首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N-acetylhexosaminidase fromNocardia orientalis catalysed the synthesis of lacto-N-triose II glycoside (-d-GlcNAc-(1-3)--d-Gal-(1-4)--d-Glc-OMe,3) with its isomers -d-GlcNAc-(1-6)--d-Gal-(1-4)--d-Glc-OMe (4) and -d-Gal-(1-4)-[-d-GlcNAc-(1-6)]--d-Glc-OMe (5) throughN-acetylglucosaminyl transfer fromN,N-diacetylchitobiose (GlcNAc2) to methyl -lactoside. The enzyme formed the mixture of trisac-charides3, 4 and5 in 17% overall yield based on GlcNAc2, in a ratio of 20:21:59. Withp-nitrophenyl -lactoside as an acceptor, the enzyme also producedp-nitrophenyl -lacto-N-trioside II (-d-GlcNAc-(1-3)--d-Gal-(1-4)--d-Glc-OC6H4NO2-p,6) with its isomers -d-GlcNAc-(1-6)--d-Gal-(1-4)--d-Glc-OC6H4NO2-p (7) and -d-Gal-(1-4)-[-d-GlcNAc-(1-6)]--d-Glc-OC6H4NO2-p (8). In this case, when an inclusion complex ofp-nitrophenyl lactoside acceptor with -cyclodextrin was used, the regioselectivity of glycosidase-catalysed formation of trisaccharide glycoside was substantially changed. It resulted not only in a significant increase of the overall yield of transfer products, but also in the proportion of the desired compound6.Abbreviations GlcNAc2 2-acetamido-2-deoxy--d-glucopyranosyl-(1-4)-2-acetamido-2-deoxy-d-glucose - NAHase N-acetylhexosaminidase - -CD -cyclodextrin  相似文献   

2.
Adult snails synthesize in their albumen glands a storage polysaccharide called galactan which is utilized by the developing embryos. With [6-3H]-uridine 5diphosphogalactose the incorporation of labelled d-galactose into the polysaccharide can be traeed in freshly removed glands maintained in a bathing buffer. After centrifugation of homogenized glands, galactosyltrasferase activity is only found in the insoluble fraction. Chaps extracts of this material retain almost all of their activity and can be used for comparison of the incorporation rates into different native galactans or in various oligosaccharides. A highly efficient -(16) galactosyltransferase was detected when methyl 3-O-(-d-galactopyranosyl)--d-galactopyranoside was offered as acceptor. The substitution at the penultimate residue resulted in a branched trisaccharide as demonstrated by 1H-NMR-spectroscopy and permethylation analysis of the reaction product. Comparable results were obtained with various oligosaccharides containing an internal galactose unit glycosidically linked 13. Attempts to separate and purify the various enzymes involved resulted in the isolation of a fraction which is able to transfer d-Gal exclusively to native galactan, but not to oligosaccharides. A further fraction was obtained from a different resin with activity for native galactan and 6-O-(-d-galactopyranosyl)-d-galactopyranose. but without any for methyl-3-O-(-d-galactopyranosyl)--d-galactopyranose. It is thus concluded that at least three different enzymes are involved in the biosynthesis of this snail galactan.Abbreviation Gal galactose - glc gas-liquid chromatography - Gro glycerol - tlc thin layer chromatography  相似文献   

3.
The trisaccharide 2-(p-trifluoroacetamidophenyl)ethyl 2-acetamido-2-deoxy-4-O-[2-O-(-l-fucopyranosyl)--d-galactopyranosyl]--d-glucopyranoside 1 and the tetrasaccharide 2-(p-trifluoroacetamidophenyl)ethyl 2-acetamido-2-deoxy-3-O-(-l-fucopyranosyl)-4-O-[2-O-(-l-fucopyranosyl)--d-galactopyranosyl]--d-glucopyranoside 2 were synthesized. Thioglycosides, suitably protected, activated directly with methyl trifluoromethanesulfonate or dimethyl(methylthio)sulfonium tetrafluoroborate or activated after bromine treatment with halophilic reagents, were used as glycosyl donors in the construction of the glycosidic linkages.Abbreviations DMTSB dimethyl(methylthio)sulfonium tetrafluoroborate - Phth phthaloyl - MBn p-methoxybenzyl - ClBn p-chlorobenzyl  相似文献   

