首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of ethanol production per milligram of cell protein begins to decline in the early stage of batch fermentation before high concentrations of ethanol have accumulated. In yeast extract-peptone medium (20% glucose), this initial decline appears to be related to growth and to result in part from a nutrient deficiency. The addition of yeast extract, peptone, and ashed preparations of these restored the ability of glucose-reconstituted medium (in which cells had been previously grown) to support vigorous growth. Magnesium was identified as the active component. Supplementing fermentations with 0.5 mM magnesium prolonged exponential growth, resulting in increased yeast cell mass. The addition of magnesium also reduced the decline in fermentative activity (micromoles of CO2 evolved per hour per milligram of protein) during the completion of batch fermentations. These two effects reduced the time required for the conversion of 20% glucose into ethanol by 1/3 with no measurable loss in ethanol yield (98% of theoretical maximum yield). It is possible that some of the reported beneficial effects of complex nutrients (soy flour and yeast extract) for ethanol production also result from the correction of a simple inorganic ion deficiency, such as magnesium.  相似文献   

2.
The rate of ethanol production per milligram of cell protein begins to decline in the early stage of batch fermentation before high concentrations of ethanol have accumulated. In yeast extract-peptone medium (20% glucose), this initial decline appears to be related to growth and to result in part from a nutrient deficiency. The addition of yeast extract, peptone, and ashed preparations of these restored the ability of glucose-reconstituted medium (in which cells had been previously grown) to support vigorous growth. Magnesium was identified as the active component. Supplementing fermentations with 0.5 mM magnesium prolonged exponential growth, resulting in increased yeast cell mass. The addition of magnesium also reduced the decline in fermentative activity (micromoles of CO2 evolved per hour per milligram of protein) during the completion of batch fermentations. These two effects reduced the time required for the conversion of 20% glucose into ethanol by 1/3 with no measurable loss in ethanol yield (98% of theoretical maximum yield). It is possible that some of the reported beneficial effects of complex nutrients (soy flour and yeast extract) for ethanol production also result from the correction of a simple inorganic ion deficiency, such as magnesium.  相似文献   

3.
Ammonium toxicity in different cell lines   总被引:2,自引:0,他引:2  
The toxic effect of ammonium upon a variety of cell lines of lymphoid (Jurkat), pituitary (GH(4)), and renal (LLC-PK(1)) origin was studied. Millimolar concentrations of the ion mildly affected the growth of GH(4) cells and prevented the growth of LLC-PK(1) cells. The ion did not lead to the death of LLC-PK(1) cells but it produced morphologic changes in these cells. The effects of ammonium upon Jurkat cells were different because cells died after accumulating at S phase. Cell death was due to apoptosis and might be related to ammonium-induced calcium mobilization from intracellular stores. These results indicate that the toxic effects caused by ammonium accumulation are different depending upon the cell type. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 530-537, 1997.  相似文献   

4.
5.
Metaiodobenzylguanidine (MIBG) is a tracer that selectively targets neuroendocrine cells. On this basis, radiolabeled iodinated-MIBG (I-131-MIBG) has been introduced as a molecular nuclear therapy in the management of neuroendocrine tumors, including neuroblastoma, pheochromocytoma, paraganglioma, neuroendocrine carcinomas, and other rare neuroendocrine tumors. Extensive work has been addressed to develop I-131-MIBG therapy: doses, therapeutic schemes, and efficiency. In this paper, we present an overview on I-131-MIBG therapy, with main focus on different aspects how to perform this treatment.  相似文献   

6.
Experiments in yeast have significantly contributed to our understanding of general aspects of biochemistry, genetics, and cell biology. Yeast models have also delivered deep insights in to the molecular mechanism underpinning human diseases, including neurodegenerative diseases. Many neurodegenerative diseases are associated with the conversion of a protein from a normal and benign conformation into a disease-associated and toxic conformation - a process called protein misfolding. The misfolding of proteins with abnormally expanded polyglutamine (polyQ) regions causes several neurodegenerative diseases, such as Huntington's disease and the Spinocerebellar Ataxias. Yeast cells expressing polyQ expansion proteins recapitulate polyQ length-dependent aggregation and toxicity, which are hallmarks of all polyQ-expansion diseases. The identification of modifiers of polyQ toxicity in yeast revealed molecular mechanisms and cellular pathways that contribute to polyQ toxicity. Notably, several of these findings in yeast were reproduced in other model organisms and in human patients, indicating the validity of the yeast polyQ model. Here, we describe different expression systems for polyQ-expansion proteins in yeast and we outline experimental protocols to reliably and quantitatively monitor polyQ toxicity in yeast.  相似文献   

7.
8.
Ammonium toxicity and the real cost of transport   总被引:15,自引:0,他引:15  
  相似文献   

9.
Oxygen toxicity in a fission yeast   总被引:1,自引:0,他引:1  
Continuous exposure of synchronous cultures of Schizosaccharomyces pombe to 2.0 atmospheres oxygen beginning at any point in the first two-thirds of the cell cycle prevented subsequent cell division. Similar exposure during the last one-third of the cell cycle did not prevent cell division. The inhibition of division was totally reversible. Exposure to 2.0 atmospheres oxygen for 2.5 hours did not affect oxygen consumption. Oxygen at 1.0 atmospheres reduced growth rate and protein synthesis by 44%. Similar exposure to 1.0 atmospheres reduced transport of glycine-14C, L-leucine-14C, and uracil-14C by 95%, 73%, and 89% respectively. Analysis of the kinetics of uptake of these materials showed noncompetitive inhibition of transport by oxygen. The primary effect in rapidly appearing oxygen toxicity apparently involved interference with the transport capabilities of the cell membrane.  相似文献   

