首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In common with many other groups, nematodes express globins with unknown functions. Nematode globin-like genes can be divided into class 1 globins, similar to vertebrate myoglobins, and a wide range of additional classes. Here we show that class 1 nematode globins possess a huge amount of diversity in gene sequence and structure. There is evidence for multiple events of gene duplication, intron insertion and loss between species, and for allelic variation effecting both synonymous and non-synonymous sites within species. We have also examined gene expression patterns in class I globins from a variety of species. The results show variation in the degree of gene expression, but the tissue specificity and temporal specificity of expression may be more conserved in the phylum. Because the structure-function relationships for the binding and transport of oxygen by globins are well understood, the consequences of genetic variation causing amino acid changes are explored. The gene family shows great promise for discovering unique insights into both structure-function relationships of globins and their physiologial roles.  相似文献   

4.
It has become a truism that we humans are genetically about 99% identical to chimpanzees. The origins of this assertion are clear: among early studies of DNA sequences, nucleotide identity between humans and chimpanzees was found to average around 98.9%.(1) However, this figure is correct only with respect to regions of the genome that are shared between humans and chimpanzees. Often ignored are the many parts of their genomes that are not shared. Genomic rearrangements, including insertions, deletions, translocations and duplications, have long been recognized as potentially important sources of novel genomic material(2,3) and are known to account for major genomic differences between humans and chimpanzees.(4) Further, such changes have been implicated in a number of genetic disorders, such as DiGeorge, Angelman/Prader-Willi and Charcot-Marie-Tooth syndromes.(5)  相似文献   

5.
In amniotes, the pancreatic mesenchyme plays a crucial role in pancreatic epithelium growth, notably through the secretion of fibroblast growth factors. However, the factors involved in the formation of the pancreatic mesenchyme are still largely unknown. In this study, we characterize, in zebrafish embryos, the pancreatic lateral plate mesoderm, which is located adjacent to the ventral pancreatic bud and is essential for its specification and growth. We firstly show that the endoderm, by expressing the fgf24 gene at early stages, triggers the patterning of the pancreatic lateral plate mesoderm. Based on the expression of isl1, fgf10 and meis genes, this tissue is analogous to the murine pancreatic mesenchyme. Secondly, Fgf10 acts redundantly with Fgf24 in the pancreatic lateral plate mesoderm and they are both required to specify the ventral pancreas. Our results unveil sequential signaling between the endoderm and mesoderm that is critical for the specification and growth of the ventral pancreas, and explain why the zebrafish ventral pancreatic bud generates the whole exocrine tissue.  相似文献   

6.
Chalcone synthase (CHS, EC 2.3.1.74) is a key enzyme in the biosynthesis of flavonoids, which plays an important role in flower pigmentation and protection against UV, plant-microbe interactions, and plant fertility. In many plants, genes encoding CHS constitute a multigene family, wherein sequence and functional divergence occurred repeatedly. Since the genome of rice (Oryza sativa) has been completely sequenced, many genes possessing typical CHS domains were assumed to be chs genes, although the sequence and functional divergence of this large gene family has not as yet been investigated. In this study, all putative CHS members from O. sativa were analyzed by the phylogenetic methods. Our results indicate that the members of rice CHS superfamily probably diverged into four branches. Members of each branch may perform specific functions. Two conserved chs genes clustered with chs genes from other monocotyledon and dicotyledon species are believed to encode true CHSs responsible for the biosynthesis of flavonoids and anthocyanins. Two chs genes in one distant branch might play some functions in fertility. Several other putative chs genes were clustered together, and the function of this branch could not be predicted. Many tentative chs genes were clustered together with fatty acid synthase (FAS) genes. These genes may belong to the fas gene family. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 3, pp. 460–465. This text was submitted by the authors in English.  相似文献   

7.
The rearrangement or permutation of protein substructures is an important mode of divergence. Recent work explored one possible underlying mechanism called permutation-by-duplication, which produces special forms of motif rearrangements called circular permutations. Permutation-by-duplication, involving gene duplication, fusion and truncation, can produce fully functional intermediate proteins and thus represents a feasible mechanism of protein evolution. In spite of this, circular permutations are relatively rare and we discuss possible reasons for their existence.  相似文献   

