共查询到20条相似文献,搜索用时 0 毫秒
1.
A fusion protein of interleukin-11 and soluble interleukin-11 receptor acts as a superagonist on cells expressing gp130. 总被引:1,自引:0,他引:1
S Pflanz I Tacken J Gr?tzinger Y Jacques S Minvielle H Dahmen P C Heinrich G Müller-Newen 《FEBS letters》1999,450(1-2):117-122
Interleukin-11 is a hematopoietic cytokine that signals via the signal transducer gp130. Although gp130 is ubiquitously expressed, interleukine-11 responsiveness is restricted to cells that express the interleukine-11 receptor alpha-subunit. The interleukine-11 receptor alpha-subunit can be functionally replaced by its soluble form indicating that the transmembrane and cytoplasmic parts are not required for signal transduction. Here, we show that a recombinant fusion protein of a fragment of the human interleukine-11 receptor alpha-subunit ectodomain linked to human interleukine-11 acts as a superagonist on cells expressing gp130 but lacking the membrane-bound interleukine-11 receptor alpha-subunit. It induces acute phase protein synthesis in hepatoma cells and efficiently promotes proliferation of Ba/F3 cells stably, transfected with gp130. In these bioassays, the fusion protein of a fragment of the human interleukine-11 receptor alpha-subunit ectodomain linked to human interleukine-11 is 50 times more potent than the combination of interleukine-11 and the soluble interleukine-11 receptor alpha-subunit. Thus, our findings support the concept that covalent fusion of two soluble proteins required for receptor activation dramatically increases their bioactivity. 相似文献
2.
Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. 总被引:9,自引:0,他引:9
T Jostock J Müllberg S Ozbek R Atreya G Blinn N Voltz M Fischer M F Neurath S Rose-John 《European journal of biochemistry》2001,268(1):160-167
Signal transduction in response to interleukin-6 (IL-6) requires binding of the cytokine to its receptor (IL-6R) and subsequent homodimerization of the signal transducer gp130. The complex of IL-6 and soluble IL-6R (sIL-6R) triggers dimerization of gp130 and induces responses on cells that do not express membrane bound IL-6R. Naturally occurring soluble gp130 (sgp130) can be found in a ternary complex with IL-6 and sIL-6R. We created recombinant sgp130 proteins that showed binding to IL-6 in complex with sIL-6R and inhibited IL-6/sIL-6R induced proliferation of BAF/3 cells expressing gp130. Surprisingly, sgp130 proteins did not affect IL-6 stimulated proliferation of BAF/3 cells expressing gp130 and membrane bound IL-6R, indicating that sgp130 did not interfere with IL-6 bound to IL-6R on the cell surface. Additionally, sgp130 partially inhibited proliferation induced by leukemia inhibitory factor (LIF) and oncostatin M (OSM) albeit at higher concentrations. Recombinant sgp130 protein could be used to block the anti-apoptotic effect of sIL-6R on lamina propria cells from Crohn disease patients. We conclude that sgp130 is the natural inhibitor of IL-6 responses dependent on sIL-6R. Furthermore, recombinant sgp130 is expected to be a valuable therapeutic tool to specifically block disease states in which sIL-6R transsignaling responses exist, e.g. in morbus Crohn disease. 相似文献
3.
Up-regulation of the interleukin-6-signal transducing protein (gp130) by interleukin-6 and dexamethasone in HepG2 cells. 总被引:3,自引:0,他引:3
The hepatic IL-6-receptor is composed of an 80 kDa IL-6-binding protein and a 130 kDa polypeptide (gp130) believed to be involved in signal transduction. Previous experiments have shown that the 80 kDa IL-6-receptor is up-regulated by glucocorticoids, but not by IL-6. Here we demonstrate that IL-6 together with the synthetic glucocorticoid dexamethasone induces the expression of mRNA for gp130 approximately 5-fold in HepG2 cells. The induction was dose- and time-dependent. Dexamethasone alone, interferon-gamma, IL-1 alpha and IL-1 beta had no effect. A possible role for the regulation of the IL-6-signal transducing protein gp130 in various inflammatory states is proposed. 相似文献
4.
