   

13.
Contraction of many muscles is activated in part by the binding of Ca2+ to, or phosphorylation of, the myosin heads on the surface of the thick filaments. In relaxed muscle, the myosin heads are helically ordered and undergo minimal interaction with actin. On Ca2+ binding or phosphorylation, the head array becomes disordered, reflecting breakage of the head-head and other interactions that underlie the ordered structure. Loosening of the heads from the filament surface enables them to interact with actin filaments, bringing about contraction. On relaxation, the heads return to their ordered positions on the filament backbone. In scallop striated adductor muscle, the disordering that takes place on Ca2+ binding occurs on the millisecond time scale, suggesting that it is a key element of muscle activation. Here we have studied the reverse process. Using time-resolved negative staining electron microscopy, we show that the rate of reordering on removal of Ca2+ also occurs on the same physiological time scale. Direct observation of images together with analysis of their Fourier transforms shows that activated heads regain their axial ordering within 20 ms and become ordered in their final helical positions within 50 ms. This rapid reordering suggests that reformation of the ordered structure, and the head-head and other interactions that underlie it, is a critical element of the relaxation process.  相似文献   

14.
Substructure and accessory proteins in scallop myosin filaments   总被引:2,自引:2,他引:0       下载免费PDF全文
Native myosin filaments from scallop striated muscle fray into subfilaments of approximately 100-A diameter when exposed to solutions of low ionic strength. The number of subfilaments appears to be five to seven (close to the sevenfold rotational symmetry of the native filament), and the subfilaments probably coil around one another. Synthetic filaments assembled from purified scallop myosin at roughly physiological ionic strength have diameters similar to those of native filaments, but are much longer. They too can be frayed into subfilaments at low ionic strength. Synthetic filaments share what may be an important regulatory property with native filaments: an order-disorder transition in the helical arrangement of myosin cross-bridges that is induced on activation by calcium, removal of nucleotide, or modification of a myosin head sulfhydryl. Some native filaments from scallop striated muscle carry short "end filaments" protruding from their tips, comparable to the structures associated with vertebrate striated muscle myosin filaments. Gell electrophoresis of scallop muscle homogenates reveals the presence of high molecular weight proteins that may include the invertebrate counterpart of titin, a component of the vertebrate end filament. Although the myosin molecule itself may contain much of the information required to direct its assembly, other factors acting in vivo, including interactions with accessory proteins, probably contribute to the assembly of a precisely defined thick filament during myofibrillogenesis.  相似文献   

15.
Myosin filament structure in vertebrate smooth muscle   总被引:1,自引:0,他引:1       下载免费PDF全文
The in vivo structure of the myosin filaments in vertebrate smooth muscle is unknown. Evidence from purified smooth muscle myosin and from some studies of intact smooth muscle suggests that they may have a nonhelical, side-polar arrangement of crossbridges. However, the bipolar, helical structure characteristic of myosin filaments in striated muscle has not been disproved for smooth muscle. We have used EM to investigate this question in a functionally diverse group of smooth muscles (from the vascular, gastrointestinal, reproductive, and visual systems) from mammalian, amphibian, and avian species. Intact muscle under physiological conditions, rapidly frozen and then freeze substituted, shows many myosin filaments with a square backbone in transverse profile. Transverse sections of fixed, chemically skinned muscles also show square backbones and, in addition, reveal projections (crossbridges) on only two opposite sides of the square. Filaments gently isolated from skinned smooth muscles and observed by negative staining show crossbridges with a 14.5-nm repeat projecting in opposite directions on opposite sides of the filament. Such filaments subjected to low ionic strength conditions show bare filament ends and an antiparallel arrangement of myosin tails along the length of the filament. All of these observations are consistent with a side-polar structure and argue against a bipolar, helical crossbridge arrangement. We conclude that myosin filaments in all smooth muscles, regardless of function, are likely to be side-polar. Such a structure could be an important factor in the ability of smooth muscles to contract by large amounts.  相似文献   

16.
Muscle myosins are molecular motors that convert the chemical free energy available from ATP hydrolysis into mechanical displacement of actin filaments, bringing about muscle contraction. Myosin cross-bridges exert force on actin filaments during a cycle of attached and detached states that are coupled to each round of ATP hydrolysis. Contraction and ATPase activity of the striated adductor muscle of scallop is controlled by calcium ion binding to myosin. This mechanism of the so-called “thick filament regulation” is quite different to vertebrate striated muscle which is switched on and off via “thin filament regulation” whereby calcium ions bind to regulatory proteins associated with the actin filaments. We have used an optically based single molecule technique to measure the angular disposition adopted by the two myosin heads whilst bound to actin in the presence and absence of calcium ions. This has allowed us to directly observe the movement of individual myosin heads in aqueous solution at room temperature in real time. We address the issue of how scallop striated muscle myosin might be regulated by calcium and have interpreted our results in terms of the structures of smooth muscle myosin that also exhibit thick filament regulation. This paper is not being submitted elsewhere and the authors have no competing financial interests  相似文献   

