首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
These studies were undertaken to examine the role of angiotensin II (A-II) in the regulation of adrenal glomerulosa cell differentiation. We were interested particularly in the ability of A-II to support aldosterone production in fetal adrenal cells. Many in vitro studies on acute A-II stimulation of aldosterone synthesis in adrenocortical cells have been documented. However, it is the long-term modification of steroid-metabolizing enzyme expression that leads to the formation and release of specific adrenal steroids. Herein, we used primary cultures of fetal bovine adrenal (FBA) cells to examine the effects of A-II on aldosterone production and the expression of aldosterone synthase cytochrome P450 (P450c18). A-II treatment caused the primary cultures to maintain glomerulosa cell functions. Cells treated for 3 days with A-II increased aldosterone production by 10-fold. A-II stimulation of aldosterone production occurred rapidly (within 30 min) and in a dose-dependent manner. In addition, A-II enhanced the activity of P450c18, the enzyme responsible for conversion of corticosterone to aldosterone. A-II also suppressed ACTH-promoted cortisol production, while increasing ACTH-stimulated release of aldosterone. It appears that these effects of chronic treatment with A-II were mediated through an A-II type 1 (AT1) receptor since the AT1 receptor antagonist, Dup753, blocked aldosterone production and the increased P450c18 activity. Receptor binding studies suggest that FBA cells possess approx. 110,000 AT1 binding sites/cell with Kd = 1.8 × 10−9 M. Via AT1 receptors, A-II was able to stimulate both inositol phosphates and cAMP production. The stimulation of cAMP production, however, was much less than seen following ACTH treatment. These data give support to the hypothesis that A-II is involved in the differentiation of fetal adrenal cells into glomerulosa cells. This process appears to be mediated through regulation of steroid-metabolizing enzyme expression and the activation of steroid production.  相似文献   

2.
Addition of physiological concentrations (10(-12)-10(-8)M) of platelet-activating factor (PAF) to rabbit iris muscle induced a rapid release (in 15s) of prostaglandin (PG)E2 and 6-oxo-PGF1 alpha, measured by radioimmunoassay and rapid release of 14C-labelled arachidonate and PGE2 in muscle prelabelled with [14C]arachidonic acid, measured by radiochromatography. These PAF actions are concentration- and time-dependent. The effect of PAF on PG release is not mediated through the cyclo-oxygenase pathway. The studies on the properties and mechanism of arachidonate release from phosphatidylinositol and other phospholipids in prelabelled irides by PAF suggest the involvement of a phospholipase A2. This conclusion is supported by the findings: (a) that both the removal of arachidonate and formation of lysophosphatidylinositol, from phosphatidylinositol, by PAF occur concomitantly in a time-dependent manner, (b) that Ca2+ is required for the agonist-induced release of arachidonate and PGE2, and (c) that in contrast to the rapid release of [3H]myo-inositol phosphates by carbachol and other Ca2+-mobilizing agonists previously reported in the iris muscle [Akhtar & Abdel-Latif (1984) Biochem. J. 224, 291-300], PAF (10(-12)-10(-8)M) did not appreciably enhance the release of [14C]myo-inositol phosphates and 32P labelling of phosphatidate and phosphatidylinositol in this tissue. Ca2+-channel antagonists, such as nifedipine, verapamil, diltiazem and manganese inhibited PAF-induced arachidonate and PGE2 release in a dose-dependent manner. K+ depolarization, which causes influx of extracellular Ca2+ in smooth muscle, did not increase the release of arachidonate and PGE2. The ability of Ca2+ antagonists to inhibit arachidonate release by PAF in this tissue probably reflects interference with PAF binding to its receptor. The PAF-induced release of arachidonate and PGE2 occur independently of the cyclo-oxygenase and lipoxygenase pathways. Whether the PAF-induced release of arachidonate and PG in the iris muscle is involved in the pathogenesis of inflammatory and/or physiological reactions in the eye, and how much the inhibitory effects of Ca2+-entry blockers on the PAF actions contribute to the therapeutic use of these drugs, remain to be established.  相似文献   

