首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adult 'endothelial progenitor cells'. Renewing vasculature   总被引:15,自引:0,他引:15  
During embryogenesis, endothelial progenitor cells participate in the initial processes of primitive blood vessel formation (vasculogenesis). It has become evident that progenitors to vascular endothelial cells also exist in the adult. Endothelial progenitors normally reside in the adult bone marrow but may become mobilized into circulation by cytokine or angiogenic growth factor signals from the periphery, enter extravascular tissue, and promote de novo vessel formation by virtue of physically integrating into vessels and/or supplying growth factors (adult vasculogenesis). For that reason, autologous endothelial progenitors, mobilized in situ or transplanted, has become a major target of therapeutic revascularization approaches to ischemic disease and endothelial injury. Moreover, endothelial progenitors represent a potential target of strategies to block tumor growth.  相似文献   

2.
Progenitor cells in vascular disease   总被引:8,自引:0,他引:8  
Stem cell research has the potential to provide solutions to many chronic diseases via the field of regeneration therapy. In vascular biology, endothelial progenitor cells (EPCs) have been identified as contributing to angiogenesis and hence have therapeutic potential to revascularise ischaemic tissues. EPCs have also been shown to endothelialise vascular grafts and therefore may contribute to endothelial maintenance. EPC number has been shown to be reduced in patients with cardiovascular disease, leading to speculation that atherosclerosis may be caused by a consumptive loss of endothelial repair capacity. Animal experiments have shown that EPCs reendothelialise injured vessels and that this reduces neointimal formation, confirming that EPCs have an atheroprotective effect. Smooth muscle cell accumulation in the neointimal space is characteristic of many forms of atherosclerosis, however the source of these cells is now thought to be from smooth muscle progenitor cells (SMPCs) rather than the adjacent media. There is evidence for the presence of SMPCs in the adventitia of animals and that SMPCs circulate in human blood. There is also data to support SMPCs contributing to neointimal formation but their origin remains unknown. This article will review the roles of EPCs and SMPCs in the development of vascular disease by examining experimental data from in vitro studies, animal models of atherosclerosis and clinical studies.  相似文献   

3.
Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.  相似文献   

4.
PURPOSE OF REVIEW: It is a widely accepted view that vascular repair results from migration and proliferation of adjacent cells in animal models. On the contrary, accumulating evidence suggests that bone marrow can give rise to endothelial-like cells and smooth muscle like cells that potentially contribute to vascular healing, remodeling, and lesion formation under physiological and pathological conditions. The aim of this article is to review recent findings obtained from animal models of vascular diseases regarding bone marrow derived progenitor cells. RECENT FINDINGS: Studies using chimeric animals revealed that bone marrow derived cells exist at the sites of vascular healing and lesion formation after injury. High-resolution histological analyses revealed that those bone marrow derived cells do express some markers for endothelial cells or smooth muscle cells. Peripheral mononuclear cells could differentiate into endothelial-like cells or smooth muscle like cells in vitro according to the culture conditions. SUMMARY: Circulating progenitors significantly contribute to vascular repair and lesion formation. These findings provide the basis for the development of new therapeutic strategies that involve targeting the mobilization, homing, differentiation, and proliferation of bone marrow- derived vascular progenitor cells.  相似文献   

5.
The intima hyperplasia is a major morphological feature of various arterial pathologies such as atherosclerosis, postangioplasty restenosis and transplantation arteriopathy. It is commonly assumed that smooth muscle cells (SMC) comprising loci of the intima hyperplasia originate from arterial media. However, recent studies suggest that the bone marrow could also supply circulating vascular progenitor of SMCs and endothelial cells (EC). Such bone marrow progenitors participate in the formation of a cellular mass of neointima after experimental allotransplantation, mechanical vessel injury or hyperlipidemia induced experimental atherosclerosis. Circulating SMC and EC progenitors are also likely to be involved in the transplantation arteriopathy development in humans but their roles in the atherosclerosis and restenosis remain to be determined. Stages of the mobilization, defferentiation and proliferation of SMC progenitors could provide point of attack for new therapeutic strategies for the treatment of proliferative vascular diseases. The precise understanding of the neointima cells origin could provide a key for development of the optimal therapeutic strategy of treatnent of such disorders. This review is focused on the pathological significance of circulating progenitors of the bone marrow origin, particularly on the SMC progenitors, for development of vascular wall disorders.  相似文献   