17.
Intensity fluctuation spectroscopy has been used successfully as a probe that can detect an increase in high-frequency internal motions of isolated thick filaments of Limulus muscle upon the addition of calcium ions. We have attributed such motions to cross-bridge motion instead of to an increase in the flexibility of the filament backbone. Here we show that after cleavage of the S-1 and then the S-2 moieties with papain, cross-linking the myosin heads to the filament backbone, or heat denaturation (42 degrees C, 10 min), the increase in the high frequency internal motions in the thick filaments no longer occurs. Congo Red, which has been shown to induce shortening of isolated myofibrils, also increases the high-frequency motions of the isolated filaments. Furthermore, the increase is suppressed by treating the filaments with a myosin ATPase inhibitor such as vanadate ions (10 mM) or by replacing ATP with either an equimolar CrADP or the nonhydrolyzable ATP analogue beta, gamma-imido-adenine-5'-triphosphate (AMP-PNP). Calcium ions have a similar effect on isolated thick filaments from scallop muscle, where the myosin is known to be regulatory. Calcium ions have no such effect on thick filaments isolated from frog muscle, which is believed not to be regulated by calcium binding to myosin. These results confirm our earlier supposition that the additional high frequency internal motions of the thick filaments isolated from striated muscle of Limulus are related to the energy dependent, active cross-bridge motions.  相似文献   

18.
Electron micrographs of negatively stained synthetic myosin filaments reveal that surface projections, believed to be the heads of the constituent myosin molecules, can exist in two configurations. Some filaments have the projections disposed close to the filament backbone. Other filaments have all of their projections widely spread, tethered to the backbone by slender threads. Filaments formed from the myosins of skeletal muscle, smooth muscle, and platelets each have distinctive features, particularly their lengths. Soluble mixtures of skeletal muscle myosin with either smooth muscle myosin or platelet myosin were dialyzed against 0.1 M KC1 at pH 7 to determine whether the simultaneous presence of two types of myosin would influence the properties of the filaments formed. In every case, a single population of filaments formed from the mixtures. The resulting filaments are thought to be copolymers of the two types of myosin, for several reasons: (a) their length-frequency distribution is unimodal and differs from that predicted for a simple mixture of two types of myosin filaments; (b) their mean length is intermediate between the mean lengths of the filaments formed separately from the two myosins in the mixture; (c) each of the filaments has structural features characteristic of both of the myosins in the mixture; and (d) their size and shape are determined by the proportion of the two myosins in the mixture.  相似文献   

19.
The tarantula skeletal muscle X-ray diffraction pattern suggested that the myosin heads were helically arranged on the thick filaments. Electron microscopy (EM) of negatively stained relaxed tarantula thick filaments revealed four helices of heads allowing a helical 3D reconstruction. Due to its low resolution (5.0 nm), the unambiguous interpretation of densities of both heads was not possible. A resolution increase up to 2.5 nm, achieved by cryo-EM of frozen-hydrated relaxed thick filaments and an iterative helical real space reconstruction, allowed the resolving of both heads. The two heads, “free” and “blocked”, formed an asymmetric structure named the “interacting-heads motif” (IHM) which explained relaxation by self-inhibition of both heads ATPases. This finding made tarantula an exemplar system for thick filament structure and function studies. Heads were shown to be released and disordered by Ca2+-activation through myosin regulatory light chain phosphorylation, leading to EM, small angle X-ray diffraction and scattering, and spectroscopic and biochemical studies of the IHM structure and function. The results from these studies have consequent implications for understanding and explaining myosin super-relaxed state and thick filament activation and regulation. A cooperative phosphorylation mechanism for activation in tarantula skeletal muscle, involving swaying constitutively Ser35 mono-phosphorylated free heads, explains super-relaxation, force potentiation and post-tetanic potentiation through Ser45 mono-phosphorylated blocked heads. Based on this mechanism, we propose a swaying-swinging, tilting crossbridge-sliding filament for tarantula muscle contraction.  相似文献   

20.
Three-dimensional reconstructions of the negatively stained thick filaments of tarantula muscle with a resolution of 50 A have previously suggested that the helical tracks of myosin heads are zigzagged, short diagonal ridges being connected by nearly axial links. However, surface views of lower contour levels reveal an additional J-shaped feature approximately the size and shape of a myosin head.We have modelled the surface array of myosin heads on the filaments using as a building block a model of a two-headed regulated myosin molecule in which the regulatory light chains of the two heads together form a compact head-tail junction. Four parameters defining the radius, orientation and rotation of each myosin molecule were varied. In addition, the heads were allowed independently to bend in a plane perpendicular to the coiled-coil tail at three sites, and to tilt with respect to the tail and to twist at one of these sites. After low-pass filtering, models were aligned with the reconstruction, scored by cross-correlation and refined by simulated annealing.Comparison of the geometry of the reconstruction and the distance between domains in the myosin molecule narrowed the choice of models to two main classes. A good match to the reconstruction was obtained with a model in which each ridge is formed from the motor domain of a head pointing to the bare zone together with the head-tail junction of a neighbouring molecule. The heads pointing to the Z-disc intermittently occupy the J-position. Each motor domain interacts with the essential and regulatory light chains of the neighbouring heads. A near-radial spoke in the reconstruction connecting the backbone to one end of the ridge can be identified as the start of the coiled-coil tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号