3.
Acute effects and action mechanisms of prolactin (PRL) on aldosterone secretion in zona glomerulosa (ZG) cells were investigated in ovariectomized rats. Administration of ovine PRL (oPRL) increased aldosterone secretion in a dose-dependent manner. Incubation of [3H]-pregnenolone combined with oPRL increased the production of [3H]-aldosterone and [3H]-deoxycorticosterone but decreased the accumulation of [3H]-corticosterone. Administration of oPRL produced a marked increase of adenosine 3',5'-cyclic monophosphate (cAMP) accumulation in ZG cells. The stimulatory effect of oPRL on aldosterone secretion was attenuated by the administration of angiotensin II (Ang II) and high potassium. The Ca2+ chelator, ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA, 10(-2) M), inhibited the basal release of aldosterone and completely suppressed the stimulatory effects of oPRL on aldosterone secretion. The stimulatory effects of oPRL on aldosterone secretion were attenuated by the administration of nifedipine (L-type Ca2+ channel blocker) and tetrandrine (T-type Ca2+ channel blocker). These data suggest that the increase of aldosterone secretion by oPRL is in part due to (1) the increase of cAMP production, (2) the activation of both L- and T-type Ca2+ channels, and (3) the activation of 21-hydroxylase and aldosterone synthase in rat ZG cells.  相似文献   

4.
Human airway epithelial cell release of interleukin (IL)-6 in response to lipid mediators was studied in an airway cell line (BEAS-2B). Prostaglandin (PG) E(2) (10(-7) M) treatment caused an increase in IL-6 release at 2, 4, 8, and 24 h. IL-6 release into the culture medium at 24 h was 3,396 +/- 306 vs. 1,051 +/- 154 pg/ml (PGE(2)-treated cells vs. control cells). PGE(2) (10(-7) to 10(-10) M) induced a dose-related increase in IL-6 release at 24 h. PGF(2 alpha) (10(-6) M) treatment caused a similar effect to that of PGE(2) (10(-7) M). PGE(2) analogs with relative selectivity for PGE(2) receptor subtypes were studied. Sulprostone, a selective agonist for the EP-3 receptor subtype had no effect on IL-6 release. 11-Deoxy-16,16-dimethyl-PGE(2), an EP-2/4 agonist, and 17-phenyl trinor PGE(2), an agonist selective for the EP-1 > EP-3 receptor subtype (10(-6) to 10(-8) M), caused dose-dependent increases in IL-6 release. 8-Bromo-cAMP treatment resulted in dose-related increases in IL-6 release. RT-PCR of BEAS-2B cell mRNA demonstrated mRNA for EP-1, EP-2, and EP-4 receptors. After PGE(2) treatment, increases in IL-6 mRNA were noted at 4 and 18 h. Therefore, PGE(2) increases airway epithelial cell IL-6 production and release.  相似文献   

5.
The effects of morphine on arachidonic acid metabolism, on cAMP levels and on basal and induced 45Ca2(+)-uptake, in uterine strips isolated from ovariectomized rats as well as the influence of naloxone, were explored. The presence of morphine (10(-6) M) did not change significantly 14C-arachidonic acid metabolism, basal cAMP levels, or cAMP increment induced by PGE2 or by PGE1. On the other hand morphine (10(-6) M) decreased basal uterine 45Ca2(+)-uptake as much as verapamil (10(-6) M) did, and this action was not prevented by naloxone (10(-8) M). The presence of oxytocin (50 mU.ml-1) augmented 45Ca2(+)-uptake, an effect which was antagonized by morphine (10(-6) M). This inhibitory action of morphine on oxytocin-induced 45Ca2(+)-uptake was not prevented by naloxone (10(-8) M). Furthermore, PGE1 (10(-8) M and (10(-6) M) but not PGE2 (10(-8) and 10(-6) M), stimulated the incorporation of 45Ca2+ into uterine strips, and this action was not altered by morphine. The inhibitory influence of morphine on uterine spontaneous motility and on prostaglandin synthesis and release, previously described by us, is now explained in terms of an inhibition of tissue Ca2(+)-uptake.  相似文献   

