首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shigeru Itoh 《BBA》1984,766(2):464-471
Large blue-shifts of carotenoid absorption bands were induced by dark addition of a hydrophobic anion, tetraphenylborate, in chromatophores and cell membranes of photosynthetic bacteria, Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata. Tetraphenylborate also induced a red-shift of the 850 nm absorption band and a blue-shift and broadening of the 800 nm band of bacteriochlorophyll. From the analysis of the relation between the magnitude and isosbestic wavelength of the absorbance changes the tetraphenylborate-induced carotenoid band shift were assumed to reflect the change of local electrical field close to each carotenoid molecule which exists as a minor pool on the light-harvesting pigment-protein complex II (LHC II). Absorbance changes of carotenoid and chlorophylls were also induced by tetraphenylborate in membranes of spinach chloroplasts.  相似文献   

2.
1. A comparison was made of two methods for estimating the membrane potential in chromatophores from Rhodopseudomonas sphaeroides Ga. Illuminated chromatophores generated a potential that is apparently much larger when estimated on the basis of the red-band shift of carotenoids rather than from the extent of uptake of the permeant SCN- ion. 2. In contrast, when the chromatophores were oxidizing NADH or succinate the uptake of SCN- indicated a larger membrane potential than was estimated from the carotenoid band shift. 3. The extent of SCN- uptake and the carotenoid-band shift respond differently to changes in the ionic composition of the reaction medium. 4. The effects of antimycin on the carotenoid band shift and SCN- uptake are reported. 5. It is concluded that the carotenoid band shift and the uptake of SCN- are responding to different aspects of the energized state.  相似文献   

3.
A specific carotenoid associated with reaction centers purified from Rhodopseudomonas sphaeroides shows an optical absorbance change in response to photochemical activity, at temperatures down to 35 K. The change corresponds to a bathochromic shift of 1 nm of each absorption band. The same change is induced by either chemical oxidation or photo-oxidation of reaction center bacteriochlorophyll (P-870). Reduction of the electron acceptor of the reaction center, either chemically or photochemically, does not cause a carotenoid absorbance change or modify a change already induced by oxidation of P-870. The change of the carotenoid spectrum can therefore be correlated with the appearance of positive charge in the reaction center. In these studies we observed that at 35 K the absorption band of reaction center bacteriochlorophyll near 600 nm exhibits a shoulder at 605 nm. The resolution into two components is more pronounced in the light-dark difference spectrum. This observation is consistent with our earlier finding, that the "special pair" of bacteriochlorophyll molecules that acts as photochemical electron donor has a dimer-like absorption spectrum in the near infrared.  相似文献   

4.
P. Heathcote  A. Vermeglio  R.K. Clayton 《BBA》1977,461(3):358-364
A specific carotenoid associated with reaction centers purified from Rhodopseudomonas sphaeroides shows an optical absorbance change in response to photochemical activity, at temperatures down to 35 K. The change corresponds to a bathochromic shift of 1 nm of each absorption band. The same change is induced by either chemical oxidation or photo-oxidation of reaction center bacteriochlorophyll (P-870). Reduction of the electron acceptor of the reaction center, either chemically or photochemically, does not cause a carotenoid absorbance change or modify a change already induced by oxidation of P-870. The change of the carotenoid spectrum can therefore be correlated with the appearance of positive charge in the reaction center. In these studies we observed that at 35 K the absorption band of reaction center bacteriochlorophyll near 600 nm exhibits a shoulder at 605 nm. The resolution into two components is more pronounced in the light-dark difference spectrum. This observation is consistent with our earlier finding, that the “special pair” of bacteriochlorophyll molecules that acts as photochemical electron donor has a dimer-like absorption spectrum in the near infrared.  相似文献   

5.
An analysis has been made of the spectrum of the carotenoid absorption band shift generated by continuous illumination of chromatophores of the GlC-mutant of Rhodopseudomonas sphaeroides at room temperature by means of three computer programs. There appears to be at least two pools of the same carotenoid, only one of which, comprising about 20% of the total carotenoid content, is responsible for the light-induced absorbance changes. The 'remaining' pool absorbs at wavelengths which were about 5 nm lower than those at which the 'changing' pool absorbs. This difference in absorption wavelength could indicate that the two pools are influenced differently by permanent local electric fields. The electrochromic origin of the absorbance changes has been demonstrated directly; the isosbestic points of the absorption difference spectrum move to shorter wavelengths upon lowering of the light-induced electric field. Band shifts up to 1.7 nm were observed. A comparison of the light-induced absorbance changes with a KCl-valinomycin-induced diffusion potential has been used to calibrate the electrochromic shifts. The calibration value appeared to be 137 +/- 6 mV per nm shift.  相似文献   