10.
Summary The toxicity of germanium dioxide (GeO2) to 21 bacterial and 13 yeast strains was investigated in liquid broth medium to obtain information on strains tolerant to high (1 to 2 mg/ml) GeO2 concentrations.Arthrobacter sp. NRC 32005,enterobacter aerogenes NRC 2926,Klebsiella aerogenes NCTC 418 andPseudomonas putida NRC 5019 were tolerant to 1 mg/ml GeO2.Bacillus sp. RC607 was able to grow in the presence of 2 mg/ml GeO2 at pH 10 in broth culture. The yeastsCandida guilliermondii, Candida shehatae andPachysolen tannophilus were the most sensitive to GeO2 as evidenced by their diminished growth rates at a GeO2 concentration as low as 0.1 mg/ml. None of the yeast strains tested exhibited growth in the presence of 1 mg/ml GeO2. The high pH of the medium containing germanium may be partially responsible for the growth inhibition of the yeast cultures. Select bacterial cultures previously exposed to 1 mg/ml GeO2 could tolerate and grow better at 2 mg/ml GeO2, suggesting the existence of very efficient adaptive mechanisms. The pH of the medium could modulate GeO2 tolerance and this effect was found to be strain-dependent.  相似文献   

11.
Lymphokine toxicity for yeast cells   总被引:11,自引:0,他引:11  
  相似文献   

12.
Trehalose metabolism in yeast has been related to stress and could be used as a stress indicator. Winemaking conditions are stressful for yeast and understanding trehalose metabolism under these conditions could be useful for controlling alcoholic fermentation. In this study, we analysed trehalose metabolism of a commercial wine yeast strain during alcoholic fermentation by varying the nitrogen levels from low (below adequate) to high (excess). We determined trehalose, nitrogen, sugar consumption and expression of NTH1, NTH2 and TPS1. Our results show that trehalose metabolism is slightly affected by nitrogen availability and that the main consumption of nitrogen occurs in the first 24 h. After this period, nitrogen is hardly taken up by the yeast cells. Although nitrogen and sugar are still available, no further growth is observed in high concentrations of nitrogen. Increased expression of genes involved in trehalose metabolism occurs mainly at the end of the growth period. This could be related to an adaptive mechanism for fine tuning of glycolysis during alcoholic tumultuous fermentation, as both anabolic and catabolic pathways are affected by such expression.  相似文献   

13.
14.
Procarbazine [N-isopropyl-alpha-(2-methylhydrazino)-p-toluamide hydrochloride] is used to treat Hodgkin's disease. This compound was tested in vitro without and with S10 fraction from mice liver (microsomal assay) using Saccharomyces cerevisiae strain D7, Salmonella typhimurium (strains TA98, TA100, TA1535) and in vivo in Swiss albino mice (host-mediated assay) using D7. Procarbazine, without S10 fraction, is highly toxic and induced mitotic crossover, gene conversion, and reverse mutation in D7. It had a toxic effect on all the Salmonella strains; but did not induce reverse mutations at the histidine loci. Procarbazine, with S10 fraction, was less toxic and did not induce genetic effects in yeast or Salmonella. In the host-mediated assay, no genetic effects were seen.  相似文献   

15.
Plasma membrane vesicles were isolated from homogenised yeast cells by filtration, differential centrifugation and aggregation of the mitochondrial vesicles at pH 4. As judged by biochemical, cell electrophoretic and electron microscopic criteria a pure plasma membrane vesicle preparation was obtained.The surface charge density of the plasma membrane vesicles is similar to that of intact yeast cells with an isoelectric point below pH 3. The mitochondrial vesicles have a higher negative surface charge density in the alkaline pH range. Their isoelectric point is near pH 4.5, where aggregation is maximal.The yield of vesicles sealed to K+ was maximal at pH 4 and accounted for about one third of the total vesicle volume.The plasma membrane vesicles demonstrate osmotic behaviour, they shrink in NaCl solutions when loosing K+.As in intact yeast cells the entry and exit of sugars like glucose or galactose in plasma membrane vesicles is inhibited by UO22+.Counter transport in plasma membrane vesicles with glucose and mannose and iso-counter transport with glucose suggests that a mobile carrier for sugar transport exists in the plasma membrane.After galactose pathway induction in the yeast cells and subsequent preparation of plasma membrane vesicles the uptake of galactose into the vesicles increased by almost 100% over the control value without galactose induction. This increase is explained by the formation of a specific galactose carrier in the plasma membrane.  相似文献   

16.
17.
18.
19.
Nine human disorders result from the toxic accumulation and aggregation of proteins with expansions in their endogenous polyalanine (polyA) tracts. Given the prevalence of polyA tracts in eukaryotic proteomes, we wanted to understand the generality of polyA-expansion cytotoxicity by using yeast as a model organism. In our initial case, we expanded the polyA tract within the native yeast poly(Adenine)-binding protein Pab1 from 8A to 13A, 15A, 17A, and 20A. These expansions resulted in increasing formation of Pab1 inclusions, insolubility, and cytotoxicity that correlated with the length of the polyA expansion. Pab1 binds mRNA as part of its normal function, and disrupting RNA binding or altering cytoplasmic mRNA levels suppressed the cytotoxicity of 17A-expanded Pab1, indicating a requisite role for mRNA in Pab1 polyA-expansion toxicity. Surprisingly, neither manipulation suppressed the cytotoxicity of 20A-expanded Pab1. Thus longer expansions may have a different mechanism for toxicity. We think that this difference underscores the potential need to examine the cytotoxic mechanisms of both long and short expansions in models of expansion disorders.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号