6.
Adrenomedullin (AM) (10(-8) M) partially suppressed aldosterone response of dispersed rat zona glomerulosa (ZG) cells to 10 mM K+, and the nitric oxide (NO) synthase inhibitors L-NAME (10(-3) M) and 1400W (10(-4) M) effectively counteracted this effect of AM. The NO donor L-Arginine (L-Arg) (10(-5) M) decreased both basal and K+ -stimulated aldosterone secretion. The guanylate-cyclase inhibitor Ly-83583, at a concentration (10(-4) M) abolishing either the guanylate-cyclase activator guanylin- or L-Arg-induced cGMP release from dispersed ZG cells, did not affect the aldosterone antisecretagogue action of AM and L-Arg. AM (10(-8) M) evoked a moderate increase in cGMP release by dispersed ZG cells, and the effect was blocked by both 10(-4) M Ly-83583 and 10(-3) M L-NAME. Collectively, these findings allow us (1) to confirm that NO inhibits aldosterone secretion through a cGMP-independent mechanism; and (2) to suggest that stimulation of endogenous NO synthesis plays a role in the mechanisms underlying the inhibitory effect of AM on K+ -stimulated aldosterone secretion from rat ZG cells.  相似文献   

7.
Both angiotensin II and adrenocorticotropic hormone (ACTH) are well known to play a crucial role on the regulation of aldosterone production in adrenal glomerulosa cells. Recent observations suggest that the steroidogenic action of ACTH is mediated via the cAMP messenger system, whereas angiotensin II acts mainly through the phosphoinositide pathway. However, there have been no reports concerning the interaction between the cAMP messenger system activated by ACTH and the Ca2+ messenger system induced by angiotensin II. Both ACTH and angiotensin II simultaneously act on adrenal cells for regulating steroidogenesis under physiological conditions. Thus the present experiments were performed to examine the effect of ACTH on the action of angiotensin II by measuring angiotensin II receptor activity, cytosolic Ca2+ movement, and aldosterone production. The major findings of the present study are that short-term exposure to a high dose of ACTH (10(-7) M) inhibited 125I-angiotensin II binding to bovine adrenal glomerulosa cells, decreased the initial spike phase of [Ca2+]i induced by angiotensin II, and inhibition of angiotensin II-induced aldosterone production. Low dose of ACTH (10(-10) M), which did not increase cAMP formation, did not affect angiotensin II receptor activity. These studies have shown that angiotensin II receptors of bovine adrenal glomerulosa cells can be down-regulated by 1 mM dibutyryl cyclic AMP, as well as by effectors which are able to activate cAMP formation (10(-7) M ACTH and 10(-5) M forskolin). The rapid decrease in angiotensin II receptors induced by 10(-7)M ACTH was associated with a decreased steroidogenic responsiveness and a decreased rise in the [Ca2+]i response induced by angiotensin II. These studies show that the cAMP-dependent processes activated by ACTH have the capacity to interfere with signal transduction mechanisms initiated by receptors for angiotensin II.  相似文献   

8.
Regulation of mast cell histamine release by neurotensin   总被引:1,自引:0,他引:1  
Neurotensin (NT), a neuropeptide found both centrally and peripherally, stimulated release of histamine from rat peritoneal mast cells in a dose-dependent manner. Release was evident by 10 nM and reached a plateau of 15-20% total cellular histamine by 10(-7)-10(-6) M NT. Optimal conditions for stimulation occurred at pH 6.5-7.5, 37 degrees C and at calcium concentrations of less than 1 mM. Release was complete within 2 minutes of peptide addition. Studies of histamine release by NT analogues indicted that the C-terminus is the biologically active portion of the molecule in this system, as is true of all other systems responsive to NT (1). D-Trp11-NT, which acts as a NT antagonist in several peripheral NT-sensitive tissues (2,3), also inhibited NT action on mast cells. Manipulations involving Ca2+ availability suggest that the mechanism of NT stimulation may involve use of intracellular Ca2+ to a greater extent than extracellular Ca2+. Lowering the extracellular Ca2+ concentration or blocking influx of extracellular Ca2+ with lanthanum (La3+), had little effect on NT-induced release, whereas Ca2+ depletion by treatment with ethylenediaminetetracetic acid (EDTA) or blockade of intracellular Ca2+ mobilization by N,N-(diethylamino)octyl 3,4,5-trimethoxybenzoate (TMB-8), inhibited the response to NT. Increasing cellular levels of adenosine 3',5'-cyclic monophosphate (cAMP), by treatment with 8-bromo-cAMP or stimulation with prostaglandin E2 (PGE2) in the presence of isobutylmethylxanthine (IBMX), served to reduce histamine release by NT, indicating that cAMP may play a role in NT stimulation.  相似文献   