6.
胚胎发生时期,内皮前体细胞(endothelial progenitor cells,EPCs)参与了原始血管形成的最初过程(血管发生)。已有的证据显示,分化为内皮细胞(endothelial cells,Ecs)的前体也存在于成人中,正常情况下,EPCs停留在成人的骨髓,但是,可以通过细胞因子或血管生成因子信号被动员到循环血,迁移到生理或病理条件下的新血管形成位点,并原位分化成内皮细胞,快速和及时地修复损伤的血管。自源的EPCs原住动员或移植是治疗性血管再生的一个潜在、有效的方法,因此,探究EPCs从骨髓的动员和调节,对血管再生以及修复器官功能具有重要的意义。  相似文献   

7.
The vessel wall has usually been thought to be relatively quiescent. But the discovery of progenitor cells in many tissues and in the vasculature itself has led to a reconsideration of the vascular biology. The presence of circulating endothelial and smooth muscle progenitors able to home to the injured vascular wall is a firm acquisition; less known is the notion, coming from embryonic and adult tissue studies, that stem cells able to differentiate into endothelial cells and smooth muscle cells also reside in the arterial wall. Moreover, the existence of a vasculogenic zone has recently been identified in adult human arteries; this niche-like zone is believed to act as a source of progenitors for postnatal vasculogenesis. From the literature it is already apparent that a complex interplay between circulating and resident vascular wall progenitors takes place during embryonal and postnatal life; a structural/functional disarray of these intimate stem cell compartments could hamper appropriate vascular repair, the development of vascular wall disease being the direct clinical consequence in adult life. This review gives an overview of adult large vessel progenitors established in the vascular wall during embryogenesis and their role in the maintenance of wall homeostasis.  相似文献   

8.
The role of circulating precursors in vascular repair and lesion formation   总被引:2,自引:0,他引:2  
The accumulation of smooth muscle cells (SMCs) plays a principal role in atherogenesis, post-angioplasty restenosis and transplantation-associated vasculopathy. Therefore, much effort has been expended in targeting the migration and proliferation of medial smooth muscle cells to prevent occlusive vascular remodeling. Recent evidence suggests that bone marrow-derived circulating precursors can also give rise to endothelial cells and smooth muscle cells that contribute to vascular repair, remodeling, and lesion formation under physiological and pathological conditions. This article overviews recent findings on circulating vascular progenitor cells and describes potential therapeutic strategies that target these cells to treat occlusive vascular diseases.  相似文献   

9.
Ambivalence of progenitor cells in vascular repair and plaque stability   总被引:3,自引:0,他引:3  
PURPOSE OF REVIEW: To discuss crucial cues (chemokines, adhesion molecules and pharmacological means) that guide and control the context-specific mobilization, recruitment and fate of circulating progenitor cells in arterial repair and plaque stability. RECENT FINDINGS: The mobilization and recruitment of bone marrow derived or resident progenitor cells giving rise to smooth muscle cells have been implicated in accelerated forms of primary plaque formation and neointimal hyperplasia after arterial injury. By contrast, convincing evidence has emerged that the arterial homing of endothelial progenitor cells contributes to endothelial recovery and thereby limits neointimal growth after endothelial denudation. In the chronic context of primary atherosclerosis, plaque progression and destabilization, a more complex picture has become apparent. Clinically, the number and function of endothelial progenitor cells have been linked with an improved endothelial function or regeneration and have been frequently inversely correlated with cardiovascular risk (factors). In animal models, however, the injection of bone marrow cells or endothelial progenitor cells, as well as the application of stem-cell mobilizing factors, have been associated with an exacerbation of atherosclerosis and unstable plaque phenotype, whereas the contribution of smooth muscle progenitors to primary atherosclerosis appears to be more confined to supporting plaque stability. SUMMARY: Considering the balance between distinct circulating vascular progenitor cells and identifying mechanisms for selective control of their mobilization and homing appears crucial to improve prediction and to directly modulate endogenous vascular remodeling processes.  相似文献   