6.
Flash-induced absorbance changes were measured in the Chl-c-containing alga Pleurochloris meiringensis (Xanthophyceae) between 430 and 570 nm. In addition to the bands originating from redox changes of cytochromes, three major positive and tow negative transient bands were observed both 0.7 and 20 ms after the exciting flash. These transient bands peaking at 520, 480 and 451 nm and 497 and 465 nm, respectively, could be assigned to an almost homogeneous shift of the absorbance bands with maxima at 506, 473 and 444 nm, respectively. The shape of the absorbance transients elicited from PS I or PS II was identical, and the two photosystems contributed nearly equally to the absorbance changes. Furthermore, the decay transients were sensitive to the preillumination of the cells. These data strongly suggest that the absorbance transients originate from an electrochromic response of carotenoid molecules. The pigment species responsible for the 506 nm absorption band, probably heteroxanthin or diatoxanthin, transferred excitation energy to both photosystems as shown by the aid of 77 K fluorescence excitation spectra.Abbreviation LHC light-harvesting complex  相似文献   

7.
G.D. Case  W.W. Parson 《BBA》1973,325(3):441-453
Shifts in the absorption bands of bacteriochlorophyll and carotenoids in Chromatium vinosum chromatophores were measured after short actinic flashes, under various conditions. The amplitude of the bacteriochlorophyll band shift correlated well with the amount of cytochrome c-555 that was oxidized by P870+ after a flash. No bacteriochlorophyll band shift appeared to accompany the photooxidation of P870 itself, nor the oxidation of cytochrome c-552 by P870+. The carotenoid band shift also correlated with cytochrome c-555 photooxidation, although a comparatively small carotenoid shift did occur at high redox potentials that permitted only P870 oxidation.

The results explain earlier observations on infrared absorbance changes that had suggested the existence of two different photochemical systems in Chromatium. A single photochemical system accounts for all of the absorbance changes.

Previous work has shown that the photooxidations of P870 and cytochrome c-555 cause similar changes in the electrical charge on the chromatophore membrane. The specific association of the band shifts with cytochrome c-555 photooxidation therefore argues against interpretations of the band shifts based on a light-induced membrane potential.  相似文献   


8.
An analysis has been made of the spectrum of the carotenoid absorption band shift generated by continuous illumination of chromatophores of the GlC-mutant of Rhodopseudomonas sphaeroides at room temperature by means of three computer programs. There appears to be at least two pools of the same carotenoid, only one of which, comprising about 20 % of the total carotenoid content, is responsible for the light-induced absorbance changes. The ‘remaining’ pool absorbs at wavelengths which were about 5 nm lower than those at which the ‘changing’ pool absorbs. This difference in absorption wavelength could indicate that the two pools are influenced differently by permanent local electric fields.

The electrochromic origin of the absorbance changes has been demonstrated directly; the isosbestic points of the absorption difference spectrum move to shorter wavelengths upon lowering of the light-induced electric field. Band shifts up to 1.7 nm were observed. A comparison of the light-induced absorbance changes with a KCl-valinomycin-induced diffusion potential has been used to calibrate the electrochromic shifts. The calibration value appeared to be 137 ± 6 mV per nm shift.  相似文献   


9.
Mild proteolysis of Rhodopseudomonas capsulata chromatophores results in a parallel loss of the 800 nm bacteriochlorophyll absorption band and a blue shift in the carotenoid absorption bands associated with the B-800–850 light-harvesting complex. Both the light-induced and the salt-induced electrochromic carotenoid band shift disappear in parallel to the loss of the 800 nm bacteriochlorophyll absorption upon pronase treatment of chromatophores. During the time required for the loss of the 800 nm bacteriochlorophyll absorption and the loss of the electrochromic carotenoid band shift photochemistry is not inhibited and the ionic conductance of the membrane remains very low. We conclude that the carotenoid associated with the B-800–850 light-harvesting complex is the one that responds electrochromically to the transmembrane electric field. Analysis of the pigment content of Rps. capsulata chromatophores indicates that all of the carotenoid may be accounted for in the well defined pigment-protein complexes.  相似文献   