4.
Imidazole fungicides such as imazalil, prochloraz, and triflurnizole and the triazole growth retardant paclobutrazol promote the shoot-inducing effect of exogenous cytokinins in Araceae, such as Spathiphyllum floribundum Schott and Anthurium andreanum Schott. The mechanism of their action could partially be based on the inhibition of gibberellic acid (GA) biosynthesis, because administration of GA3 inhibits the phenomenon completely in S. floribundum. Not only is the suppression of GA biosynthesis involved, but also the metabolism of endogenous cytokinins is significantly altered. Although the balance between isopentenyladenine, zeatin, dihydrozeatin, and their derivatives was shifted to distinguished directions by administration of BA and/or imazalil and/or GA3, no correlation between these changes in metabolic pathways and the number of shoots could be found. The metabolism of BA was not significantly altered by adding imazalil to the micropropagation medium of S. floribundum.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - [9R-5P]DHZ 9--d-ribofuranosyl-dihydrozeatin-monophosphate - [9R-5P]iP 6-isopentenyl-9--d-ribofuranosyladenine-monophosphate - [9R-5P]Z 9--d-ribofuranosyl-zeatin-monophosphate - [9G]BA 6-benzyl-9--d-glucopyranosyladenine - [9G]DHZ 9--d-glucopyranosyl-dihydrozeatin - [9G]iP 6-isopentenyl-9--d-glucopyranosyladenine - [9G]Z 9--d-glucopyranosyl-zeatin - [9R]BA 6-benzyl-9--d-ribofuranosyladenine - [9R]DHZ 9--d-ribofuranosyl-dihydrozeatin - [9R]iP 6-isopentenyl-9--d-ribofuranosyladenine - [9R]Z 9--d-ribofuranosyl-zeatin - BA 6-benzyladenine - DHZ dihydrozeatin - ES+ LC-MS/MS HPLC coupled Electrospray Tandem Mass Spectrometry - f.m. fresh mass - mT 6-(3-hydroxybenzyl)adenine - IMA imazalil - iP isopentenyladenine - NAA 1-naphthalene acetic acid - NFT Nutrient Film Technique - (OG)[9R]DHZ O--glucopyranosyl-9--d-ribofuranosyl-dihydrozeatin - (OG)[9R]Z O--d-glucopyranosyl-9--d-ribofuranosyl-zeatin - (OG)DHZ O--d-glucopyranosyl-dihydrozeatin - (OG)Z O--d-glucopyranosyl-zeatin - PAR Photosynthetic Active Radiation - PBZ paclobutrazol - PRO prochloraz - TDZ thidiazuron - TRI triflurnizole - Z zeatin  相似文献   

5.
Two trisaccharide glycosides,p-trifluoroacetamidophenylethyl 3-O-(2-acetamido-2-deoxy--d-galactopyranosyl)-2-O-(-l-fucopyranosyl)--d-galactopyranoside andp-trifluoroa-cetamidophenylethyl 2-O-(-l-fucopyranosyl)-3-O-(-d-galactopyranosyl)--d-galactopyranoside, corresponding to the human blood group A and B determinants, were synthesized. A key fucosylgalactosyl disaccharide derivative was glycosylated with galactosaminyl or galactosyl donors, respectively. Dimethyl (thiomethyl)sulfonium tetrafluoroborate was used for thioglycoside activation in coupling reactions.  相似文献   