10.
It appears that there are two classes of human circulating endothelial cell (EC) progenitors, CD34+ and CD34-CD14+ cells. Attention has focused on CD34+ cells, yet CD34-CD14+ monocytic cells are far more abundant and may represent the most common class of circulating EC progenitor. Little is known about molecular or physiological factors that regulate putative CD34-CD14+ EC progenitor function, although factors secreted by other blood and cardiovascular cells to which they are exposed probably affect their behavior. Hypoxia and stretch are two important physiological stimuli known to trigger growth factors in cardiovascular cells and accordingly may modulate EC progenitors. To investigate the impact of these environmental parameters on EC progenitors, EC production in CD34-CD14+ cultures was evaluated. Our data indicate that neither stretch nor hypoxia alters EC production by EC progenitors directly but do so indirectly through their effects on cardiovascular cells. Conditioned media (CM) from coronary artery smooth muscle cells inhibit EC production in culture, and this inhibition is stronger if the coronary smooth muscle cells have been subjected to cyclic stretch. In contrast, cardiomyocyte CM increases EC cell number, an effect that is potentiated if the myocytes have been subjected to hypoxia. Significantly, EC progenitor responses to CM are altered by the presence of CD34-CD14- peripheral blood mononuclear cells (PBMCs). Moreover, CD34-CD14- PBMCs attenuate EC progenitor responsiveness to the angiogenic factors basic fibroblast growth factor (FGF-2), vascular endothelial cell growth factor-A165, and erythropoietin while inducing EC progenitor death in the presence of transforming growth factor-beta1 in vitro  相似文献   

11.
Correct delineation of the hierarchy of cardiac progenitors is a key step to understanding heart development, and will pave the way for future use of cardiac progenitors in the treatment of heart disease. Multipotent Nkx2-5 and Isl1 cardiac progenitors contribute to cardiomyocyte, smooth muscle, and endothelial lineages, which constitute the major lineages of the heart. Recently, progenitors located within the proepicardium and epicardium were reported to differentiate into cardiomyocytes, as well as smooth muscle and endothelial cells. However, the relationship of these proepicardial progenitors to the previously described Nkx2-5 and Isl1 cardiac progenitors is incompletely understood. To address this question, we performed in vivo Cre-loxP-based lineage tracing. Both Nkx2-5- and Isl1-expressing progenitors contributed to the proepicardium and expressed Wt1 and Tbx18, markers of proepicardial progenitor cells. Interestingly, Nkx2-5 knockout resulted in abnormal proepicardial development and decreased expression of Wt1, suggesting a functional role for Nkx2-5 in proepicardium formation. Taken together, these results suggest that Nkx2-5 and/or Isl1 cardiac progenitors contribute to proepicardium during heart development.  相似文献   

12.
Cell-tracing studies in the mouse indicate that the cardiac lineage arises from a population that expresses the vascular endothelial growth factor receptor 2 (VEGFR2, Flk-1), suggesting that it may develop from a progenitor with vascular potential. Using the embryonic stem (ES) cell differentiation model, we have identified a cardiovascular progenitor based on the temporal expression of the primitive streak (PS) marker brachyury and Flk-1. Comparable progenitors could also be isolated from head-fold stage embryos. When cultured with cytokines known to function during cardiogenesis, individual cardiovascular progenitors generated colonies that displayed cardiomyocyte, endothelial, and vascular smooth muscle (VSM) potential. Isolation and characterization of this previously unidentified population suggests that the mammalian cardiovascular system develops from multipotential progenitors.  相似文献   

13.
Adult progenitor cells in vascular remodeling during atherosclerosis   总被引:1,自引:0,他引:1  
The mobilization and recruitment of bone marrow-derived, circulating or tissue resident progenitor cells giving rise to smooth muscle-like cells have been implicated in neointima hyperplasia after arterial injury and in accelerated forms of arterial lesion formation, e.g., transplant arteriopathy or graft vasculopathy. By contrast, convincing evidence has emerged that the vascular homing of endothelial progenitor cells (EPCs) contributes to endothelial recovery, thus limiting neointima formation after arterial injury. In the chronic context of primary atherosclerosis, plaque progression and destabilization, a more complex picture has become apparent. In patients with coronary artery disease, the number and function of EPCs have been linked with an improved endothelial function or regeneration, but have been inversely correlated with cardiovascular risk. In animal models, however, the injection of bone marrow cells or EPCs, or the application of stem-cell mobilizing factors, have been associated with an exacerbation of atherosclerosis and unstable plaque phenotypes, whereas the contribution of bone marrow-derived smooth muscle progenitors to primary atherosclerosis appears to be rather confined. Here, we discuss crucial biochemical cues, namely chemokines, adhesion molecules, growth factors and pharmacological means that guide and control the context-specific mobilization, recruitment and fate of vascular progenitor cells in arterial remodeling during atherosclerosis.  相似文献   

