首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The basal respiration rate at 10°C (R10) and the temperature sensitivity of soil respiration (Q10) are two premier parameters in predicting the instantaneous rate of soil respiration at a given temperature. However, the mechanisms underlying the spatial variations in R10 and Q10 are not quite clear. R10 and Q10 were calculated using an exponential function with measured soil respiration and soil temperature for 11 mixed conifer-broadleaved forest stands and nine broadleaved forest stands at a catchment scale. The mean values of R10 were 1.83 µmol CO2 m−2 s−1 and 2.01 µmol CO2 m−2 s−1, the mean values of Q10 were 3.40 and 3.79, respectively, for mixed and broadleaved forest types. Forest type did not influence the two model parameters, but determinants of R10 and Q10 varied between the two forest types. In mixed forest stands, R10 decreased greatly with the ratio of coniferous to broadleaved tree species; whereas it sharply increased with the soil temperature range and the variations in soil organic carbon (SOC), and soil total nitrogen (TN). Q10 was positively correlated with the spatial variances of herb-layer carbon stock and soil bulk density, and negatively with soil C/N ratio. In broadleaved forest stands, R10 was markedly affected by basal area and the variations in shrub carbon stock and soil phosphorus (P) content; the value of Q10 largely depended on soil pH and the variations of SOC and TN. 51% of variations in both R10 and Q10 can be accounted for jointly by five biophysical variables, of which the variation in soil bulk density played an overwhelming role in determining the amplitude of variations in soil basal respiration rates in temperate forests. Overall, it was concluded that soil respiration of temperate forests was largely dependent on soil physical properties when temperature kept quite low.  相似文献   

2.
Mountain forest soils contain an important stock of carbon. Their altitudinal gradient can serve as a model for research on the potential risk of increased emission of carbon dioxide to the atmosphere, in a positive feedback of global warming. Using soil samples collected at three elevations (600, 900, and 1200 m a.s.l.) from five separate slopes of the Carpathian Mountains (Poland), we studied the effects of soil physical, chemical and microbial properties controlling the temperature sensitivity (Q10 values) of organic matter decomposition in forest soils. Data of soil basal respiration rate measured in laboratory conditions at six different temperatures (5, 10, 15, 20, 25 and 30 °C) were fitted to a Gaussian function. The modelled soil respiration rates differed between altitudes at temperature exceeding 15 °C, and the respiration rate of soil from 1200 m a.s.l. was higher than in soils from the two lower elevations. Based on the modelled respiration values, we calculated Q10 values in the low (Q10L, 0–10 °C), medium (Q10M, 10–20 °C) and high (Q10H, 20–30 °C) temperature ranges. The Q10 values did not differ between elevations. Q10L and Q10M were negatively related only with the C:N ratio. Temperature sensitivity of decomposition of soil organic matter was not affected by bacterial activity and functional diversity (assessed using Biolog® ECO plates), microbial biomass or community structure (inferred from phospholipid fatty acid assays). Our findings support a kinetics-based theory of the higher temperature sensitivity of more chemically recalcitrant soil organic matter, put forward by other authors.  相似文献   

3.
阳小成  阿舍小虎  苗原  刘银占 《生态学报》2016,36(17):5371-5378
采用土壤二氧化碳(CO_2)通量自动测量系统,对不同放牧模式(全年禁牧、夏季放牧、冬季放牧和自由放牧)下川西北高寒草甸的土壤呼吸进行监测,比较了不同放牧模式下土壤呼吸的季节动态和温度敏感性。研究发现:1)放牧模式可以改变高寒草甸土壤呼吸的季节动态变化。禁牧、夏季放牧以及自由放牧样地的土壤呼吸在季节上的变化趋势基本相似,而冬季放牧样地的土壤呼吸最大值与前者相比明显向后推迟;2)放牧模式并不改变高寒草甸年平均土壤呼吸速率,但对不同季节土壤呼吸速率的影响不同;3)不同放牧模式可以改变土壤呼吸对温度的敏感性(Q_(10))。不同放牧模式下土壤呼吸Q_(10)值大小依次为:禁牧1a(8.13)冬季放牧(7.49)禁牧3a(5.46)夏季放牧(5.20)自由放牧(4.53)。该地区土壤呼吸的Q_(10)值均明显高于热带和其它温带草地土壤呼吸的Q_(10)值。结果表明,放牧模式是影响高寒草甸土壤碳排放的一个重要因素。此外,在未来全球气候变暖背景下,在生长季节无放牧干扰的高寒草甸可能比放牧干扰的高寒草甸释放出更多的CO_2到大气中。  相似文献   