Interleukin-6 (IL-6) is used as a growth factor by various tumor cells. It binds to a gp80 specific receptor (IL-6R) and then to a gp130 transducing chain. Both receptor chains are released as soluble functional proteins which circulate in biological fluids. To study the physiological role of these soluble receptors, both proteins were purified from human plasma and the kinetic constants of equilibria between IL-6 and its natural soluble IL-6R (sIL-6R) and gp130 receptor (sgp130) were measured using surface plasmon resonance analysis. Unexpectedly, natural sIL-6R and natural sgp130 were found to interact (Kd = 2.8 nM) in the absence of IL-6. No interaction was seen between the recombinant soluble receptors or between either natural soluble receptor and its recombinant partner. This binary complex was not due to copurification of IL-6 and was detected in human plasma of healthy donors. It results from either direct interaction between the two natural soluble receptors or indirect binding mediated by a yet unidentified copurified plasma molecule playing the role of an IL-6 antagonist. Once formed, the binary complex was found to be unable to bind IL-6. Soluble gp130 had already been shown to inhibit IL-6 signaling by inactivating the IL-6/IL-6R complex. In addition we show that, in the absence of IL-6, circulating natural sgp130 is able to inhibit directly the circulating sIL-6R that is a strong synergic molecule of IL-6 signaling. 相似文献
5.
6.
Stevan Shaw Tim Bourne Chris Meier Bruce Carrington Rich Gelinas Alistair Henry Andrew Popplewell Ralph Adams Terry Baker Steve Rapecki Diane Marshall Adrian Moore Helen Neale Alastair Lawson 《MABS-AUSTIN》2014,6(3):773-781
Interleukin-6 (IL-6) is a critical regulator of the immune system and has been widely implicated in autoimmune disease. Here, we describe the discovery and characterization of olokizumab, a humanized antibody to IL-6. Data from structural biology, cell biology and primate pharmacology demonstrate the therapeutic potential of targeting IL-6 at “Site 3”, blocking the interaction with the signaling co-receptor gp130. 相似文献
7.
Yanqin Liu John A. Carver Lam H. Ho Abigail K. Elias Ian F. Musgrave Tara L. Pukala 《Biochemical and biophysical research communications》2014
Protein misfolding causes serious biological malfunction, resulting in diseases including Alzheimer’s disease, Parkinson’s disease and cataract. Molecules which inhibit protein misfolding are a promising avenue to explore as therapeutics for the treatment of these diseases. In the present study, thioflavin T fluorescence and transmission electron microscopy experiments demonstrated that hemin prevents amyloid fibril formation of kappa-casein, amyloid beta peptide and α-synuclein by blocking β-sheet structure assembly which is essential in fibril aggregation. Further, inhibition of fibril formation by hemin significantly reduces the cytotoxicity caused by fibrillar amyloid beta peptide in vitro. Interestingly, hemin degrades partially formed amyloid fibrils and prevents further aggregation to mature fibrils. Light scattering assay results revealed that hemin also prevents protein amorphous aggregation of alcohol dehydrogenase, catalase and γs-crystallin. In summary, hemin is a potent agent which generically stabilises proteins against aggregation, and has potential as a key molecule for the development of therapeutics for protein misfolding diseases. 相似文献
8.
9.
Wei Liu Xiaohong An Jiao Wang Xiaoguang Zhang Jianjun Tan Zhixiang Zhou Yi Zeng 《Bioorganic & medicinal chemistry letters》2018,28(5):910-914
Fusion inhibitors of HIV prevent the virus from entering into the target cell via the interaction with gp41, which stops the process of spatial rearrangement of the viral envelope protein. A series of peptides have been designed and screened to obtain a highly potent novel sequence. Among them, CT105 possesses the most potent anti-viral ability at low nanomolar IC50 values against a panel of HIV-1 pseudoviruses from A, B, C and A1/D subtypes, whereas T20 shows much weaker potency. CT105 also shows excellent inhibitory activity at 260 pico molar IC50 against HIV-1 replication. As a fusion inhibitor, CT105 has a strong ability to interrupt gp41 core formation. The terminal half-life of CT105 possesses 1.72-fold longer than that of T20 as determined by developing an indirect competitive ELISA method. The results suggest that this artificial peptide CT105 could be a favorable architype for further optimization and modification. 相似文献
10.