6.
-d-Glucosidase, -d-fucosidase -d-xylosidase, and -cellobiopyranosidase activities in Caecomyces communis, Neocallimastix frontalis, and Piromyces rhizinflata, located with fluorescent conjugates, occur throughout the whole thallus as from zoospore germination and disappear before sporulation. -d-Galactosidase and -l-arabinopyranosidase activities are low or nonexistent. A xylanase, detected by indirect immunofluorescence, was observed at the surface of the vegetative cells, vesicles, or rhizoids. Cross-reactions prove the existence of analogies in structure among the enzymes of these anaerobic gut fungi.  相似文献   

7.
Here, we confirm and extend our previous findings on human immunodeficiency virus type 1 (HIV-1) envelope glycoproteinN-acetylglucosaminyl binding properties. We show the occurrence of saturable, temperature, pH, and calcium dependent carbohydrate-specific interactions between recombinant precursor gp160 (rgp160) and two affinity matrices:d-mannose-divinylsulfone-agarose, and natural glycoprotein, fetuin, also coupled to agarose. Binding of rgp160 to the matrices was inhibited by soluble mannosyl derivatives, -d-Man17-BSA and mannan, by -d-GlcNAc47-BSA and by glycopeptides from Pronase-treated porcine thyroglobulin, which produces oligomannose and complex N-linked glycans. Glycopeptides from Endoglycosidase H-treated thyroglobulin partially inhibited rgp160 binding, as did the asialo-agalacto-tetraantennary precursor oligosaccharide of human 1-acid glycoprotein for binding to fetuin-agarose. -d-Glucan and -d-Gal17-BSA had no or only limited effect. Also, surface unit rgp120 specifically interacted with fetuin-agarose and soluble fetuin, but in the latter case with a twofold reduced affinity relative to rgp160. After affinity chromatography, rgp160 was specifically retained by the two matrices and eluted by mannan in both cases, while rgp120 was not retained by fetuin-agarose but only eluted as a significantly retarded peak, which confirms its specific but weak interaction. Thus, rgp160 interacts with both oligomannose type, and the mannosyl core of complex type N-linked glycans, and its gp120 region plays a role in this interaction. Because fetuin and asialofetuin inhibit to nearly the same extent, the binding of rgp160 or rgp120 to fetuin-agarose, interaction with sialic acid or -d-galactosyl structures of complex N- or O-linked glycans can be ruled out. Specific rgp160 and rgp120 binding to ap-aminophenyl--d-GlcNAc-agarose matrix, which was inhibited by -d-GlcNAc47-BSA and by fetuin, confirms that HIV-1 envelope glycoproteins can also specifically interact with theN-acetylglucosaminyl core of oligosaccharide structures.  相似文献   

8.
An extracellular -glucosidase (EC 3.2.2.21) from the anaerobic fungus Piromyces sp. strain E2 was purified. The enzyme is a monomer with a molecular mass of 45 kDa and a pI of 4.15. The enzyme readily hydrolyzes p-nitrophenyl--d-glycoside, p-nitrophenyl--d-fucoside, cellobiose, cellotriose, cellotetraose and cellopentaose but is not active towards Avicel, carboxymethylcellulose, xylan, p-nitrophenyl--d-galactoside and p-nitrophenyl--d-xyloside. To cleave p-nitrophenyl--d-glucoside the maximum activity is reached at pH 6.0 and 55°C, and the enzyme is stable up to 72 h at 40°C. Activity is inhibited by d-glucurono--lactone, cellobiose, sodium dodecyl sulfate, Hg2+ and Cu2+ cations. With p-nitrophenyl--d-glycoside, p-nitrophenyl--d-fucoside, and. cellobiose as enzyme substrates, the K m and V max balues are 1.5 mM and 25.5 IU·mg-1, 1.1. mM and 133 IU·mg-1, and 0.05 mM and 55.6 IU·mg-1, respectively.  相似文献   