14.
Information is rapidly emerging regarding the important role of the arterial vasa vasorum in a variety of systemic vascular diseases. In addition, increasing evidence suggests that progenitor cells of bone marrow (BM) origin may contribute to postnatal neovascularization and/or vascular wall thickening that is characteristic in some forms of systemic vascular disease. Little is known regarding postnatal vasa formation and the role of BM-derived progenitor cells in the setting of pulmonary hypertension (PH). We sought to determine the effects of chronic hypoxia on the density of vasa vasorum in the pulmonary artery and to evaluate if BM-derived progenitor cells contribute to the increased vessel wall mass in a bovine model of hypoxia-induced PH. Quantitative morphometric analyses of lung tissue from normoxic and hypoxic calves revealed that hypoxia results in a dramatic expansion of the pulmonary artery adventitial vasa vasorum. Flow cytometric analysis demonstrated that cells expressing the transmembrane tyrosine kinase receptor for stem cell factor, c-kit, are mobilized from the BM in the circulation in response to hypoxia. Immunohistochemistry revealed an increase in the expression of c-kit+ cells together with vascular endothelial growth factor, fibronectin, and thrombin in the hypoxia-induced remodeled pulmonary artery vessel wall. Circulating mononuclear cells isolated from neonatal calves exposed to hypoxia were found to differentiate into endothelial and smooth muscle cell phenotypes depending on culture conditions. From these observations, we suggest that the vasa vasorum and circulating progenitor cells could be involved in vessel wall thickening in the setting of hypoxia-induced PH.  相似文献   

15.
Recent evidence has shown that vascular function depends not only on cells within the vessels, but is also significantly modulated by circulating cells derived from the bone marrow. A number of studies indicate that an early reendothelialization by circulating endothelial precursors after vascular injury prevents excessive cell proliferation and restenosis. Conversely, other studies concluded that the homing of other cell fractions, consisting mainly of smooth muscle precursors, cause pathological remodelling. Different cell types have been identified and characterized so far as circulating precursors able to participate in vascular repair by homing and differentiating towards endothelial cells or smooth muscle cells. Among these, endothelial precursor cells, smooth muscle progenitor cells, mesenchymal stem cells and others have been described. The origins, the hierarchy, the role and the markers of these different cell populations are still controversial. Nevertheless, different strategies have been developed so far in animal models to induce the mobilization and the recruitment of stem cells to the injury site, based on physical training, hormone injection and application of stem cell-capturing coated stents. It should also be mentioned that the limited data currently available derived from clinical trials provide contrasting results about the effective role of vascular cell precursors in restenosis prevention, thus indicating that conclusions derived from studies in animal models cannot always be directly applied to humans and that caution should be used in the manipulation of circulating progenitor cells for therapeutic strategies.  相似文献   

16.
Heart diseases such as myocardial infarction cause massive loss of cardiomyocytes, but the human heart lacks the innate ability to regenerate. In the adult mammalian heart, a resident progenitor cell population, termed epicardial progenitors, has been identified and reported to stay quiescent under uninjured conditions; however, myocardial infarction induces their proliferation and de novo differentiation into cardiac cells. It is conceivable to develop novel therapeutic approaches for myocardial repair by targeting such expandable sources of cardiac progenitors, thereby giving rise to new muscle and vasculatures. Human pluripotent stem cells such as embryonic stem cells and induced pluripotent stem cells can self‐renew and differentiate into the three major cell types of the heart, namely cardiomyocytes, smooth muscle, and endothelial cells. In this review, we describe our current knowledge of the therapeutic potential and challenges associated with the use of pluripotent stem cell and progenitor biology in cell therapy. An emphasis is placed on the contribution of paracrine factors in the growth of myocardium and neovascularization as well as the role of immunogenicity in cell survival and engraftment. (Part C) 96:98–107, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
A. I. Gotlieb 《CMAJ》1982,126(8):903-908
Although clinical studies have been very useful in identifying factors that accelerate the development of atherosclerotic vascular disease, the pathogenesis of the vascular lesions remains unknown. Studies carried out in the last 10 years have shown that smooth muscle and endothelial cells of the vascular wall play a very important role in atherogenesis. It has become apparent that these cells are very active metabolically during the initiation and subsequent growth of the plaques, and that the materials that these cells produce and secrete are important in the composition and growth of the plaques. In addition, there are important interactions at the vessel wall-blood interface that involve endothelial cells, hemodynamic forces and many constituents of the blood, including platelets, lipoproteins, coagulation factors, fibrinolytic agents and leukocytes. In this article the numerous functions of both smooth muscle and endothelial cells are discussed and the effects of known atherogenic agents on these cellular functions are reviewed. Emphasis is placed on the important interactions that take place both within the vessel wall and at the vessel wall-blood interface. Understanding of the regulation of smooth muscle and endothelial cell function during the development and subsequent growth of fibrofatty plaques may be useful in designing appropriate therapeutic interventions to control atherosclerotic disease.  相似文献   