Gp130 is a shared signal-transducing receptor for a family of four-helix cytokines, of which interleukin-6 is a prototypic member. IL-6-type cytokines activate gp130 to elicit downstream intracellular JAK/STAT signaling cascades through formation of hetero-oligomeric receptor complexes. Interleukin-6 must first complex with its specific alpha-receptor (Ralpha) in order to bind and activate gp130. We have dissected the extracellular activation pathway of human gp130 by human IL-6 through reconstitution of soluble complexes representing intermediate and final states in the hierarchical assembly of the IL-6/IL-6Ralpha/gp130 signaling complex. To isolate these hetero-complexes, we have applied a protein engineering strategy of covalently linking IL-6 to its Ralpha, which results in a "hyperactive" single-chain complex (hyper-IL-6) which we express in both Escherichia coli and insect cells. We have determined that IL-6/IL-Ralpha and the cytokine-binding homology region (CHR) of gp130 (D2D3) form a stable trimolecular "recognition" complex (trimer) consisting of 1IL-6,1 IL-6Ralpha, and 1 gp130-CHR. Addition of the N-terminal (D1) Ig-like domain (IGD) of gp130 to the CHR results in a transition to a hexameric "activation" complex containing 2 IL-6, 2IL-6Ralpha, and 2 gp130. These results clearly demonstrate that the recognition and activation complexes are disparate hetero-oligomeric molecular species linked by the recruitment of the gp130 IGD by the unique site III epitope present on all gp130-class cytokines. The results of these studies are relevant to other members of the IL-6 family of gp130-cytokines and address a longstanding question concerning the respective roles of the gp130 CHR and IGD in assembly of the active signaling oligomer. 相似文献
11.
Differential regulation of interleukin-6 receptor and gp130 gene expression in rat hepatocytes. 总被引:6,自引:1,他引:5 下载免费PDF全文
Interleukin-6 (IL-6) relays an important signal to hepatocytes during the early stages of an acute inflammatory response, causing an alteration in the expression of several major defense proteins. Additional regulation of this signal could occur either by altering the number of IL-6 receptors (IL-6-R) or of the signal transducing protein, gp130. We employed ribonuclease protection assays to measure the expression of IL-6-R and gp130 mRNA in primary rat hepatocytes in response to IL-6, interleukin-1, dexamethasone, and combinations thereof. Dexamethasone increases receptor mRNA levels 2.7-fold above controls but has no detectable effect on that of gp130. Such treatment increased surface expression of IL-6-R from 600 receptors per cell to greater than 6000, without a change in Kd (2.5-4.6 x 10(-10) M). In contrast to the stimulatory effect of the steroid signal, the inflammatory cytokines, individually and together, down-modulated both the mRNA and the cell surface expression of IL-6-R. These findings demonstrate for the first time that a sensitive control system exists between inflammatory mediators and IL-6-R. 相似文献
12.
Small proline-rich protein 1A is a gp130 pathway- and stress-inducible cardioprotective protein 下载免费PDF全文
Pradervand S Yasukawa H Muller OG Kjekshus H Nakamura T St Amand TR Yajima T Matsumura K Duplain H Iwatate M Woodard S Pedrazzini T Ross J Firsov D Rossier BC Hoshijima M Chien KR 《The EMBO journal》2004,23(22):4517-4525
The interleukin-6 cytokines, acting via gp130 receptor pathways, play a pivotal role in the reduction of cardiac injury induced by mechanical stress or ischemia and in promoting subsequent adaptive remodeling of the heart. We have now identified the small proline-rich repeat proteins (SPRR) 1A and 2A as downstream targets of gp130 signaling that are strongly induced in cardiomyocytes responding to biomechanical/ischemic stress. Upregulation of SPRR1A and 2A was markedly reduced in the gp130 cardiomyocyte-restricted knockout mice. In cardiomyocytes, MEK1/2 inhibitors prevented SPRR1A upregulation by gp130 cytokines. Furthermore, binding of NF-IL6 (C/EBPbeta) and c-Jun to the SPRR1A promoter was observed after CT-1 stimulation. Histological analysis revealed that SPRR1A induction after mechanical stress of pressure overload was restricted to myocytes surrounding piecemeal necrotic lesions. A similar expression pattern was found in postinfarcted rat hearts. Both in vitro and in vivo ectopic overexpression of SPRR1A protected cardiomyocytes against ischemic injury. Thus, this study identifies SPRR1A as a novel stress-inducible downstream mediator of gp130 cytokines in cardiomyocytes and documents its cardioprotective effect against ischemic stress. 相似文献
13.