9.
Ouabain (5 x 10(-8)-5 x 10(-4) M) was confirmed to cause a dose-dependent increase in [3H]acetylcholine ([3H]ACh) release, cytosolic free Ca2+ concentration ([Ca2+]i), and 22Na+ uptake in cerebrocortical synaptosomes of rats in the presence of extracellular Ca2+. Ouabain also caused a dose-dependent decrease in membrane potential. In a low-Na+ (10 mM) medium, ouabain failed to increase [3H]ACh release and [Ca2+]i. Tetrodotoxin (10(-6) M) had no effect on the ouabain-induced increase in both [3H]ACh release and [Ca2+]i but abolished the increase in 22Na+ uptake and partially inhibited the depolarizing effect. Verapamil (10(-6)-5 x 10(-4) M) inhibited the ouabain-induced increase in both [3H]ACh release and [Ca2+]i in a dose-dependent manner. Removal of extracellular Ca2+ abolished the effect of ouabain on [Ca2+]i but not on [3H]ACh release and 22Na+ uptake, regardless of the presence or absence of EGTA. In the absence of extracellular Ca2+, 10 mM Mg2+ blocked ouabain-induced [3H]ACh release, which was resistant to verapamil. These results suggest that ouabain can increase ACh release from synaptosomes without the preceding increases in intracellular Ca2+ and/or Na+ content. It seems likely that the removal of extracellular Ca2+ unmasks mechanisms of ouabain action different from those operating in the presence of Ca2+.  相似文献   

10.
The effects of xylazine on porcine myometrial contractility were studied in vitro using uterine strips to determine the alpha 2-adrenergic influences during the diestrous stage of the estrous cycle. Xylazine (10(-8)-10(-5) M) caused a dose-dependent increase in the amplitude of myometrial contractility. The alpha 2-adrenoceptor antagonists idazoxan and yohimbine (10(-8)-10(-6) M) blocked the effects of xylazine in a dose-dependent manner. Yohimbine was approximately 10 times more potent than idazoxan in this regard. In contrast, an alpha 1-adrenoceptor antagonist prazosin (10(-7) and 10(-6) M) did not block the xylazine-induced increase in myometrial contractility, but a higher dose of prazosin (10(-5) M) did reduce the effects of xylazine. When the porcine uterine strips were pretreated with Ca2(+)-free Tyrod's solution or verapamil, a Ca2+ channel blocker, the effects of xylazine on myometrial contractility were completely abolished, whereas those of carbachol were only moderately reduced. The results suggest that the xylazine-induced myometrial contractility is mediated by alpha 2-adrenoceptors and that this effect is mediated, at least in part, by Ca2+ channels, whereas the effect of carbachol is attributed to an increase in both Ca2+ entry and release of Ca2+ from intracellular pools.  相似文献   

11.
The effects of beta-endorphin, Met-enkephalin, dynorphin and SKF 10047 on the constancy of the isometric developed tension (IDT) of the spontaneous contractions of uterine strips isolated from ovariectomized rats were explored. beta-endorphin (10(-6) M) was the only opioid that depressed significantly uterine constancy of IDT in a concentration dependent fashion. Naloxone, neither at 10(-8) M nor at 10(-6) M, altered the negative inotropic influence of beta-endorphin. Moreover, the basal synthesis and outputs of some prostaglandins (PGE1, PGE2 and PGF2 alpha) from rat uteri and the effect of beta-endorphin (10(-6) M), were determined. It was found that the basal synthesis and release of PGs in uteri were significantly inhibited by this endogenous opioid. The effects of beta-endorphin (10(-8), 10(-6) and 10(-5) M) on the basal; and oxytocin or A23187, induced 45Ca2+ uptake, as well as the influence of naloxone were also studied. beta-endorphin at three of the concentrations tested decreased basal uterine 45Ca2+ uptake and this action was not prevented by naloxone (10(-8) M). The presence of oxytocin and of A23187 augmented significantly 45Ca2+ uptake, an effect that was antagonized by beta-endorphin (10(-6) M). The possible role of beta-endorphin in uterine functioning via the modulation of uterine PG synthesis and Ca2+ uptake is discussed.  相似文献   