8.
Summary Two major types of lysozymec (M and P) occur in the mouse genus,Mus, and have been purified from an inbred laboratory strain (C58/J) ofM. domesticus. They differ in physical, catalytic, and antigenic properties as well as by amino acid replacements at 6 of 49 positions in the amino-terminal sequence. Comparisons with four other mammalian lysozymesc of known sequence suggest that M and P are related by a gene duplication that took place before the divergence of the rat and mouse lineages. M lysozyme is present in most tissues; achieves its highest concentration in the kidney, lung, and spleen; and corresponds to the lysozyme partially sequenced before from another strain ofM. domesticus. InM. domesticus and several related species, P lysozyme was detected chiefly in the small intestine, where it is probably produced mainly by Paneth cells. A survey of M and P levels in 22 species of muroid rodents (fromMus and six other genera) of known phylogenetic relationships suggests that a mutation that derepressed the P enzyme arose about 4 million years ago in the ancestor of the housemouse group of species. Additional regulatory shifts affecting M and P levels have taken place along lineages leading to other muroid species. Our survey of 187 individuals of wild house mice and their closest allies reveals a correlation between latitude of origin and level of intestinal lysozyme.  相似文献   

9.
During the development of the zebrafish nervous system both noi, a zebrafish pax2 homolog, and ace, a zebrafish fgf8 homolog, are required for development of the midbrain and cerebellum. Here we describe a dominant mutation, aussicht (aus), in which the expression of noi and ace is upregulated. In aus mutant embryos, ace is upregulated at many sites in the embryo, while noi expression is only upregulated in regions of the forebrain and midbrain which also express ace. Subsequent to the alterations in noi and ace expression, aus mutants exhibit defects in the differentiation of the forebrain, midbrain and eyes. Within the forebrain, the formation of the anterior and postoptic commissures is delayed and the expression of markers within the pretectal area is reduced. Within the midbrain, En and wnt1 expression is expanded. In heterozygous aus embryos, there is ectopic outgrowth of neural retina in the temporal half of the eyes, whereas in putative homozygous aus embryos, the ventral retina is reduced and the pigmented retinal epithelium is expanded towards the midline. The observation that aus mutant embryos exhibit widespread upregulation of ace raised the possibility that aus might represent an allele of the ace gene itself. However, by crossing carriers for both aus and ace, we were able to generate homozygous ace mutant embryos that also exhibited the aus phenotype. This indicated that aus is not tightly linked to ace and is unlikely to be a mutation directly affecting the ace locus. However, increased Ace activity may underly many aspects of the aus phenotype and we show that the upregulation of noi in the forebrain of aus mutants is partially dependent upon functional Ace activity. Conversely, increased ace expression in the forebrain of aus mutants is not dependent upon functional Noi activity. We conclude that aus represents a mutation involving a locus normally required for the regulation of ace expression during embryogenesis.  相似文献   

10.
Two types of thrombospondin-1 (named TSP-1a and TSP-1b) were cloned from two species of teleosts, the Nile tilapia and medaka. Phylogenetic analysis of these TSP-1 sequences, together with those available from other vertebrates further demonstrated that two types of TSP-1 exist only in teleosts, extending the finding in fugu and tetraodon to two additional fish species. The expression of both genes was examined using tilapia at various developmental stages. Tilapia TSP-1a and TSP-1b were each expressed in a wide range of tissues examined. The early expression of TSP-1b in both XX and XY gonads from 5 dah (day after hatching) onwards suggested an important role in the formation of gonads, while the expression of TSP-1a only in ovaries during later stages of development (from 120 dah onwards) may suggest that TSP-1a is involved in oogenesis. During the 14-day spawning cycle, the expression of both types of TSP-1 exhibited distinct peaks at day 5 (peak of vitellogenesis) and day 12 (oocyte maturation). In situ hybridization analyses revealed differential expression, with TSP-1a occurring in granulosa cells and TSP-1b in theca cells. Furthermore, both TSP-1a and -1b were expressed in skeletal tissues but with clear temporal and spatial differences. In contrast, only TSP-1b was found in the myosepta. The positive signals of both TSP-1a and TSP-1b were also detected in the heart and spleen, and TSP-1a in brain and intestine by both RT-PCR and in situ hybridization.  相似文献   