18.
Evidence for novel fate of Flk1+ progenitor: contribution to muscle lineage   总被引:1,自引:0,他引:1  
Flk1 is one of the specific cell surface receptors for vascular endothelial growth factor and one of the most specific markers highlighting the earliest stage of hematopoietic and vascular lineages. However, recent new evidence suggests that these Flk1(+) mesodermal progenitor cells also contribute to muscle lineages. All evidence is based on the experiments using in vitro differentiation and in vivo transplantation systems. Although this approach revealed a differentiation potential range of Flk1(+) cells that is wider than previously expected, it fails to determine whether Flk1(+) cells contribute to muscle lineage as part of the normal developmental process. To obtain direct evidence for the fate of Flk1(+) cells in development, we used a knock-in mouse line where Cre is expressed in Flk1(+) cells. Studies with these Cre lines provide direct evidence that Flk1(+) cells are progenitors for muscles, in addition to hematopoietic and vascular endothelial cells.  相似文献   

19.
It has been established that coronary vessels develop through self-assembly of mesenchymal vascular progenitors in the subepicardium. Mesenchymal precursors of vascular smooth muscle cells and fibroblasts are known to originate from an epithelial-to-mesenchymal transformation of the epicardial mesothelium, but the origin of the coronary endothelium is still obscure. We herein report that at least part of the population of the precursors of the coronary endothelium are epicardially-derived cells (EPDCs). We have performed an EPDC lineage study through retroviral and fluorescent labelling of the proepicardial and epicardial mesothelium of avian embryos. In all the experiments onlythe surface mesothelium was labelled after 3 h of reincubation. However, endothelial cells from subepicardial vessels were labelled after 24-48 h and endothelial cells of intramyocardial vessels were also labelled after 48-96 h of reincubation. In addition, the development of the coronary vessels was studied in quail-chick chimeras, obtaining results which also support a mesothelial origin for endothelial and smooth muscle cells. Finally, quail proepicardial explants cultured on Matrigel showed colocalization of cytokeratin and QH1 (mesothelial and endothelial markers, respectively) after 24 h. These results, taken together, suggest that EPDC show similar competence to that displayed by bipotential vascular progenitor cells [Yamashita et al., Nature 408: 92-96 (2000)] which are able to differentiate into endothelium or smooth muscle depending on their exposure to VEGF or PDGF-BB. It is conceivable that the earliest EPDC differentiate into endothelial cells in response to myocardially-secreted VEGF, while further EPDC would be recruited by the nascent capillaries via PDGFR-beta signalling, giving rise to mural cells.  相似文献   

20.
Notch signaling in vascular development and physiology   总被引:10,自引:0,他引:10  
Notch signaling is an ancient intercellular signaling mechanism that plays myriad roles during vascular development and physiology in vertebrates. These roles include regulation of artery/vein differentiation in endothelial and vascular smooth muscle cells, regulation of blood vessel sprouting and branching during both normal development and tumor angiogenesis, and the differentiation and physiological responses of vascular smooth muscle cells. Defects in Notch signaling also cause inherited vascular and cardiovascular diseases. In this review, I summarize recent findings and discuss the growing relevance of Notch pathway modulation for therapeutic applications in disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号