首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cellular localization of cytosolic glutamine synthetase (GS1; EC 6.3.1.2) in vascular bundles of leaf blades of rice (Oryza sativa L.), at the stage at which leaf blades 6 (the lowest position) to 10 were fully expanded, was investigated immunocytologically with an affinity-purified anti-GS1 immunoglobulin G. Strong signals for GS1 protein were detected in companion cells of large vascular bundles when blades 6–8 were tested. Signals for GS1 were also observed in vascular-parenchyma cells of both large and small vascular bundles. The results further support our hypothesis that GS1 is important for the export of leaf nitrogen from senescing leaves. The signals in companion cells were less striking in the younger green leaves and were hardly detected in the non-green portion of the 11th blade. In the non-green blades, strong signals for GS1 protein were detected in sclerenchyma and xylemparenchyma cells. When total GS extracts prepared from the 6th,10th, and the non-green 11th blades were subjected to anion-exchange chromatography, the activity of GS1 was clearly separated from that of chloroplastic GS, indicating that GS1 proteins detected in the vascular tissues were able to synthesize glutamine. The function of GS1 detected in the developing leaves is discussed.Abbreviations Fd-GOGAT ferredoxin-dependent glutamate synthase - GS1 cytosolic glutamine synthetase - GS2 plastidic glutamine synthetase - IgG immunoglobulin G  相似文献   

2.
Tissue and cellular localization of NADH-dependent glutamate synthase (NADH-GOGAT, EC 1.4.1.14) in the unexpanced leaf blades and young grains of rice (Oryza sativa L.) was investigated using tissue-print immunoblot and immunocytological methods with an affinity-purified anti-NADH-GOGAT immunoglobulin G. Tissue-print immunoblots showed that the NADH-GOGAT protein was mostly located in large and small vascular bundles of the unexpanded blades. When the cross-sections (10μ in thickness) prepared from the paraffin-embedded blades were stained with the antibody, the NADH-GOGAT protein was detected in vascular-parenchyma cells and mestome-sheath cells. In developing grains, the NADH-GOGAT protein was detected in both phloem- and xylem-parenchyma cells of dorsal and lateral vascular bundles, and in the nucellar projection, nucellar epidermis, and aleurone cells. On the other hand, ferredoxin (Fd)-dependent GOGAT (EC 1.4.7.1) was located mainly in mesophyll cells of the leaf blade and in chloroplast-containing cross-cells of the pericarp of the grains. The spatial expression of these GOGAT proteins indicates distinct and non-overlapping roles in rice plants. In the leaf blades and young grains, NADH-GOGAT could be involved in the synthesis of glutamate from the glutamine that is transported through the vascular system from roots and senescing tissues.  相似文献   

3.
4.
Tissue localizations of cytosolic glutamine synthetase (GS1; EC 6.3.1.2), chloroplastic GS (GS2), and ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1) in rice (Oryza sativa L.) leaf blades were investigated using a tissue-print immunoblot method with specific antibodies. The cross-sections of mature and senescent leaf blades from middle and basal regions were used for tissue printing. The anti-GS1 antibody, raised against a synthetic 17-residue peptide corresponding to the deduced N-terminal amino acid sequence of rice GS1, cross-reacted specifically with native GS1 protein, but not with GS2 after transfer onto a nitrocellulose membrane. Tissue-print immunoblots showed that the GS1 protein was located in large and small vascular bundles in all regions of the leaf blade prepared from either stage of maturity. On the other hand, GS2 and Fd-GOGAT proteins were mainly located in mesophyll cells. The intensity of the developed color on the membrane for GS1 was similar between the two leaf ages, whereas that for GS2 and Fd-GOGAT decreased during senescence. The tissue-specific localization of GS1 suggests that this GS isoform is important in the synthesis of glutamine, which is a major form of nitrogen exported from the senescing leaf in rice plants.  相似文献   

5.
6.
菰(Zizania latifolia)是一种多年生挺水植物,为了探讨该植物根、茎和叶的解剖结构、组织化学及其质外体屏障的通透性生理。该文利用光学显微镜和荧光显微镜,对菰的根、茎、叶进行了解剖学和组织化学研究。结果表明:(1)菰不定根解剖结构由外而内分别为表皮、外皮层、单层细胞的厚壁机械组织层、皮层、内皮层和维管柱;茎结构由外而内分别为角质层、表皮、周缘厚壁机械组织层、皮层、具维管束的厚壁组织层和髓腔。叶鞘具有表皮和具维管束皮层,叶片具有表皮,叶肉和维管束。(2)不定根具有位于内侧的内皮层及其邻近栓质化细胞和外侧的外皮层组成的屏障结构;茎具内侧厚壁机械组织层,外侧的角质层和周缘厚壁机械组织层组成的屏障结构,屏障结构的细胞壁具凯氏带、木栓质和木质素沉积的组织化学特点,叶表面具有角质层。(3)菰通气组织包括根中通气组织,茎、叶皮层的通气组织和髓腔。(4)菰的屏障结构和解剖结构是其适应湿地环境的重要特征,但其茎周缘厚壁层和厚壁组织层较薄。由此推测,菰适应湿地环境,但在旱生环境中分布有一定的局限性。  相似文献   