4.
Heterotrophic soil respiration is an important flux within the global carbon cycle. Exact knowledge of the response functions for soil temperature and soil water content is crucial for a reliable prediction of soil carbon turnover. The classical statistical approach for the in situ determination of the temperature response (Q10 or activation energy) of field soil respiration has been criticised for neglecting confounding factors, such as spatial and temporal changes in soil water content and soil organic matter. The aim of this paper is to evaluate an alternative method to estimate the temperature and soil water content response of heterotrophic soil respiration. The new method relies on inverse parameter estimation using a 1-dimensional CO2 transport and carbon turnover model. Inversion results showed that different formulations of the temperature response function resulted in estimated response factors that hardly deviated over the entire range of soil water content and for temperature below 25°C. For higher temperatures, the temperature response was highly uncertain due to the infrequent occurrence of soil temperatures above 25°C. The temperature sensitivity obtained using inverse modelling was within the range of temperature sensitivities estimated from statistical processing of the data. It was concluded that inverse parameter estimation is a promising tool for the determination of the temperature and soil water content response of soil respiration. Future synthetic model studies should investigate to what extent the inverse modelling approach can disentangle confounding factors that typically affect statistical estimates of the sensitivity of soil respiration to temperature and soil water content.  相似文献   

5.
The future of the land carbon sink is a significant uncertainty in global change projections. Here, key controls on global terrestrial carbon storage are examined using a simple model of vegetation and soil. Equilibrium solutions are derived as a function of atmospheric CO2 and global temperature, these environmental variables are then linked in an idealized global change trajectory, and the lag between the dynamic and equilibrium solutions is derived for different linear rates of increase in atmospheric CO2. Terrestrial carbon storage is departing significantly from equilibrium because CO2 and temperature are increasing on a similar timescale to ecosystem change, and the lag is found to be proportional to the rate of forcing. Thus peak sizes of the land carbon sink, and any future land carbon source, are proportional to the rate of increase of CO2. A switch from a land carbon sink to a source occurs at a higher CO2 and temperature under more rapid forcing. The effects of parameter uncertainty in temperature sensitivities of photosynthesis, plant respiration and soil respiration, and structural uncertainty through the effect of fixing the ratio of plant respiration to photosynthesis are explored. In each case, the CO2 fertilization effect on photosynthesis is constrained to reproduce the 1990 atmospheric CO2 concentration within a closed global model. New literature compilations are presented for the temperature sensitivities of plant and soil respiration. A lower limit, Q10=1.29, for soil respiration significantly increases future land carbon storage. An upper limit, Q10=3.63, for soil respiration underpredicts the increase in carbon storage since the Last Glacial Maximum. Fixing the ratio of plant respiration to photosynthesis (R/P) at 0.5 generates the largest and most persistent land carbon sink, followed by the weakest land carbon source.  相似文献   

6.
Respiration, which is the second most important carbon flux in ecosystems following gross primary productivity, is typically represented in biogeochemical models by simple temperature dependence equations. These equations were established in the 19th century and have been modified very little since then. Recent applications of these equations to data on soil respiration have produced highly variable apparent temperature sensitivities. This paper searches for reasons for this variability, ranging from biochemical reactions to ecosystem‐scale substrate supply. For a simple membrane‐bound enzymatic system that follows Michaelis–Menten kinetics, the temperature sensitivities of maximum enzyme activity (Vmax) and the half‐saturation constant that reflects the affinity of the enzyme for the substrate (Km) can cancel each other to produce no net temperature dependence of the enzyme. Alternatively, when diffusion of substrates covaries with temperature, then the combined temperature sensitivity can be higher than that of each individual process. We also present examples to show that soluble carbon substrate supply is likely to be important at scales ranging from transport across membranes, diffusion through soil water films, allocation to aboveground and belowground plant tissues, phenological patterns of carbon allocation and growth, and intersite differences in productivity. Robust models of soil respiration will require that the direct effects of substrate supply, temperature, and desiccation stress be separated from the indirect effects of temperature and soil water content on substrate diffusion and availability. We speculate that apparent Q10 values of respiration that are significantly above about 2.5 probably indicate that some unidentified process of substrate supply is confounded with observed temperature variation.  相似文献   