12.
The effects of peptide inhibitors (bestatin and amastatin) and divalent cations (Ca2+ and Co2+) on the velocity of Asp1 liberation from angiotensin II (A-II) by human placental membrane fractions and binding of 125I A-II to human placental membranes were tested at 22 degrees C and 4 degrees C. Asp1 liberation was measured by high performance liquid chromatography. As expected, the degradation and binding of A-II were temperature sensitive, with both being at 4 degrees C than at 22 degrees C. While amastatin (10(-4) M) and bestatin 10(-6) M) significantly reduced the velocity of Asp1 liberation from A-II to about 45%, amastatin (10(-4) M) and bestatin (10(-4) M) increased 125I A-II binding to 125% and 130%, respectively. Ca2+ (10 mM) and Co2+ (10 mM) activated the velocity of Asp1 liberation from A-II to 140% and 120%, respectively at 22 degrees C. Ca2+ (10(-1) M) and Co2+ (10 mM) also enhanced 125I A-II binding about 130%. Previously we showed that the A-II degrading activity found in human placental membrane fractions is mainly due to aminopeptidases A and M. Since amastatin and bestatin are the specific inhibitors for aminopeptidases A and M, and since Ca2+ and Co2+ are the activators for aminopeptidase A and aminopeptidase M, respectively, it is conceivable that the enzymes regulate the levels of A-II and, therefore, that they may play an important role in the binding of A-II to human placental membrane fractions.  相似文献   

13.
The effects of U46619, a thromboxane mimic, on cytosolic Ca2+ concentration and platelet aggregation were determined in human platelets. Cytosolic Ca2+ concentration was determined by Quin-2 fluorescence and platelet aggregation quantitated with an aggregometer. Addition of U46619 (1 x 10(-7) M) to the platelet suspension produced a rapid increase in cytosolic Ca2+ and platelet aggregation. Pretreatment of platelets with EGTA (3 x 10(-3) M), verapamil (5 x 10(-4) M), a calcium entry blocker, or 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride (1 x 10(-3) M), an inhibitor of intracellular Ca2+ release, either blunted or markedly delayed the rate, but not the magnitude, of increase in cytosolic Ca2+ and prevented platelet aggregation by U46619. Pretreatment of platelets with prostaglandin I2 (PGI2) (5 x 10(-8) M), PGD2 (5 x 10(-8) M), PGE1 (5 x 10(-8) M), PGF2 alpha (1 x 10(-5) M), dibutyryl cAMP (5 x 10(-3) M), or forskolin (1 x 10(-6) M) prevented both the increase in cytosolic Ca2+ and the associated platelet aggregation induced by U46619. These data suggest that U46619 may induce platelet aggregation through an increase in cytosolic Ca2+, and that both Ca2+ entry and its release from intracellular storage sites probably contribute to the increase in cytosolic Ca2+. Furthermore, the rate of the increase in cytosolic Ca2+ concentration, as well as the magnitude of the increase, appear to be critical for platelet aggregation induced by U46619. Our data are consistent with the hypothesis that PGs inhibit U46619-induced platelet aggregation by preventing the increase in cytosolic Ca2+, and that these effects may be mediated via an increase in cAMP, since they were induced by PGs and cAMP.  相似文献   

14.
The effect of human pancreatic polypeptide (HPP) on rat pancreatic acini has been studied. It was found that HPP stimulated amylase and lipase release from the acini. The secretory response of acini to HPP was dose-dependent in a sigmoidal fashion. Between 10(-9) M and 10(-8) M concentration of HPP there was a slow increase of enzyme release to about 40-60% over basal release. At concentrations of HPP above 10(-8) M there was a rapid increase of enzyme release, amounting to 4-6 times over basal release at 10(-6) M concentration of HPP. The potency of HPP compared to other secretagogues at 10(-7) M concentration was 45% of CCK, 60% of carbachol and 75% of secretin. HPP did not inhibit the effect of CCK, secretin and carbachol on amylase release. The amylase release stimulated by HPP was accompanied by an increase in 45Ca2+ efflux. Atropine or dibutyryl cyclic GMP did not influence the effect of HPP. It is concluded that HPP stimulates the release of enzymes from rat pancreatic acini and that Ca2+ may be a mediator for this secretion.  相似文献   