9.
Four aryl-phospho--d-glucosidases were identified in Bacillus subtilis by using 4-methylumbelliferyl-phospho--d-glucopyranoside as a substrate. Two of these enzymes are the products of the bglA and bglH genes, previously suggested to encode aryl-phospho--d-glucosidases, while the other enzymes are encoded by the yckE and ydhP genes. Together, these four genes account for >99.9% of the glucosidase activity in B. subtilis on aryl-phospho--d-glucosides. yckE was expressed at a low and constant level during growth, sporulation, and spore germination, and was not induced by aryl--d-glucosides. ydhP was also not induced by aryl--d-glucosides. However, while ydhP was expressed at only a very low level in exponential-phase cells and germinating spores, this gene was expressed at a higher levels upon entry into the stationary phase of growth. Strains lacking yckE or ydhP exhibited no defects in growth, sporulation, or spore germination or in growth on aryl--d-glucosides. However, a strain lacking bglA, bglH and yckE grew poorly if at all on aryl--d-glucosides as the sole carbon source.Abbreviations MU 4-Methylumbelliferone - MUG 4-Methylumbelliferyl--d-glucopyranoside - MUGal 4-Methylumbelliferyl--d-galactopyranoside - MUG-P 4-Methylumbelliferyl--d-glucopyranoside-6-phosphate  相似文献   

10.
A Gal1-4GlcNAc (2-6)-sialyltransferase from human liver was purified 34 340-fold with 18% yield by dye chromatography on Cibacron Blue F3GA and cation exchange FPLC. The enzyme preparation was free of other sialyltransferases. It did not contain CMP-NeuAc hydrolase, protease, or sialidase activity, and was stable at –20°C for at least eight months. The donor substrate specificity was examined with CMP-NeuAc analogues modified at C-5 or C-9 of theN-acetylneuraminic acid moiety. Affinity of the human enzyme for parent CMP-NeuAc and each CMP-NeuAc analogue was substantially higher than the corresponding Gal1-4GlcNAc (2-6)-sialyltransferase from rat liver.Abbreviations FPLC fast protein liquid chromatography - NeuAc 5-N-acetyl-d-neuraminic acid - 9-amino-NeuAc 5-acetamido-9-amino-3,5,9-trideoxy-d-glycero-2-nonulosonic acid - 9-acetamido-NeuAc 5,9-diacetamido-3,5,9-trideoxy-d-glycero--d-2-nonulosonic acid - 9-benzamido-NeuAc 5-acetamido-9-benzamido-3,5,9-trideoxy-d-glycero--d-galacto-2-nonulosonic acid - 9-fluoresceinyl-NeuAc 9-fluoresceinylthioureido-NeuAc - 5-formyl-Neu 5-formyl--d-neuraminic acid - 5-aminoacetyl-Neu 5-aminoacetyl--d-neuraminic acid - CMP-NeuAc cytidine-5-monophospho-N-acetylneuraminic acid - GM1 Gal1-3GalNAc1-4(NeuAc2-3)Gal1-4Glc-ceramide - ST sialyltransferase - DTE 1,4-dithioerythritol Enzyme: Gal1-4GlcNAc (2-6)-sialyltransferase, EC 2.4.99.1.  相似文献   