7.
《Global Change Biology》2018,24(7):2841-2849
Understanding the temperature sensitivity (Q10) of soil organic C (SOC) decomposition is critical to quantifying the climate–carbon cycle feedback and predicting the response of ecosystems to climate change. However, the driving factors of the spatial variation in Q10 at a continental scale are fully unidentified. In this study, we conducted a novel incubation experiment with periodically varying temperature based on the mean annual temperature of the soil origin sites. A total of 140 soil samples were collected from 22 sites along a 3,800 km long north–south transect of forests in China, and the Q10 of soil microbial respiration and corresponding environmental variables were measured. Results showed that changes in the Q10 values were nonlinear with latitude, particularly showing low Q10 values in subtropical forests and high Q10 values in temperate forests. The soil C:N ratio was positively related to the Q10 values, and coniferous forest soils with low SOC quality had higher Q10 values than broadleaved forest soils with high SOC quality, which supported the “C quality temperature” hypothesis. Out of the spatial variations in Q10 across all ecosystems, gram‐negative bacteria exhibited the most importance in regulating the variation in Q10 and contributed 25.1%, followed by the C:N ratio (C quality), fungi, and the fungi:bacteria ratio. However, the dominant factors that regulate the regional variations in Q10 differed among the tropical, subtropical, and temperate forest ecosystems. Overall, our findings highlight the importance of C quality and microbial controls over Q10 value in China's forest ecosystems. Meanwhile, C dynamics in temperate forests under a global warming scenario can be robustly predicted through the incorporation of substrate quality and microbial property into models.  相似文献   

8.
南方红壤区3年生茶园土壤呼吸特征   总被引:4,自引:0,他引:4  
为探讨南方红壤区茶园的土壤呼吸特征,采用LI-Cor8100开路式土壤碳通量测定系统观测3年生茶园系统的土壤呼吸速率,对茶园土壤呼吸速率的季节变化和在茶行尺度上的空间异质性进行了研究。结果表明,茶园土壤呼吸速率的月动态变化呈明显的单峰曲线特征,峰值出现在8月;茶园土壤呼吸速率的月动态变化与温度呈极显著相关(P<0.01),土壤10 cm的温度能够解释茶园不同观测区域土壤呼吸速率月动态变化的67.79%~88.52%;用指数方程计算的茶园不同观测区域土壤呼吸Q10值为1.58~1.86。在茶行尺度上,茶园土壤呼吸速率存在明显的空间异质性,土壤呼吸速率通常在距离茶树基部较近的位置较高;根系生物量能够解释茶园土壤呼吸速率在茶行尺度上空间变异的82.68%。因此,根系分布的空间差异是造成茶园土壤呼吸速率空间异质性的主要原因。  相似文献   

9.
冬水田-水稻是川中丘陵区传统的稻田种植模式,冬水田种植模式转变是实现多熟种植及机械化的重要途径。为探究冬水田-水稻种植模式转旱作过程中作物季及休闲期土壤呼吸速率及其组分构成,试验设置冬水田-水稻转旱作(FTD)、冬水田-水稻(FR)和冬闲田-玉米(FM)3种不同种植模式,采用根排除法和静态明箱-气相色谱法原位取样测定作物季及季后休闲期土壤呼吸及其组分,并通过测算净生态系统生产力(NEP)进而判断冬水田-水稻转旱作过程的农田系统碳汇强度。结果表明:(1)FTD显著提高了土壤总呼吸速率及其自养和异养呼吸速率,从而提高了其累积排放量(P<0.05)。与FR相比,FTD的土壤总呼吸及其自养和异养呼吸的累积排放量分别提高了13.14倍、11.32倍和15.56倍(P<0.05);与FM相比,FTD的土壤总呼吸及其自养和异养呼吸的累积排放量分别提高了70.56%、40.83%和115.47%(P<0.05)。(2)与FR和FM相比,FTD均降低了土壤呼吸及其组分的温度敏感性(Q10),且土壤总呼吸的温度敏感性介于异养呼吸和自养呼吸之间。(3)FR,FM和FTD的净生态系统生产力(NEP)均为正值,其数值分别为7911.66 kg/hm2,5667.89 kg/hm2和1583.46 kg/hm2,均表现为大气CO2的碳汇,但与FR与FM相比,FTD显著降低了其净生态系统生产力,呈现出较弱的碳汇。  相似文献   