11.
Genome evolution and biodiversity in teleost fish   总被引:23,自引:0,他引:23  
Volff JN 《Heredity》2005,94(3):280-294
Teleost fish, which roughly make up half of the extant vertebrate species, exhibit an amazing level of biodiversity affecting their morphology, ecology and behaviour as well as many other aspects of their biology. This huge variability makes fish extremely attractive for the study of many biological questions, particularly of those related to evolution. New insights gained from different teleost species and sequencing projects have recently revealed several peculiar features of fish genomes that might have played a role in fish evolution and speciation. There is now substantial evidence that a round of tetraploidization/rediploidization has taken place during the early evolution of the ray-finned fish lineage, and that hundreds of duplicate pairs generated by this event have been maintained over hundreds of millions of years of evolution. Differential loss or subfunction partitioning of such gene duplicates might have been involved in the generation of fish variability. In contrast to mammalian genomes, teleost genomes also contain multiple families of active transposable elements, which might have played a role in speciation by affecting hybrid sterility and viability. Finally, the amazing diversity of sex determination systems and the plasticity of sex chromosomes observed in teleost might have been involved in both pre- and postmating reproductive isolation. Comparison of data generated by current and future genome projects as well as complementary studies in other species will allow one to approach the molecular and evolutionary mechanisms underlying genome diversity in fish, and will certainly significantly contribute to our understanding of gene evolution and function in humans and other vertebrates.  相似文献   

12.
In mammals, two carotenoid cleaving oxygenases are known; beta-carotene 15,15′-monooxygenase (BCMO1) and beta-carotene 9′,10′-oxygenase (BCO2). BCMO1 is a key enzyme in vitamin A synthesis by symmetrically cleaving beta-carotene into 2 molecules of all-trans-retinal, while BCO2 is responsible for asymmetric cleavage of a broader range of carotenoids. Here, we show that the Atlantic salmon beta-carotene oxygenase (bco) gene family contains 5 members, three bco2 and two bcmo1 paralogs. Using public sequence databases, multiple bco genes were also found in several additional teleost species. Phylogenetic analysis indicates that bco2a and bco2b originate from the teleost fish specific genome duplication (FSGD or 3R), while the third and more distant paralog, bco2 like, might stem from a prior duplication event in the teleost lineage. The two bcmo1 paralogs (bcmo1 and bcmo1 like) appear to be the result of an ancient duplication event that took place before the divergence of ray-finned (Actinopterygii) and lobe-finned fish (Sarcopterygii), with subsequent nonfunctionalization and loss of one Sarcopterygii paralog. Gene expression analysis of the bcmo1 and bco2 paralogs in Atlantic salmon reveals regulatory divergence with tissue specific expression profiles, suggesting that the beta-carotene oxygenase subtypes have evolved functional divergences. We suggest that teleost fish have evolved and maintained an extended repertoire of beta-carotene oxygenases compared to the investigated Sarcopterygii species, and hypothesize that the main driver behind this functional divergence is the exposure to a diverse set of carotenoids in the aquatic environment.  相似文献   

13.
Hominids evolved from a population which diverged from other hominoids during the Mio-Pliocene. This population was perhaps forced by ecological conditions and competitive exclusion to rely more on tools, gathering, hunting, vocal communication and memory, under whose mutually positively reinforcing effects the hominids diverged. The ape ancestors may have been forced into the forests (or they may have forced hominids onto the savanna), while hominids adapted to a plains, hunting econiche.Speech was selected for because verbal symbols served as retrieval cues for a large number of complex concepts and were transmissible, and thus could be used to influence food-getting and other behavior by the social group.Speech is dependent on three inherited entities: (1) anatomical and neurological adaptations which allow vocalization of a wide range of phonemes in rapid succession and which allow for (2) duality of patterning, thereby promoting a large number of words, and (3) encoding, which greatly increases the rate at which verbal information transfer can occur. Speech may have evolved through small hominid groups using progressively more phonemes in an increasingly blended manner, with encoding subsequently being selected for. Neandertals apparently could not encode speech and could speak only a restricted range of phonemes. Their expanded cranial capacity may have been selected for to store ambiguous and slowly transmitted verbal data.  相似文献   