15.
Mouse calvaria were maintained in organ culture for 96 h and endogenous prostaglandin production and active bone resorption (45Ca release) measured. After a lag phase of 12 h, active resorption increased over the 96 h period. The amounts of prostaglandins released into the culture medium (measured by radioimmunoassay) were highest in the first 24 h of culture. Unless these were removed by preculturing for 24 h, or suppressed by indomethacin, no response to exogenous PGE2, or prostaglandin precursors could be demonstrated. Bone resorption was stimulated after preculture by both PGE2 and PGF2 alpha in a dose-dependent manner (10-8M-10-5M), with PGE2 being the more potent. Collagen synthesis was unaffected by PGF2 alpha, whereas PGE2 (10-5M) had an inhibitory effect. Eicosatrienoic acid did not stimulate bone resorption at lower concentrations (10-7M-1-5M), but was inhibitory at 10-4M. Arachidonic acid also inhibited resorption at 10-4m, but at lower concentrations (10-7M-10-5M) increased active resorption. This was concomitant with a rise in PGE2 and PGF2 alpha levels, PGE2 production being significantly higher than PGF2 alpha. The effects of PGE2 (10-8M) and PGF2 alpha (10-8M) appeared additive; there was no evidence of synergistic or antagonistic effects when varying ratios of PGE2: PGF2 alpha were employed.  相似文献   

16.
The mechanism of 8-(NN-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) action was evaluated in isolated adrenal glomerulosa cells. TMB-8 inhibits both angiotensin II- and K+-stimulated aldosterone secretion in a dose-dependent manner. The ID50 for angiotensin II- and K+-stimulated aldosterone secretion is 46 and 28 microM, respectively. In spite of the fact that 100 microM-TMB-8 inhibits angiotensin II-stimulated aldosterone secretion almost completely, TMB-8 (100 microM) does not inhibit angiotensin II-induced 45Ca2+ efflux from prelabelled cells nor does it affect inositol 1,4,5-trisphosphate-induced calcium release from non-mitochondrial pool(s) in saponin-permeabilized cells. TMB-8 has no inhibitory effect on A23187-induced aldosterone secretion, but 12-O-tetradecanoylphorbol 13-acetate-induced aldosterone secretion is completely abolished. TMB-8 effectively inhibits both angiotensin II- and K+-induced increases in calcium influx but has no effect on A23187-induced calcium influx. TMB-8 inhibits the activity of protein kinase C dose-dependently. These results indicate that TMB-8 inhibits aldosterone secretion without inhibiting mobilization of calcium from an intracellular pool. The inhibitory effect of TMB-8 is due largely to an inhibition of plasma membrane calcium influx, but this drug also inhibits the activity of protein kinase C directly.  相似文献   

17.
We evaluated changes in cytosolic calcium concentration (Ca++) and steroidogenesis in rat adrenal glomerulosa cells (GC) stimulated with potassium (K+) or angiotensin II (AII). Cytosolic Ca++ concentration was determined using the Ca++-sensitive, fluorescent dye QUIN 2. Raising extracellular K+ increased cytosolic Ca++ from 267 +/- 23 nM at 3.7 mM K+ to a maximum of 377 +/- 40 nM at 8.7 mM K+ (p less than 0.01, N = 23). AII also increased cytosolic Ca++ from 238 +/- 20 nM to a maximum of 427 +/- 42 nM at 10(-7) M (p less than 0.01, N = 16). In parallel studies, K+ and AII stimulated aldosterone secretion from QUIN 2-loaded GC at concentrations similar to those which raised cytosolic Ca++. QUIN 2-loaded cells were as responsive steroidogenically as unloaded cells and showed trypan blue exclusion of 98% suggesting that QUIN 2 did not compromise cellular viability. These results provide direct support for a role of cytosolic Ca++ as a second messenger during stimulation of aldosterone secretion by both K+ and AII.  相似文献   

18.
The effect of cyclosporin A on aldosterone production by dispersed adreno-capsular cells from rabbit was examined. Cyclosporin A significantly stimulated aldosterone production at concentrations of 10(-7) M and 10(-6) M. The maximum stimulation of aldosterone production by cyclosporin A (at 10(-6) M) was comparable to that by angiotensin II at 10(-8) M). This stimulating effect of cyclosporin A on aldosterone production was not accompanied by an increase in cyclic AMP production, and was not inhibited by a calcium-channel blocker, nicardipine. These results suggest that the aldosterone-stimulating action of cyclosporin A at these concentrations is not mediated by a known second messenger system such as channel-linked Ca2+ inflow or cyclic AMP.  相似文献   