10.
施肥方式对紫色土土壤异养呼吸的影响   总被引:2,自引:0,他引:2  
花可可  王小国  朱波 《生态学报》2014,34(13):3602-3611
采用静态暗箱-气相色谱法于2010年12月至2011年10月对不同施肥方式下的紫色土土壤呼吸进行了研究,以揭示施肥方式对紫色土异养呼吸的影响。结果表明:施肥可对土壤异养呼吸产生激发效应。施肥后第5天出现峰值,猪厩肥处理的异养呼吸峰值为2356.8 mg CO2m-2h-1,显著高于秸秆配施氮磷钾(970.1 mgCO2m-2h-1)和常规氮磷钾处理(406.8 mgCO2m-2h-1)(P0.01);小麦季常规氮磷钾、猪厩肥和秸秆配施氮磷钾处理的平均土壤异养呼吸速率为212.9、285.8和305.8mgCO2m-2h-1,CO2排放量为255.1、342.3和369.5 gC/m2,玉米季为408.2、642.8和446.4 mgCO2m-2h-1,CO2排放量为344.7、542.8和376.9 gC/m2,玉米季土壤异养呼吸平均速率及CO2排放量均高于小麦季。全年平均土壤异养呼吸速率分别为310.6、446.3和377.4 mg CO2m-2h-1,CO2排放总量分别为599.8、885.1和746.4 gC/m2。猪厩肥对土壤异养呼吸速率和CO2排放量的影响最大,秸秆配施氮磷钾肥次之,氮磷钾肥最小,说明有机物料的投入是紫色土土壤异养呼吸速率的主要调控措施,低碳氮比的有机物料能促进土壤异养呼吸和CO2的排放。猪厩肥和秸秆配施氮磷钾肥处理相应地表和地下5 cm温度的Q10值分别为2.64、1.88和2.77、1.99,表明低碳氮比的有机物料还能增加土壤异养呼吸Q10值,使土壤异养呼吸速率对温度的敏感性加强。  相似文献   

11.
Large seasonal changes in Q10 of soil respiration in a beech forest   总被引:1,自引:0,他引:1  
We analyzed one year of continuous soil respiration measurements to assess variations in the temperature sensitivity of soil respiration at a Danish beech forest. A single temperature function derived from all measurements across the year (Q10 = 4.2) was adequate for estimating the total annual soil respiration and its seasonal evolution. However, Q10's derived from weekly datasets ranged between three in summer (at a mean soil temperature of 14 °C) and 23 in winter (at 2 °C), indicating that the annual temperature function underestimated the synoptic variations in soil respiration during winter. These results highlight that empirical models should be parameterized at a time resolution similar to that required by the output of the model. If the objective of the model is to simulate the total annual soil respiration rate, annual parameterization suffices. If however, soil respiration needs to be simulated over time periods from days to weeks, as is the case when soil respiration is compared to total ecosystem respiration during synoptic weather patterns, more short‐term parameterization is required. Despite the higher wintertime Q10's, the absolute response of soil respiration to temperature was smaller in winter than in summer. This is mainly because in absolute numbers, the temperature sensitivity of soil respiration depends not only on Q10, but also on the rate of soil respiration, which is highly reduced in winter. Nonetheless, the Q10 of soil respiration in winter was larger than can be explained by the decreasing respiration rate only. Because the seasonal changes in Q10 were negatively correlated with temperature and positively correlated with soil moisture, they could also be related to changing temperature and/or soil moisture conditions.  相似文献   