10.
Light-induced absorbance changes were measured at temperatures between --30 and --55 degrees C in chromatophores of Rhodopseudomonas sphaeroides. Absorbance changes due to photooxidation of reaction center bacteriochlorophyll (P-870) were accompanied by a red shift of the absorption bands of a carotenoid. The red shift was inhibited by gramicidin D. The kinetics of P-870 indicated electron transport from the "primary" to a secondary electron acceptor. This electron transport was slowed down by lowering the temperature or increasing the pH of the suspension. Electron transport from soluble cytochrome c to P-870+ occurred in less purified chromatophore preparations. This electron transport was accompanied by a relatively large increase of the carotenoid absorbance change. This agrees with the hypothesis that P-870 is located inside the membrane, so that an additional membrane potential is generated upon transfer of an electron from cytochrome to P-870+. A strong stimulation of the carotenoid changes (more than 10-fold in some experiments) and pronounced band shifts of bacteriochlorophyll B-850 were observed upon illumination in the presence of artifical donor-acceptor systems. Reduced N-methylphenazonium methosulphate (PMS) and N,N,N',N'-tetramethyl-p-phenylene-diamine (TMPD) were fairly efficient donors, whereas endogenous ubiquinone and oxidized PMS acted as secondary acceptor. These results indicate the generation of large membrane potentials at low temperature, caused by sustained electron transport across the chromatophore membrane. The artificial probe, merocyanine MC-V did not show electrochromic band shifts at low temperature.  相似文献   

11.
In chromatophores from Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata, the Qx band(s) of the light-harvesting bacteriochlorophyll (BChl) (λmax ~590 nm) shifts to the red in response to a light-induced membrane potential, as indicated by the characteristics of the light-minus-dark difference spectrum. In green strains, containing light-harvesting complexes I and II, and one or more of neurosporene, methoxyneurosporene, and hydroxyneurosporene as carotenoids, the absorption changes due to the BChl and carotenoid responses to membrane potential in the spectral region 540–610 nm are comparable in magnitude and overlap with cytochrome and reaction center absorption changes in coupled chromatophores. In strains lacking carotenoid and light-harvesting complex II, the BChl shift absorption change is relatively smaller, due in part to the lower BChl/reaction center ratio.In the carotenoid-containing strains, the peak-to-trough absorption change in the BChl difference spectrum is 5–8% of the peak-to-trough change due to the shift of the longest-wavelength carotenoid band, although the absorption of the BChl band is 25–40% of that of the carotenoid band. The responding BChl band(s) does not appear to be significantly red-shifted in the dark in comparison to the total BChl Qx band absorption.  相似文献   

12.
Previous pulse-chase studies have shown that bacteriochlorophyll a-protein complexes destined eventually for the photosynthetic (chromatophore) membrane of Rhodopseudomonas sphaeroides appear first in a distinct pigmented fraction. This rapidly labeled material forms an upper band when extracts of phototrophically grown cells are subjected directly to rate-zone sedimentation. In the present investigation, flash-induced absorbance changes at 605 nm have demonstrated that the upper fraction is enriched two-fold in photochemical reaction center activity when compared to chromotophores; a similar enrichment in the reaction center-associated B-875 antenna bacteriochlorophyll complex was also observed. Although b- and c-type cytochromes were present in the upper pigmented band, no photoreduction of the b-type components could be demonstrated. The endogenous c-type cytochrome (Em = +345 mV) was photooxidized slowly upon flash illumination. The extent of the reaction was increased markedly with excess exogenous ferrocytochrome c but only slightly in chromatophores. Only a small light-induced carotenoid band shift was observed. These results indicate that the rapidly labeled fraction contains photochemically competent reaction centers associated loosely with c-type and unconnected to b-type cytochrome. It is suggested that this fraction arises from new sites of cytoplasmic membrane invagination which fragment to form leaky vesicles upon cell disruption.  相似文献   