11.
Pollen-tube cell walls are unusual in that they are composed almost entirely of callose, a (1,3)--linked glucan with a few 6-linked branches. Regulation of callose synthesis in pollen tubes is under developmental control, and this contrasts with the deposition of callose in the walls of somatic plant cells which generally occurs only in response to wounding or stress. The callose synthase (uridine-diphosphate glucose: 1,3--d-glucan 3--d-glucosyl transferase, EC 2.4.1.34) activities of membrane preparations from cultured pollen tubes and suspension-cultured cells of Nicotiana alata Link et Otto (ornamental tobacco) exhibited different kinetic and regulatory properties. Callose synthesis by membrane preparations from pollen tubes was not stimulated by Ca2+ or other divalent cations, and exhibited Michaelis-Menten kinetics only between 0.25 mM and 6 mM uridine-diphosphate glucose (K m 1.5–2.5 mM); it was activated by -glucosides and compatible detergents. In contrast, callose synthesis by membrane preparations from suspension-cultured cells was dependent on Ca2+, and in the presence of 2 mM Ca2+ exhibited Michaelis-Menten kinetics above 0.1 mM uridine-diphosphate glucose (K m 0.45 mM); it also required a -glucoside and low levels of compatible detergent for full activity, but was rapidly inactivated at higher levels of detergent. Callose synthase activity in pollen-tube membranes increased ten fold after treatment of the membranes with trypsin in the presence of detergent, with no changes in cofactor requirements. No increase in callose synthase activity, however, was observed when membranes from suspension-cultured cells were treated with trypsin. The insoluble polymeric product of the pollen-tube enzyme was characterised as a linear (1,3)--d-glucan with no 6-linked glucosyl branches, and the same product was synthesised irrespective of the assay conditions employed.Abbreviations Ara l-arabinose - CHAPS 3-[(3-cholamidopropyl)dimethylammonia]-1-propane sulphonic acid - DAP diphenylamine-aniline-phosphoric acid stain - Gal d-galactose - Glc d-glucose - Man d-mannose - Mes 2-(N-morpholino)ethane sulphonic acid - Rha d-rhamnose - Rib d-ribose - TFA trifluoroacetic acid - UDPGlc uridine-diphosphate glucose - Xyl d-xylose This research was supported by funds from a Special Research Centre of the Australian Research Council. H.S. was funded by a Melbourne University Postgraduate Scholarship and an Overseas Postgraduate Research Studentship; S.M.R. was supported by a Queen Elizabeth II Research Fellowship. We thank Bruce McGinness and Susan Mau for greenhouse assistance, and Deborah Delmer and Adrienne Clarke for advice and encouragement throughout this project.  相似文献   

12.
Summary Thielavia terrestris NRRL 8126 cell free supernatants contained mannanase and -mannosidase when cultured on a complex media containing locust bean gum. Using acetone precipitation, SP-Sephadex C50 ion exchange chromatography and preparative gel electrophoresis, the crude enzyme was resolved into one -d-mannosidase and four -d-mannanase components. -d-mannosidase had a specific activity of 0.02 (U/mg) onp-nitrophenyl--d-mannopyranoside substrate. Mannanase components M1, M2, M3 and M4 had specific activities of 28.2, 38.7, 52.8 and 4.17 (U/mg) respectively on purified locust bean galactomannan substrate. pH optima for the enzymes were in the range 4.5–5.5. Mannanase component M4 manifested the greatest thermostability, retaining full activity for 3 h at 60°C. Molecular weights determined by SDS-PAGE were 72 000 for -mannosidase and 52 000, 30 000, 55 000 and 89 000 for M1, M2, M3 and M4 respectively. Carbohydrate contents of the enzymes ranged from 6–36%. Preliminary studies indicate that enzyme components hydrolyse the mannan substrate in a synergistic manner.  相似文献   

13.
Summary A new cellulase gene was cloned and expressed inEscherichia coli from a thermophilic anaerobe, strain NA10. A 7.4 kbEcoRI fragment of NA10 DNA encoded the cellulase which hydrolyzed carboxymethyl cellulose, lichenan, andp-nitrophenyl--d-cellobioside, but could not digest laminarin andp-nitrophenyl--d-glucoside. The cloned enzyme could digest cellooligosaccharides and release cellobiose as a main product from cellotetraose but could not digest cellobiose. It was distinct from the endoglucanase which was cloned by us previously from NA10 strain in terms ofp-nitrophenyl--d-cellobioside degradation activity and the location of restriction enzyme sites. The enzyme produced byE. coli transformant was extremely heat-stable and the optimum temperature for the enzymatic reaction was 80°C. Fifty three percent of the cloned enzyme was detected in the periplasm and the remaining activity existed in the cellular fraction in theE. coli transformant.  相似文献   