Hao-Ching Wang Kai-Cheng Hsu Jinn-Moon Yang Mao-Lun Wu Tzu-Ping Ko Shen-Rong Lin Andrew H.-J. Wang 《Nucleic acids research》2014,42(2):1354-1364
DNA mimic proteins are unique factors that control the DNA binding activity of target proteins by directly occupying their DNA binding sites. The extremely divergent amino acid sequences of the DNA mimics make these proteins hard to predict, and although they are likely to be ubiquitous, to date, only a few have been reported and functionally analyzed. Here we used a bioinformatic approach to look for potential DNA mimic proteins among previously reported protein structures. From ∼14 candidates, we selected the Staphylococcus conserved hypothetical protein SSP0047, and used proteomic and structural approaches to show that it is a novel DNA mimic protein. In Staphylococcus aureus, we found that this protein acts as a uracil-DNA glycosylase inhibitor, and therefore named it S. aureus uracil-DNA glycosylase inhibitor (SAUGI). We also determined and analyzed the complex structure of SAUGI and S. aureus uracil-DNA glycosylase (SAUDG). Subsequent BIAcore studies further showed that SAUGI has a high binding affinity to both S. aureus and human UDG. The two uracil-DNA glycosylase inhibitors (UGI and p56) previously known to science were both found in Bacillus phages, and this is the first report of a bacterial DNA mimic that may regulate SAUDG’s functional roles in DNA repair and host defense. 相似文献
14.
15.
Lorenzen I Shang W Perbandt M Petoukhov MV Svergun DI Waetzig GH Rose-John S Hilgenfeld R Grötzinger J 《European journal of cell biology》2011,90(6-7):515-520
Interleukin-6 (IL-6) plays an important role in immune responses and signals via two different pathways. When IL-6 binds to its non-signalling membrane-bound receptor (IL-6R), a non-covalent dimer of the ubiquitous interleukin-6 signal transducer gp130 is recruited to initiate intracellular signalling cascades. This so-called classical signalling pathway is restricted to cells expressing the membrane-bound IL-6R, such as hepatocytes and certain leukocytes. In addition, an alternative trans-signalling pathway uses soluble forms of IL-6R (sIL-6R) in complex with IL-6 to activate cells expressing gp130, but not membrane-bound IL-6R. In both cases, a tetrameric or hexameric signalling complex consisting of two gp130 molecules and one or two molecules each of IL-6 and (s)IL-6R is formed. The structure of the hexameric complex of the ligand-binding domains of gp130 (D1-D3) with IL-6 and sIL-6R has been solved by X-ray crystallography as well as the full-length extracellular part of gp130 (D1-D6) as a monomer. Since gp130 exists as a preformed dimer on the cell surface, we used a sgp130Fc fusion protein - consisting of two extracellular gp130 regions (D1-D6) dimerised by an IgG1-Fc part - to study the structure of unliganded gp130 extracellular domains in solution by small-angle X-ray scattering (SAXS). The SAXS data indicated that sgp130Fc forms a rigid molecule in solution. The low resolution structural model reveals an elongated assembly with an Fc base and two gp130 arms, whereby the orientation of the ligand-binding domains D1-D3 with respect to the membrane-proximal domains D4-D6 differs from that in the crystallographic monomer. Functional implications of these findings are discussed. 相似文献
16.