13.
The dispersion of carotenoid droplets in permeabilized goldfish xanthophores is dependent on ATP, F-actin, and cytosol. We report here that the motor (ATPase, translocator) resides with the permeabilized cell remnants and not in the cytosol. We also report that the carotenoid droplets have an ATPase that is not conventional myosin, dynein, or an ion pump. Its activity appears to correlate with the actin content of the carotenoid droplet preparation. A carotenoid droplet protein of Mr 72,000 (p72) is shown to be labeled by irradiation with 8-azido-ATP with concomitant loss of ATPase activity of the carotenoid droplets. We propose that this protein may be the ATPase responsible for carotenoid droplet dispersion.  相似文献   

14.
A flash-induced transthylakoid electric field was measured at 515 nm as an electrochromic absorbance shift in intact potato leaves using a double flash differential spectrophotometer. The decay rate of the electrochromic shift in dark-adapted samples was used to examine the conductance to ions of thylakoid membranes. Heat stress (39.5 °C for 15 min) was found to accelerate drastically the electric field decay, with the half decay time falling from more than 200 ms to less than 45 ms. Heat-induced acceleration of the electric field breakdown was insensitive to the PSII electron donor Hydroxylamine and to the ATPase inhibitor dicyclohexylcarbodiimide (DCCD), thus indicating that it reflects an increase in thylakoid membrane permeability after heat stress. This phenomenon did not involve peroxidative damage of membrane lipids. Acceleration of the electric field relaxation exhibited the same temperature dependence as that of PSII deactivation, suggesting that the ionic permeability of thylakoid membranes is one of the most heat-sensitive components of the photosynthetic apparatus. When potato leaves were infiltrated with 100 mol m?3 ascorbate (in a buffer of pH 5), there was massive conversion of the carotenoid violaxanthin to zeaxanthin. This change in carotenoid composition protected thylakoid membranes against heat-induced changes in permeability, as revealed by the maintenance of a slow decay of the 515 nm absorbance change after heat stress. No such effect was observed after treatments which did not induce the vio-laxanthin-to-zeaxanthin conversion: leaf infiltration with 0 mol m?3 ascorbate (at pH 5 or 8), 100 mol m?3 ascorbate at pH 8 or 100 mol m?3 ascorbate +5 mol m?3 dithiothreitol at pH 5. Increased stability of the permeability properties of thylakoid membranes was also observed after a mild heat treatment (2 h at 35 °C). The data presented suggest that de-epoxidized xanthophylls in vivo stabilize thylakoid membranes and protect thylakoids against heat-induced disorganization.  相似文献   

15.
The infrared spectrum of the complex of D-fructose 1,6-bisphosphate bound to yeast aldolase displays three spectral features between 1700 and 1800 cm-1. One of these (at 1730 cm-1) corresponds to the carbonyl group of enzyme-bound D-fructose 1,6-bisphosphate and/or dihydroxyacetone phosphate. The frequency of this band, which is unaffected by the removal of the intrinsic zinc ion from the enzyme, demonstrates that this carbonyl group is not significantly polarized when the substrate binds to the enzyme. In contrast, the spectral band assigned to the carbonyl group of enzyme-bound D-glyceraldehyde 3-phosphate (at 1706 cm-1) appears at a frequency 24 cm-1 lower than when this substrate is in aqueous solution. This shift indicates considerable polarization of the carbonyl group when D-glyceraldehyde 3-phosphate is bound at the active site. The third spectral feature (at 1748 cm-1), which is observed only in the presence of potassium ion, probably corresponds to an enzymic carboxyl group in a nonpolar environment.  相似文献   