7.
Catasetinae consist of five genera of pseudobulbous Orchidaceae of the Neotropics. Anatomy is characterized by sunken, three-celled foliar hairs, mostly tetracytic stomatal apparatuses, superficial stomata, homogeneous mesophyll, foliar fibre bundles, collateral vascular bundles in a single row, xylem and phloem sclerenchyma associated with vascular bundles in leaves, conical, and rough-surfaced silica bodies adjacent to vascular bundle sclerenchyma; epidermal cells of pseudobulbs with heavily thickened outer walls, pseudobulb ground tissue of assimilatory and water-storage cells, scattered vascular bundles in pseudobulbs, and sclerenchyma and stegmata associated only with phloem of pseudobulbs; roots with thin-walled velamen cells and tenuous spirals of cell wall material, distinctive epivelamen cells, thin-walled exodermal cells and vascular tissue embedded in parenchyma. Except for mucilaginous idioblasts that occur in Mormodes and Cycnoches , there are few outstanding anatomical differences among the five genera. Thus, there are few anatomical characteristics of phylogenetic value. The monophyly of Catasetinae is supported by the presence of sunken foliar hairs. Our results support a close relationship between Clowesia and Catasetum , and between Mormodes and Cycnoches. Among the outgroups Pteroglossaspis is especially distinctive.  相似文献   

8.
Transverse sections of immature and mature sugarcane internodes were investigated anatomically with white and fluorescence light microscopy. The pattern of lignification and suberization was tested histo-chemically. Lignification began in the xylem of vascular bundles and progressed through the sclerenchymatic bundle sheath into the storage parenchyma. Suberization began in parenchyma cells adjacent to vascular bundle sheaths and spread to the storage parenchyma and outer sheath cells. In mature internodes most of the storage parenchyma was lignified and suberized to a significant degree, except in portions of walls of isolated cells. The pattern of increasing lignification and suberization in maturing internodes more or less paralleled an increase of sucrose in stem tissue. In mature internodes having a high sucrose concentration, the vascular tissue was surrounded by thick-walled, lignified and suberized sclerenchyma cells. The apoplastic tracer dyes triso-dium 3-hydroxy-5,8,10-pyrenetrisulfonate (PTS) and amido black 10 B, fed into cut ends of the stalk, wereconfined to the vascular bundles in all internodes above the one that was cut — with no dye apparently in storage parenchyma tissue. Thus both structural and experimental evidence is consistent with vascular tissue being increasingly isolated from the storage parenchyma as maturation of the tissue proceeds. We conclude that in mature internodes the pathway for sugars from the phloem to the storage parenchyma is symplastic. The data suggest that an increasingly greater role for a symplastic pathway of sugar transfer occurs as the tissue undergoes lignification/suberization.  相似文献   

9.
10.
为了从显微结构上进一步探讨虉草(Phalaris arundinacea L.)的抗旱耐涝性及与利用的关系,于2011年采用常规石蜡切片技术,对其根、茎叶3种营养器官进行解剖观察。结果表明,虉草根的结构自外而内依次为表皮、皮层、维管束鞘、初生韧皮部和初生木质部;茎由表皮、基本组织和维管束构成;叶片内部结构可分为表皮、叶肉和叶脉3部分。根皮层大的细胞间隙和气腔,初生木质部的后生大导管和茎基本组织解体形成的髓腔都是虉草良好的通气组织,是其耐水淹的主要显微特征。茎、叶片角质化的表皮和叶表皮所含的丰富泡状细胞组是虉草具有抗旱性的主要解剖结构特征。叶肉细胞排列紧密且只有少量气孔分布于叶片下表皮,这样的结构可减少蒸腾;叶肉细胞富含叶绿体,增强光合作用,获得更多的同化产物,确保了植株在干旱条件下也有足够的光合产物来维持正常的生理活动。茎、叶维管束部分大量的木纤维起到支撑作用。虉草根的皮层和维管柱部分、茎的基本组织和维管束部分、叶的叶脉部分都含有大面积的厚壁细胞,厚壁细胞中含有丰富的粗纤维和木质素。丰富的粗纤维、木质素等成分则是虉草能成为新能源燃料植物的必备条件。  相似文献   