S H Hoischen P Vollmer P M?rz S Ozbek K S G?tze C Peschel T Jostock T Geib J Müllberg S Mechtersheimer M Fischer J Gr?tzinger P R Galle S Rose-John 《European journal of biochemistry》2000,267(12):3604-3612
Human herpes virus-8 (HHV8) encodes a cytokine named viral interleukin-6 (vIL-6) that shares 25% amino-acid identity with its human homologue. Human IL-6 is known to be a growth and differentiation factor of lymphatic cells and plays a potential role in the pathophysiology of various lymphoproliferative diseases. vIL-6 is expressed in HHV8-associated-diseases including Kaposi's sarcoma, Body-cavity-based-lymphoma and Castleman's disease, suggesting a pathogenetic involvement in the malignant growth of B-cell associated diseases and other malignant tumours. We expressed vIL-6 in Escherichia coli as a fusion protein with recombinant periplasmic maltose binding protein. After cleavage from the maltose binding protein moiety and purification, vIL-6 was shown to be correctly folded using circular dichroism spectroscopy. A rabbit antiserum was raised against the recombinant vIL-6 protein. vIL-6 turned out to be active on cells that expressed gp130 but no IL-6 receptor (IL-6-R) suggesting that, in contrast to human IL-6, vIL-6 stimulated gp130 directly. Accordingly, vIL-6 activity could be inhibited by a soluble gp130 Fc Fusion protein. vIL-6 was shown to induce neuronal differentiation of rat pheochromocytoma cells and to stimulate colony formation of human hematopoietic progenitor cells. Thus, vIL-6 exhibits biologic activity that has only been observed for the IL-6/soluble IL-6-R complex but not for IL-6 alone. These properties are important for the evaluation of the pathophysiological potential of vIL-6. 相似文献
17.
S Saito M Miyaji-Yamaguchi T Shimoyama K Nagata 《Biochemical and biophysical research communications》1999,259(2):471-475
Template-Activating Factor-I (TAF-I) alpha and beta, chromatin remodeling factors, were identified as the stimulatory factor for replication of the adenovirus DNA complexed with viral basic core proteins. Recently, two cellular inhibitors for protein phosphatase 2A (PP2A) have been isolated. One of these inhibitors, designated IPP2A2, is a truncated version of TAF-Ibeta. Here, it is shown using recombinant TAF-I proteins that both TAF-Ialpha and beta have the PP2A inhibitor activity. The N-terminal region but not the C-terminal acidic region, the latter of which is essential for the chromatin remodeling activity, is shown to be required for the PP2A inhibitor activity. Roles of TAF-Ialpha- and beta-specific regions, the C-terminal acidic region, and other regions of TAF-I for the PP2A inhibitor activity are also discussed. 相似文献
18.
Vermes C Jacobs JJ Zhang J Firneisz G Roebuck KA Glant TT 《The Journal of biological chemistry》2002,277(19):16879-16887
Human osteoblasts produce interleukin-6 (IL-6) and respond to IL-6 in the presence of soluble IL-6 receptor (sIL-6R), but the cell surface expression of IL-6R and the mechanism of sIL-6R production are largely unknown. Three different human osteoblast-like cell lines (MG-63, HOS, and SaOS-2) and bone marrow-derived primary human osteoblasts expressed both IL-6R and gp130 as determined by flow cytometry and immunoprecipitation. However, the membrane-bound IL-6R was nonfunctional, as significant tyrosine phosphorylation of gp130 did not occur in the presence of IL-6. Phorbol myristate acetate induced a dramatic increase of both IL-6R shedding (i.e. the production of sIL-6R) and IL-6 release in osteoblast cultures, but the cell surface expression of gp130 remained unchanged. IL-6 complexed with sIL-6R, either exogenously introduced or derived from the nonfunctional cell surface form by shedding, induced rapid tyrosine phosphorylation of gp130. This effect was inhibited by neutralizing antibodies to either sIL-6R or gp130, indicating that the gp130 activation was induced by IL-6/sIL-6R/gp130 interaction. Protein kinase C inhibitors blocked phorbol myristate acetate-induced and spontaneous shedding of IL-6R resulting in the absence of sIL-6R in the culture medium, which in turn also prevented the activation of gp130. In conclusion, human osteoblasts express cell surface IL-6R, which is unable to transmit IL-6-induced signals until it is shed into its soluble form. This unique mechanism provides the flexibility for osteoblasts to control their own responsiveness to IL-6 via the activation of an IL-6R sheddase, resulting in an immediate production of functionally active osteoblast-derived sIL-6R. 相似文献
19.