12.
Soils are the largest store of carbon in the biosphere and cool‐cold climate ecosystems are notable for their carbon‐rich soils. Characterizing effects of future climates on soil‐stored C is critical to elucidating feedbacks to changes in the atmospheric pool of CO2. Subalpine vegetation in south‐eastern Australia is characterized by changes over short distances (scales of tens to hundreds of metres) in community phenotype (woodland, shrubland, grassland) and in species composition. Despite common geology and only slight changes in landscape position, we measured striking differences in a range of soil properties and rates of respiration among three of the most common vegetation communities in subalpine Australian ecosystems. Rates of heterotrophic respiration in bulk soil were fastest in the woodland community with a shrub understorey, slowest in the grassland, and intermediate in woodland with grass understorey. Respiration rates in surface soils were 2.3 times those at depth in soils from woodland with shrub understorey. Surface soil respiration in woodlands with grass understorey and in grasslands was about 3.5 times that at greater depth. Both Arrhenius and simple exponential models fitted the data well. Temperature sensitivity (Q10) varied and depended on the model used as well as community type and soil depth – highlighting difficulties associated with calculating and interpreting Q10. Distributions of communities in these subalpine areas are dynamic and respond over relatively short time‐frames (decades) to changes in fire regime and, possibly, to changes in climate. Shifts in boundaries among communities and possible changes in species composition as a result of both direct and indirect (e.g. via fire regime) climatic effects will significantly alter rates of respiration through plant‐mediated changes in soil chemistry. Models of future carbon cycles need to take into account changes in soil chemistry and rates of respiration driven by changes in vegetation as well as those that are temperature‐ and moisture‐driven.  相似文献   

13.
土壤异养呼吸是土壤碳库净输出的主要途径, 其对气候变暖的响应已引起国内外学者的广泛关注。对森林生态系统来说, 林龄是影响生态系统碳平衡的一个重要因素。柑橘作为三峡库区第一大支柱产业, 种植面积极广, 对维持该区域的生态平衡起着巨大的调节作用。该文以三峡库区宜昌市郊区种植年限不同的3个橘林土壤为研究对象, 采用室内培养法, 研究在不同温度条件下, 不同林龄土壤的异养呼吸及其温度敏感系数的差异, 探讨该区域生态系统对未来气候变化的潜在响应。结果显示, 随着种植年限的增加, 橘林土壤pH值减小, 有机质和全氮含量显著增加, 土壤微生物生物量碳呈下降趋势。无论在低温、常温还是高温条件下, 林龄较小的橘树土壤异养呼吸及其累积释放量较低。与其他研究相比, 该区域人工橘林土壤异养呼吸的温度敏感系数Q10值相对较低(1.45-1.69), 且随着培养时间的变化而变化。随着种植年限的增加, 人工橘林土壤异养呼吸的温度敏感性逐渐降低, 表明在未来全球气候变暖条件下, 幼龄人工橘林要比成熟林对温度的反应敏感。  相似文献   

14.
The degree to which microbial communities adjust their decomposition of soil carbon over time in response to long-term increases in temperature is one of the key uncertainties in our modeling of the responses of terrestrial ecosystems to warming. To better understand changes in temperature sensitivity of soil microbial communities to long-term increases in soil temperature, we incubated 27 soils for one year with both short-term and long-term manipulations of temperature. In response to increasing temperature short-term from 20 to 30 °C, respiration rates increased more than threefold on average across soils. Yet, in response to long-term increases in temperature, respiration rates increased approximately half as much as they did to short-term increases in temperature. Short-term Q10 of recalcitrant C correlated positively with long-term Q10 measured between 10 and 20 °C, yet there was no relationship between short-term Q10 and long-term Q10 between 20 and 30 °C. In all, under laboratory conditions, it is clear that there is reduction in the temperature sensitivity of decomposition to long-term increases in temperature that disassociate short- and long-term responses of microbial decomposition to temperature. Determining the fate of soil organic matter to increased temperature will not only require further research on the controls and mechanisms of these patterns, but also require models to incorporate responses to both short-term and long-term increases in temperature.  相似文献   

15.
The microbial decomposition respiration of plant litter generates a major CO2 efflux from terrestrial ecosystems that plays a critical role in the regulation of carbon cycling on regional and global scales. However, the respiration from root litter decomposition and its sensitivity to temperature changes are unclear in current models of carbon turnover in forest soils. Thus, we examined seasonal changes in the temperature sensitivity and decomposition rates of fine root litter of two diameter classes (0–0.5 and 0.5–2.0 mm) of Quercus serrata and Ilex pedunculosa in a deciduous broad-leaved forest. During the study period, fine root litter of both diameter classes and species decreased approximately exponentially over time. The Q10 values of microbial respiration rates of root litter for the two classes were 1.59–3.31 and 1.28–6.27 for Q. serrata and 1.36–6.31 and 1.65–5.86 for I. pedunculosa. A significant difference in Q10 was observed between the diameter classes, indicating that root diameter represents the initial substrate quality, which may determine the magnitude of Q10 value of microbial respiration. Changes in these Q10 values were related to seasonal soil temperature patterns; the values were higher in winter than in summer. Moreover, seasonal variations in Q10 were larger during the 2-year decomposition period than the 1-year period. These results showed that the Q10 values of fine root litter of 0–0.5 and 0.5–2.0 mm have been shown to increase with lower temperatures and with the higher recalcitrance pool of the decomposed substrate during 2 years of decomposition. Thus, the temperature sensitivity of microbial respiration in root litter showed distinct patterns according to the decay period and season because of the temperature acclimation and adaptation of the microbial decomposer communities in root litter.  相似文献   