14.
A newly isolated strain, MU-2, which produces very high -fructofuranosidase activity, was identified asAspergillus japonicus. For enzyme production by the strain, sucrose at 20% (w/v) was the best carbon source and yeast extract at 1.5 to 3% (w/v) the best nitrogen source. Total enzymatic activity and cell growth were at maximum after 48 h, at 1.57×104 U/flask and 0.81 g dry cells/flask, respectively. The optimum pH value of the enzymatic reaction was between 5.0 and 5.5 and the optimum temperature 60 to 65°C. The enzyme produced 1-kestose (O--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) and nystose (O--d-fructofuranosyl-(21)--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) from sucrose by fructosyl-transferring activity. The strain was found to be very useful for industrial production of -fructofuranosidase.  相似文献   

15.
A simple synthesis of octyl 3,6-di-O-(-d-mannopyranosyl)--d-mannopyranoside is described. The key features of the synthetic scheme are the formation of the -mannosidic linkage by 1-O-alkylation of 2,3,4,6-tetra-O-acetyl-,-d-mannopyranose with octyl iodide and glycosylation of unprotected octyl -d-mannopyranoside using limiting acetobromomannose. The trisaccharide is shown to be an acceptor forN-acetylglucosaminyltransferase-I with aK M of 585 µm.  相似文献   

16.
The plasma membrane-associated proteoglycans of a malignant human breast cell line (MDA-MB-231) were compared with the corresponding proteoglycans from a normal cell line (HBL-100). The labeled proteoglycans were isolated from the plasma membranes of cells grown in the presence of [3H]glucosamine and [35S]Na2SO4 by extraction with guanidine hydrochloride and subsequently purified by DEAE-ion exchange chromatography. Their structural properties were established by treatment with nitrous acid, heparitinase and chondroitinase ABC, and by gel filtration before and after alkaline -elimination. About 18% of the proteoglycans synthesized by these cell lines were associated with the plasma membranes. The HBL plasma membranes contained 80% heparan sulfate and 20% chondroitin sulfate proteoglycans whereas MDA plasma membranes had 50% heparan sulfate and 50% chondroitin sulfate proteoglycans. The MDA plasma membrane contained two heparan sulfate proteoglycans, both having nearly the same molecular size as the two species secreted into the medium by these cells. The HBL plasma membrane also contained two hydrodynamic size heparan sulfate proteoglycans. The larger hydrodynamic size species has a slightly lower molecular size than that secreted into the medium, and the smaller hydrodynamic size species was not detectable in the medium. Even though the major chondroitin sulfate proteoglycans from MDA plasma membranes were smaller in size than those from HBL plasma membrane, a larger proportion of the glycosaminoglycan chains of the former were bigger than those from the latter.Abbreviations CHAPS 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate - Di-OS 2-acetamido-2-deoxy-3-O-(-d-gluco-4-ene-pyranosyluronic acid)-d-galactose - Di-4S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-ene-pyranosyluronic acid)-4-O-sulfo-d-galactose - Di-6S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-ene-pyranosyluronic acid)-6-O-sulfo-d-galactose - Gdn-HCl guanidine hydrochloride - WGA wheat germ agglutinin  相似文献   

17.
Fractions were prepared from the water-soluble components ofAspergillus fumigatus mycelium either by lectin-affinity chromatography or salt precipitation. While they varied considerably in their amino-acid composition, each contained a preponderance of aspartic and glutamic acids.13C-NMR spectroscopy of these fractions, compared with that of polysaccharide obtained by alkaline extraction, indicated the presence of glycoproteins, the polysaccharide components of which contained -d-Galf units that are part of structures chemically different from those obtained by alkali treatment. In two of the three fractions examined, gas-liquid chromatography-mass spectrometry showed marked differences in the contents of non-reducing end-units of -d-Manp and -d-Galf. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of the preparations revealed an array of components, which stained to differing extents with silver stain and with Coomassie Blue and many of which were bound by lectins with specificity for different sugars.  相似文献   