Structural requirements for gp80 independence of human herpesvirus 8 interleukin-6 (vIL-6) and evidence for gp80 stabilization of gp130 signaling complexes induced by vIL-6 下载免费PDF全文
Human herpesvirus 8 interleukin-6 (vIL-6) displays 25% amino acid identity with human IL-6 (hIL-6) and shares an overall four-helix-bundle structure and gp130-mediated STAT/mitogen-activated protein kinase signaling with its cellular counterpart. However, vIL-6 is distinct in that it can signal through gp130 alone, in the absence of the nonsignaling gp80 alpha-subunit of the IL-6 receptor. To investigate the structural requirements for gp80 independence of vIL-6, a series of expression vectors encoding vIL-6/hIL-6 chimeric and site-mutated IL-6 proteins was generated. The replacement of hIL-6 residues with three vIL-6-specific tryptophans implicated in gp80 independence from crystallographic studies or the A and C helices containing these residues did not confer gp80 independence to hIL-6. The N- and C-terminal regions of vIL-6 could be substituted with hIL-6 sequences with the retention of gp80-independent signaling, but substitutions of other regions of vIL-6 (helix A, A/B loop, helix B, helix C, and proximal half of helix D) with equivalent sequences of hIL-6 abolished gp80 independence. Interestingly, the B helix of vIL-6 was absolutely required for gp80 independence, despite the fact that this region contains no receptor-binding residues. Point mutational analysis of helix C, which contains residues involved in physical and functional interactions with gp130 domains 2 and 3 (cytokine-binding homology region), identified a variant, VI120EE, that was able to signal and dimerize gp130 only in the presence of gp80. gp80 was also found to stabilize gp130:g130 dimers induced by a distal D helix variant of vIL-6 that was nonetheless able to signal independently of gp80. Together, our data reveal the crucial importance of overall vIL-6 structure and conformation for gp80-independent signaling and provide functional and physical evidence of the stabilization of vIL-6-induced gp130 signaling complexes by gp80. 相似文献
20.
Boulanger MJ Chow DC Brevnova E Martick M Sandford G Nicholas J Garcia KC 《Journal of molecular biology》2004,335(2):641-654
Kaposi's sarcoma-associated herpesvirus (KSHV, or HHV-8) encodes a pathogenic viral homologue of human interleukin-6 (IL-6). In contrast to human IL-6 (hIL-6), viral IL-6 (vIL-6) binds directly to, and activates, the shared human cytokine signaling receptor gp130 without the requirement for pre-complexation to a specific alpha-receptor. Here, we dissect the biochemical and functional basis of vIL-6 mimicry of hIL-6. We find that, in addition to the "alpha-receptor-independent" tetrameric vIL-6/gp130 complex, the viral cytokine can engage the human alpha-receptor (IL-6Ralpha) to form a hexameric vIL-6/IL-6Ralpha/gp130 complex with enhanced signaling potency. In contrast to the assembly sequence of the hIL-6 hexamer, the preformed vIL-6/gp130 tetramer can be decorated with IL-6Ralpha, post facto, in a "vIL-6-dependent" fashion. A detailed comparison of the viral and human cytokine/gp130 interfaces indicates that vIL-6 has evolved a unique molecular strategy to interact with gp130, as revealed by an almost entirely divergent structural makeup of its receptor binding sites. Viral IL-6 appears to utilize an elegant combination of both convergent, and unexpectedly divergent, molecular strategies to oligomerize gp130 and activate similar downstream signaling cascades as its human counterpart. 相似文献