16.
《农业工程》2014,34(5):271-276
Grassland ecosystems are important parts of terrestrial ecosystems and play an important role in the global carbon cycle. In recent years, the grasslands in Northern Tibet have experienced warming, and its precipitation has also increased. Alpine grassland irrigation measures could be a reasonable pathway to redistribute and make full use of the increased precipitation. In this study, we measured the soil respiration in alpine grassland in Northern Tibet under sprinkler head irrigation in the growing season to determine the relationships between soil temperature /water and ecosystem/soil respiration, soil moisture and Q10, and soil temperature and Q10. The results showed that after 2 years irrigation, alpine grassland aboveground biomass increased significantly, with 2010 higher than 2009. There was significant annual, seasonal and daily variation of soil respiration. Under irrigation, ecosystem respiration and soil respiration increased 75% and 64% respectively; soil water increase can promote the respiration of ecosystem and its components. In our results, the Q10 value was 2.23–2.81, over the global average. The irrigation can promote ecosystem respiration temperature sensitivity. There was a positive linear correlation between ecosystem respiration and grassland aboveground biomass. The aboveground biomass accounted for 32.8% of ecosystem respiration variation. Soil respiration accounted for more than 70% of ecosystem respiration, indicating that the contribution to carbon emissions of soil respiration is very high. In short, we can project that in grasslands biomass and ecosystem respiration will increase under future precipitation change, which will significantly affect the function of alpine grassland carbon storage.  相似文献   

17.
量化森林土壤呼吸及其组分对温度的响应对准确评估未来气候变化背景下陆地生态系统的碳平衡极其重要。该文通过对神农架海拔梯度上常绿阔叶林、常绿落叶阔叶混交林、落叶阔叶林以及亚高山针叶林4种典型森林土壤呼吸的研究发现: 4种森林类型的年平均土壤呼吸速率和年平均异养呼吸速率分别为1.63、1.79、1.74、1.35 μmol CO2·m-2·s-1和1.13、1.12、1.12、0.80 μmol CO2·m-2·s-1。该地区的土壤呼吸及其组分呈现出明显的季节动态, 夏季最高, 冬季最低。4种森林类型中, 阔叶林的土壤呼吸显著高于针叶林, 但阔叶林之间的土壤呼吸差异不显著。土壤温度是影响土壤呼吸及其组分的主要因素, 二者呈显著的指数关系; 土壤含水量与土壤呼吸之间没有显著的相关关系。4种典型森林土壤呼吸的Q10值分别为2.38、2.68、2.99和4.24, 随海拔的升高土壤呼吸对温度的敏感性增强, Q10值随海拔的升高而增加。  相似文献   

18.
Several studies have shown multiple confounding factors influencing soil respiration in the field, which often hampers a correct separation and interpretation of the different environmental effects on respiration. Here, we present a controlled laboratory experiment on undisturbed organic and mineral soil cores separating the effects of temperature, drying–rewetting and decomposition dynamics on soil respiration. Specifically, we address the following questions:
  • 1 Is the temperature sensitivity of soil respiration (Q10) dependent on soil moisture or soil organic matter age (incubation time) and does it differ for organic and mineral soil as suggested by recent field studies.
  • 2 How much do organic and mineral soil layers contribute to total soil respiration?
  • 3 Is there potential to improve soil flux models of soil introducing a multilayer source model for soil respiration?
Eight organic soil and eight mineral soil cores were taken from a Norway spruce (Picea abies) stand in southern Germany, and incubated for 90 days in a climate chamber with a diurnal temperature regime between 7 and 23°C. Half of the samples were rewetted daily, while the other half were left to dry and rewetted thereafter. Soil respiration was measured with a continuously operating open dynamic soil respiration chamber system. The Q10 was stable at around 2.7, independent of soil horizon and incubation time, decreasing only slightly when the soil dried. We suggest that recent findings of the Q10 dependency on several factors are emergent properties at the ecosystem level, that should be analysed further e.g. with regard to rhizosphere effects. Most of the soil CO2 efflux was released from the organic samples. Initially, it averaged 4.0 μmol m?2 s?1 and declined to 1.8 μmol m?2 s?1 at the end of the experiment. In terms of the third question, we show that models using only one temperature as predictor of soil respiration fail to explain more than 80% of the diurnal variability, are biased with a hysteresis effect, and slightly underestimate the temperature sensitivity of respiration. In contrast, consistently more than 95% of the diurnal variability is explained by a dual‐source model, with one CO2 source related to the surface temperature and another CO2 source related to the central temperature, highlighting the role of soil surface processes for ecosystem carbon balances.  相似文献   