18.
Streptomyces lividans TK24, an established host for genetic and molecular studies in actinomycetes, is able to use chitin as sole carbon and nitrogen source. Extracellular chitinase and N-acetyl--d-glucosamidinase (chitobiase) activities were detected in liquid cultures. Chitinase production was inducible by chitin and its low molecular weight derivatives. Low levels of chitinase were also produced in the absence of chitin. Production of extracellular N-acetylglucosaminidase was correlated with the beginning of the stationary phase of growth and was independent of the presence of chitin. Beside highly N-acetylated chitin, supernatants of chitin-induced cultures were able to hydrolyse chitosans with a wide range of degrees of N-acetylation.Abbreviations MS minimal salts - GlcNAc N-acetyl--d-glucosamine - pNP-GlcNAc p-nitrophenyl-2-acetamido-2-deoxy--d-glucopyranoside - d.a. degree of N-acetylation - TLC thin-layer chromatography  相似文献   

19.
Determination of the primary structure of the peptidoglycan of 15 strains of Oerskovia showed that three different peptidoglycan types occur. Oerskovia xanthineolytica strains contain the l-Lys-d-Ser--d-Asp type, whereas Oerskovia turbata strains show the new peptidoglycan types l-Lys-l-Thr--d-Asp or l-Lys-l-Thr--d-Glu, respectively. Research on the cytochromes of Oerskovia revealed the presence of a, b and c types. O. turbata can be clearly distinguished from O. xanthineolytica by the occurrence of cytochrome a 1 in cells, isolated from the stationary phase. The following conclusions were made: O. turbata and O. xanthineolytica can be clearly separated on the basis of different peptidoglycan types and cytochrome patterns. This distinction is in perfect correlation with the classical separation method of O. turbata and O. xanthineolytica on the basis of xanthine degradation. l-Lys-d-Ser--d-Asp peptidoglycan type does not only occur in O. xanthineolytica but also in some coryneform bacteria such as Corynebacterium manihot (Fiedler et al. 1970), Cellulomonas cartae (Stackebrandt et al. 1978; Stackebrandt and Kandler 1980), Brevibacterium fermentans and Nocardia cellulans.This paper is respectively dedicated to Professor Dr. O. Kandler, on the occasion of his 60th birthday  相似文献   

20.
Negative-ion fast atom bombardment tandem mass spectrometry has been used in the characterization of non-, mono-, di- and trisulfated disaccharides from heparin and heparan sulfate. The positional isomers of the sulfate group of monosulfated disaccharides were distinguished from each other by negative-ion fast atom bombardment tandem mass spectra, which provide an easy way of identifying the positional isomers. This fast atom bombardment collision induced dissociation mass spectrometry/mass spectrometry technique was also applied successfully to the characterization of di- and trisulfated disaccharides.Abbreviations FABMS fast atom bombardment mass spectrometry - CID collision induced dissociation - MIKE mass analysed ion kinetic energy - MS/MS mass spectrometry/mass spectrometry - HPLC high performance liquid chromatography - UA d-gluco-4-enepyranosyluronic acid - CS chondroitin sulfate - DS dermatan sulfate - HA hyaluronan - Hep heparin - HS heparan sulfate - UA(14) GlcNAc 2-acetamido-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose - UA(14)GlcNAc6S 2-acetamido-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcNAc 2-acetamido-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcNAc6S 2-acetamido-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(14)GlcN6S 2-amino-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcN 2-amino-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcN6S 2-amino-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(14)GlcNS 2-deoxy-2-sulfamino-4-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose - UA(14)GlcNS6S 2-deoxy-2-sulfamino-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcNS 2-deoxy-2-sulfamino-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcNS6S 2-deoxy-2-sulfamino-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(13)GalNAc 2-acetamido-2-deoxy-3-O-(-d-Gluco-4-enepyranosyluronic acid)-d-galatose - UA(13)GalNAc4S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA(13)GalNAc6S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA2S(13)GalNAc 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-galactose - UA2S(13)GalNAc4S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA2S(13)GalNAc6S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA(13)GalNAcDiS 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4,6-di-O-sulfo-d-galactose - UA(13)GlcNAc 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号