16.
Bramkamp M  Altendorf K 《Biochemistry》2005,44(23):8260-8266
The KdpFABC complex, found in a variety of prokaryotes, is an emergency potassium uptake system which belongs to the family of P-type ATPases. Site-directed mutagenesis of the charged residues aspartate 583 and lysine 586 in the putative transmembrane helix V of subunit KdpB revealed that these charges are involved in the coupling of ATP hydrolysis and ion translocation. Phenotypic characterization of KdpFABC derivatives carrying alterations at either D583 or K586 demonstrated that only restoration of charges at these positions allowed growth on low potassium concentrations. Substitutions, which eliminated the negative charge at position 583, did not allow growth below 15 mM potassium on solid media. In contrast, substitutions of the positive charge at position 586 allowed growth down to 0.3 mM potassium. Purified KdpFABC complexes carrying these substitutions exhibited ATPase activity, which was, however, found to be comparatively resistant to o-vanadate. Furthermore, elimination of the charges led to a complete loss of ion-stimulated ATPase activity, though the rate of hydrolysis was comparable to wild-type activity, indicating an uncoupling between ATP hydrolysis and ion translocation. This fact was substantiated by reconstitution experiments, in which the D583A complex was unable to facilitate ion translocation, whereas the D583E mutant complex still exhibited such activity. On the basis of these results, a new transport model for the Kdp-ATPase is presented here, in which the amino acids D583 and K586 are supposed to play a role in the gating mechanism of the complex. Furthermore, movement of the charged side chains could have a direct influence on the free energy profile within the potassium transporting subunit KdpA, thereby facilitating ion transport against the concentration gradient into the cytosol.  相似文献   

17.
The shift of the carotenoid absorption spectrum induced by illumination and valinomycin-K+ addition was investigated in membrane structures with different characteristics and opposite sidednesses isolated from Rhodopseudomonas sphaeroides. Right-side-out membrane structures were prepared by isotonic lysozyme-EDTA treatment of the cells (spheroplasts) and by hypotonic treatment of spheroplasts (spheroplast membrane vesicles). Inside-out membrane structures ("chromatophores") were obtained by treating spheroplast membrane vesicles by French press or sonication. The membrane structures with either sidedness showed the same light-induced change of the "red shift" type. However, the absorbance change by K+ addition in the presence of valinomycin in the right-side-out membrane structures were opposite to that in the inverted vesicles, "blue shift" in the former and "red shift" in the latter. The carotenoid absorbance change was linear to membrane potential, calculated from the concentration of KCl added, with a reference on the cytoplasmic side, through positive and negative ranges.  相似文献   

18.
19.
Valiyaveetil FI  Zhou Y  MacKinnon R 《Biochemistry》2002,41(35):10771-10777
Lipid molecules surround an ion channel in its native environment of cellular membranes. The importance of the lipid bilayer and the role of lipid protein interactions in ion channel structure and function are not well understood. Here we demonstrate that the bacterial potassium channel KcsA binds a negatively charged lipid molecule. We have defined the potential binding site of the lipid molecule on KcsA by X-ray crystallographic analysis of a complex of KcsA with a monoclonal antibody Fab fragment. We also demonstrate that lipids are required for the in vitro refolding of the KcsA tetramer from the unfolded monomeric state. The correct refolding of the KcsA tetramer requires lipids, but it is not dependent on negatively charged lipids as refolding takes place in the absence of such lipids. We confirm that the presence of negatively charged lipids is required for ion conduction through the KcsA potassium channel, suggesting that the lipid bound to KcsA is important for ion channel function.  相似文献   

20.
B.G. De Grooth  J. Amesz 《BBA》1977,462(2):237-246
Light-induced absorbance changes were measured at temperatures between ?30 and ?55 °C in chromatophores of Rhodopseudomonas sphaeroides. Absorbance changes due to photooxidation of reaction center bacteriochlorophyll (P-870) were accompanied by a red shift of the absorption bands of a carotenoid. The red shift was inhibited by gramicidin D. The kinetics of P-870 indicated electron transport from the “primary” to a secondary electron acceptor. This electron transport was slowed down by lowering the temperature or increasing the pH of the suspension. Electron transport from soluble cytochrome c to P-870+ occurred in less purified chromatophore preparations. This electron transport was accompanied by a relatively large increase of the carotenoid absorbance change. This agrees with the hypothesis that P-870 is located inside the membrane, so that an additional membrane potential is generated upon transfer of an electron from cytochrome to P-870+.A strong stimulation of the carotenoid changes (more than 10-fold in some experiments) and pronounced band shifts of bacteriochlorophyll B-850 were observed upon illumination in the presence of artificial donor-acceptor systems. Reduced N-methylphenazonium methosulphate (PMS) and N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) were fairly efficient donors, whereas endogenous ubiquinone and oxidized PMS acted as secondary acceptor. These results indicate the generation of large membrane potentials at low temperature, caused by sustained electron transport across the chromatophore membrane. The artificial probe, merocyanine MC-V did not show electrochromic band shifts at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号