11.
Vascular bundles and contiguous tissues of leaf blades of sugarcane (Saccharum interspecific hybrid L62–96) were examined with light and transmission electron microscopes to determine their cellular composition and the frequency of plasmodesmata between the various cell combinations. The large vascular bundles typically are surrounded by two bundle sheaths, an outer chlorenchymatous bundle sheath and an inner mestome sheath. In addition to a chlorenchymatous bundle sheath, a partial mestome sheath borders the phloem of the intermediate vascular bundles, and at least some mestome-sheath cells border the phloem of the small vascular bundles. Both the walls of the chlorenchymatous bundlesheath cells and of the mestome-sheath cells possess suberin lamellae. The phloem of all small and intermediate vascular bundles contains both thick- and thin-walled sieve tubes. Only the thin-walled sieve tubes have companion cells, with which they are united symplastically by pore-plasmodesmata connections. Plasmodesmata are abundant at the Kranz mesophyll-cell-bundlesheath-cell interface associated with all sized bundles. Plasmodesmata are also abundant at the bundle-sheathcell-vascular-parenchyma-cell, vascular-parenchyma-cellvascular-parenchyma-cell, and mestome-sheath-cell-vascular-parenchyma-cell interfaces in small and intermediate bundles. The thin-walled sieve tubes and companion cells of the large vascular bundles are symplastically isolated from all other cell types of the leaf. The same condition is essentially present in the sieve-tube-companion-cell complexes of the small and intermediate vascular bundles. Although few plasmodesmata connect either the thin-walled sieve tubes or their companion cells to the mestome sheath of small and intermediate bundles, plasmodesmata are somewhat more numerous between the companion cells and vascular-parenchyma cells. The thick-walled sieve tubes are united with vascular-parenchyma cells by pore-plasmodesmata connections. The vascular-parenchyma cells, in turn, have numerous plasmodesmatal connections with the bundle-sheath cells.This study was supported by National Science Foundation grants DCB 87-01116 and DCB 90-01759 to R.F.E. and a University of Wisconsin-Madison Dean's Fellowship to K. R.-B. We also thank Claudia Lipke and Kandis Elliot for photographic and artistic assistance, respectively.  相似文献   

12.
玉米种子萌发过程幼叶细胞中淀粉粒的积累观察   总被引:3,自引:0,他引:3  
陈健辉  方璟 《广西植物》2003,23(5):440-444,456
研究玉米萌发初期幼叶的发育。在幼叶不同的发育时期 ,分别用 PAS反应 ,考马氏蓝处理不同叶片 ,结果发现 :叶片细胞内的叶绿体在叶片即将抽出时才形成 ;从浸种萌动到叶片进行光合作用前 ,植株的营养供给 ,主要靠叶片自身淀粉粒的积聚提供 ;在幼叶抽出以前 ,胚芽鞘的薄壁细胞中布满淀粉粒 ,随着叶片的发育 ,这些淀粉粒逐渐减少 ;而幼叶中的淀粉粒的变化情况正好相反 :在种子萌发初期 ,幼叶细胞内只有少量的淀粉粒 ,以后淀粉粒的积累逐渐增多 ;在这个阶段无蛋白质的积聚。幼叶中维管束的发生是先中间后两边 ,维管束中的韧皮部先形成 ,木质部后发生。  相似文献   

13.
罗汉果营养器官的结构   总被引:1,自引:1,他引:1  
1.罗汉果根、茎、叶的结构与葫芦科其它植物大致相似。不同之处有三方面:(1)叶子主脉中维管束为5个;(2)叶子中有硅质细胞成群分布;(3)块根具异常次生生长。在次生木质部中围绕导管形成形成层,由之分化出多个具韧皮部与木质部的小维管束。2.叶中的硅质细胞分布于表皮、栅栏组织、海绵组织中,多个细胞集合在一起。其细胞壁加厚并硅质化,细胞内容物消失。推测与增加叶子的支持力量有关。3.罗汉果雌株叶子上、下表皮气孔数之比为0.04,雄株为0.03,比值均很低,同时根据叶的解剖结构推测罗汉果为C_3植物。4.雌株叶子下表皮单位面积气孔数比雄株的多26%,差异很显著,值得进一步研究简化观察统计方法,以用于鉴别幼苗的性别。  相似文献   