14.
The steadily increasing number of prokaryotic genomes has accelerated the study of genome evolution; in particular, the availability of sets of genomes from closely related bacteria has made exploration of questions surrounding the evolution of pathogenesis tractable. Here we present the results of a detailed comparison of the genomes of Yersinia pseudotuberculosis IP32593 and three strains of Yersinia pestis (CO92, KIM10, and 91001). There appear to be between 241 and 275 multigene families in these organisms. There are 2,568 genes that are identical in the three Y. pestis strains, but differ from the Y. pseudotuberculosis strain. The changes found in some of these families, such as the kinases, proteases, and transporters, are illustrative of how the evolutionary jump from the free-living enteropathogen Y. pseudotuberculosis to the obligate host-borne blood pathogen Y. pestis was achieved. We discuss the composition of some of the most important families and discuss the observed divergence between Y. pseudotuberculosis and Y. pestis homologs.  相似文献   

15.
The genusLens includes 5 taxonomic species:L. culinaris is cultivated andL. orientalis, L. odemensis, L. ervoides, andL. nigricans are wild. All the species are annual and almost exlusively selfers. The wild lentils are distributed over a large geographical area and form small disjunct populations which are composed of a small number of plants. 67Lens populations were assayed electrophoretically for 9 enzyme systems; 15 enzymic genes with 37 alleles were identified. The genetic distances (D) measured between the pairs of populations indicated a significantly greater similarity between populations belonging to the same taxonomic species. Assuming the populations represent a random sample of the variability in each of the species the genetic distances (D) between the 5 taxa were calculated. The shortest genetic distance was found betweenL. orientalis andL. culinaris. Another significant feature of the data is the apparent isolation ofL. nigricans from the other 4 species. The genetic distances between theLens species are compared to the patterns of crossability barriers between them.  相似文献   

16.
Duplication of genes, genomes, or morphological structures (or some combination of these) has long been thought to facilitate evolutionary change. Here we focus on studies of the teleost fishes to consider the conceptual similarities in the evolutionary potential of these three different kinds of duplication events. We review recent data that have confirmed the occurrence of a whole-genome duplication event in the ray-finned fish lineage, and discuss whether this event may have fuelled the radiation of teleost fishes. We then consider the fates of individual duplicated genes, from both a theoretical and an experimental viewpoint, focusing on our studies of teleost Hox genes and their functions in patterning the segmented hindbrain. Finally, we consider the duplication of morphological structures, once again drawing on our experimental studies of the hindbrain, which have revealed that experimentally induced duplicated neurons can produce functionally redundant neural circuits. We posit that the availability of duplicated material, independent of its nature, can lead to functional redundancy, which in turn enables evolutionary change.  相似文献   

17.
Duplication of genes increases the amount of genetic material on which evolution can work and has been considered of major importance for the development of biological novelties or to explain important transitions that have occurred during biological evolution. Recently, much research has been devoted to the study of the evolutionary and functional divergence of duplicated genes. Since the majority of genes are part of gene families, there is considerable interest in predicting differences in function between duplicates and assessing the functional redundancy of genes within gene families. In this review, we discuss the strengths and limitations of both older and novel approaches to investigate the evolution of duplicated genes in silico.  相似文献   

18.
In considering the impact of the earth's changing geophysical conditions during the history of life, it is surprising to learn that the earth's rotational period may have been as short as 4 h, as recently as 1900 million years ago (or 1.9 billion years ago). The implications of such figures for the origin and evolution of clocks are considerable, and the authors speculate on how this short rotational period might have influenced the development of the "protoclock" in early microorganisms, such as the Cyanobacteria, during the geological periodsin which they arose and flourished. They then discuss the subsequent duplication of clock genes that took place around and after the Cambrian period, 543 million years ago, and its consequences. They compare the relative divergences of the canonical clock genes, which reveal the Per family to be the most rapidly evolving. In addition, the authors use a statistical test to predict which residues within the PER and CRY families may have undergone functional specialization.  相似文献   

19.
20.
Structure and evolution of teleost mitochondrial control regions   总被引:50,自引:0,他引:50  
We amplified and sequenced the mitochondrial control region from 23 species representing six families of teleost fish. The length of this segment is highly variable among even closely related species due to the presence of tandemly repeated sequences and large insertions. The position of the repetitive sequences suggests that they arise during replication both near the origin of replication and at the site of termination of the D-loop strand. Many of the conserved sequence blocks (CSBs) observed in mammals are also found among fish. In particular, the mammalian CSB-D is present in all of the fish species studied. Study of potential secondary structures of RNAs from the conserved regions provides little insight into the functional constraints on these regions. The variable structure of these control regions suggests that particular care should be taken to identify the most appropriate segment for studies of intraspecific variation. Correspondence to: T.D. Kocher  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号