19.
The effects of prostaglandin E2 (PGE2) on the proliferation and differentiation of osteoblastic cells were studied in osteoblast-like cells isolated from adult rat calvaria. Treatment of the cells with PGE2 within the concentration range 10(-8)-10(-5) M resulted in a dose-dependent increase in alkaline phosphatase (ALP) activity, [3H]proline incorporation into collagenase-digestible protein, and mineralized bone nodule (BN) formation, as well as a dose-dependent decrease in [3H]thymidine incorporation into the cells. PGE2 also caused a dose-dependent increase in the intracellular cyclic adenosine monophosphate (cAMP) content, with a maximal effective concentration of 10(-5) M; this effect of PGE2 was mimicked by forskolin, an adenylate cyclase activator. The treatment of adult calvarial cells with forskolin decreased BN formation, ALP activity, and collagen synthesis. These results suggested that cAMP does not have a stimulatory, but rather a suppressive, effect on the differentiation of adult rat calvarial cells. A time-course study of cAMP accumulation showed that both PGE2- and forskolin-induced cAMP reached a maximum at 5 min after the treatment, but the former rapidly returned to the basal level by 40 min, while the latter declined slowly and was still at 70% of the maximal level at 60 min, suggesting that PGE2 activates phosphodiesterase as well as adenylate cyclase. The presence of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a calmodulin antagonist, reduced the rate of degradation of cAMP formed after PGE2 treatment, suggesting the involvement of calmodulin in the activation of phosphodiesterase. However, PGE2 also caused the production of inositol 1,4,5-triphosphate (IP3) and an elevation of the intracellular Ca2+ concentration ([Ca2+]i), both of which peaked at 15 s and returned to the basal level within 1 min. Submaximal responses of the IP3 production and the [Ca2+]i elevation to PGE2 were obtained at 10(-5) M. W-7 decreased both basal and PGE2-induced ALP activity, collagen synthesis and BN formation, indicating the involvement of Ca2+/calmodulin-dependent protein kinase in the PGE2-induced differentiation of calvarial cells. From these results, we concluded that PGE2 inhibits the proliferation and stimulates the differentiation of calvarial osteoblasts by elevating the [Ca2+]i through the activation of a phosphoinositide turnover, but not via an activation of adenylate cyclase. We also found that BN formation varies, depending on the time of PGE2 addition, suggesting that responsiveness of the cells to PGE2 may change during the culture period.  相似文献   

20.
The effect of Ca2+ on steroid production was examined in electropermeabilized bovine adrenal zona glomerulosa and fasciculata cells. The cells were superfused with a medium mimicking cytosolic ionic content but deprived of Ca2+. The permeabilized glomerulosa cells produced aldosterone at a low basal rate. Upon addition of NADP+ to the medium, a transient and concentration-dependent (EC50 = 6 microM) peak of aldosterone production occurred. When the superfusion medium was supplemented with buffered Ca2+ at submicromolar concentrations, a concentration-dependent and sustained increase of aldosterone output was observed. The maximal response (2-3 times the basal secretion rate) was achieved with 1-2 microM ambient free Ca2+, and the EC50 for Ca2+ was 0.5 microM. The continuous presence of NADP+ was found to be necessary for a Ca2+ effect. The Ca2+-induced aldosterone response was entirely blocked by ruthenium red (1 microM), an inhibitor of mitochondrial Ca2+ uptake, and by W-7 (5 microM), a calmodulin inhibitor. Qualitatively and quantitatively similar results were obtained for corticosterone production in adrenal fasciculata cells. These results show that permeabilized adrenal cortical cells retain the ability to produce steroids. Moreover, Ca2+ influx into the mitochondria and Ca2+/calmodulin-dependent reactions appear to be critical steps in the activation of steroidogenesis. These studies provide a further direct link between cytosolic free calcium concentration and biological responses induced by steroidogenic, calcium-mobilizing stimulators in the adrenal cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号