14.
A histochemical method for the determination of IAA-oxidase has been used in sections of various aerial parts of winter wheat plants. High IAA-oxidase activity was localized in the cell walls of sclerenchyma near the periphery of the stem, in the vascular bundle sheath of sclerenchyma and in xylem, both in the stem and in the leaf. The cell wall—bound IAA-oxidase activity therefore appeared in lignifying tissues. The staining was very weak or absent in the cell walls of parenchyma tissues and phloem. The positive reaction of the cytosol at the bulbous ends of guard cells and in the leaf primordia is presumed to be due to cytosolic IAA-oxidase. These results are discussed in relation to peroxidase localization and to our previousin vitro studies.  相似文献   

15.
药用植物川牛膝根中异常次生结构的发育解剖学研究   总被引:2,自引:0,他引:2  
药用植物川牛膝的根内具有异常的次生结构。其异常的次生生长是由维管柱外围发生的异常形成层通过正常的活动方式完成的。后一轮异常形成层起源于前一轮异常形成层向外产生的薄壁组织细胞,位于韧皮部的外侧。每一轮异常形成层向内产生木质部,向外产生韧皮部,组成异常维管束。其中,木质部最先开始分化。异常维管束排成螺旋状,分散在结合组织中。除最外轮一些木质部束之间的结合组织是厚壁组织外,其余结合组织都是薄壁的。由于初生结构和早期的次生结构是正常的,所以,这种异常结构可能是后起的特征。  相似文献   

16.
17.
Stanhopeinae are a group of tropical American orchids characterized by euglossine bee pollination and lateral inflorescences stemming from the bases of pseudobulbs. Leaves are hypostomatal, and all stomatal configurations are tetracytic. Chlorenchyma is homogeneous and characterized by fibre bundles in adaxial/abaxial or adaxial/median/abaxial positions. Collateral vascular bundles occur in a single row and feature phloic and xylic sclerenchymatous caps and thin-walled bundle sheath cells. Fibre bundles and vascular sclerenchyma are accompanied by stegmata containing conical silica bodies. Pseudobulbs have thick-walled turbinate epidermal cells and ground tissue of smaller, living assimilatory cells and larger, dead water-storage cells. Fibre bundles are usually absent but occur in several genera. Collateral vascular bundles show phloic sclerenchyma, but xylic sclerenchyma occurs only in die larger vascular bundles. Phloic and xylic sclerenchyma are associated with stegmata containing conical silica bodies. Roots are velamentous. Velamen cell walls have fine, spiral thickenings. Exodermal cells are thin-walled. The cortex features scattered thick-walled cells and in some cases branched bars of secondary cell wall material. Endodermis is either u-or O-thickened, but pericycle is always O-thickened opposite the phloem. Vascular tissue consists of alternating strands of xylem and phloem surrounded by a matrix of thick-walled cells. Pith cells may be parenchymatous or sclerenchymatous.  相似文献   

18.
爬树蕨的解剖学研究   总被引:4,自引:1,他引:3  
黄玉源  周厚高  黎桦  周琼   《广西植物》1994,14(3):241-245
本文对爬树蕨(Arthropterisobliterata(R.Br.)J.Sm)孢子体各主要器官进行了解剖学研究及对孢子进行了电子显微镜扫描观察,研究结果表明;茎的中柱具有两个新月形的维管束;幼茎的中部有髓.在较老的茎,髓部及中柱周围的细胞均特化为厚壁细胞.根属二原型中柱.木质分化方式是外始式;在对正后生木质部的两侧的皮层有几层特化为厚壁细胞。叶的叶肉细胞不分化出栅栏组织和海绵组织,为等面对。孢子囊具有纵向环带,孢子的形状、外壁的纹饰和裂缝情况均与以前的研究有所不同。  相似文献   

19.
20.
Small pieces of different tissues from stems of young and oldcarnation plants were analyzed for lignification (lignin/celluloseratios) and lignin composition by means of pyrolysis-(gas chromatography)-massspectrometry. The epidermis and phloem of young and old stemswere essentially non-lignified. Pith parenchyma was only lignifiedin mature and senescing tissues. The type of lignin in sclerenchymadiffered from that in xylem and pith. Lignification in the xylemof very young tissues was a mainly guaiacyl-type lignin, whichgradually changed into a mixed guaiacyl-syringyl lignin in oldertissues. In mature tissues, the sclerenchyma was more highlylignified than the xylem. All tissues yielded comparatively large amounts of dihydroferulicacid, a compound which may be specific for carnation. Carnation, Dianthus caryophyllus, epidermis, cortex, sclerenchyma, phloem, xylem, pith, lignification, aging, dihydroferulic acid, pyrolysis-(gas chromatography)-mass spectrometry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号