19.
干旱半干旱区不同环境因素对土壤呼吸影响研究进展   总被引:10,自引:0,他引:10  
王新源  李玉霖  赵学勇  毛伟  崔夺  曲浩  连杰  罗永清 《生态学报》2012,32(15):4890-4901
土壤呼吸是全球陆地生态系统碳循环的重要环节,也是全球气候变化的关键生态过程。阐明和探讨影响土壤呼吸的各类环境因素,对准确评估陆地生态系统碳收支具有重要意义。干旱半干旱区是陆地生态系统的重要组成部分,研究该区域影响土壤呼吸的环境因素有助于深刻了解干旱半干旱区土壤碳循环过程。就土壤温度、土壤水分、降水、土壤有机质等非生物因子及植被类型、地上、地下生物量、土壤凋落物等生物因子两个方面对土壤呼吸的影响进行了综述。以干旱半干旱区的研究进展为主要论述对象,在上述因素中重点阐述了土壤温度、水分及其耦合作用下土壤呼吸的响应,并就土壤呼吸的Q10值及各影响因素间的交互作用进行归纳总结。在此基础上,说明了土壤温度和水分是影响干旱半干旱区土壤呼吸的主要因素。为了更准确的估算干旱半干旱区土壤呼吸速率,综合分析多种因子的交互影响,提出目前土壤呼吸研究存在的问题和今后重点关注的方向:1)不同尺度下干旱半干旱区土壤呼吸的研究;2)荒漠生态系统土壤呼吸研究;3)非生长季土壤呼吸研究;4)多因素协同作用土壤呼吸模型建立;5)测量方法的改进与完善。  相似文献   

20.
The response of respiration to temperature in plants can be considered at both short‐ and long‐term temporal scales. Short‐term temperature responses are not well described by a constant Q10 of respiration, and longer‐term responses often include acclimation. Despite this, many carbon balance models use a static Q10 of respiration to describe the short‐term temperature response and ignore temperature acclimation. We replaced static respiration parameters in the ecosystem model photosynthesis and evapo‐transpiration (PnET) with a temperature‐driven basal respiration algorithm (Rdacclim) that accounts for temperature acclimation, and a temperature‐variable Q10 algorithm (Q10var). We ran PnET with the new algorithms individually and in combination for 5 years across a range of sites and vegetation types in order to examine the new algorithms' effects on modeled rates of mass‐ and area‐based foliar dark respiration, above ground net primary production (ANPP), and foliar respiration–photosynthesis ratios. The Rdacclim algorithm adjusted dark respiration downwards at temperatures above 18°C, and adjusted rates up at temperatures below 5°C. The Q10var algorithm adjusted dark respiration down at temperatures below 15°C. Using both algorithms simultaneously resulted in decreases in predicted annual foliar respiration that ranged from 31% at a tall‐grass prairie site to 41% at a boreal coniferous site. The use of the Rdacclim and Q10var algorithms resulted in increases in predicted ANPP ranging from 18% at the tall‐grass prairie site to 38% at a warm temperate hardwood forest site. The new foliar respiration algorithms resulted in substantial and variable effects on PnETs predicted estimates of C exchange and production in plants and ecosystems. Current models that use static parameters may over‐predict respiration and subsequently under‐predict and/or inappropriately allocate productivity estimates. Incorporating acclimation of basal respiration and temperature‐sensitive Q10 have the potential to enhance the application of ecosystem models across broad spatial scales, or in climate change scenarios, where large temperature ranges may cause static respiration parameters to yield misleading results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号