首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kshirsagar M  Parker R 《Genetics》2004,166(2):729-739
The major pathway of mRNA decay in yeast initiates with deadenylation, followed by mRNA decapping and 5'-3' exonuclease digestion. An in silico approach was used to identify new proteins involved in the mRNA decay pathway. One such protein, Edc3p, was identified as a conserved protein of unknown function having extensive two-hybrid interactions with several proteins involved in mRNA decapping and 5'-3' degradation including Dcp1p, Dcp2p, Dhh1p, Lsm1p, and the 5'-3' exonuclease, Xrn1p. We show that Edc3p can stimulate mRNA decapping of both unstable and stable mRNAs in yeast when the decapping enzyme is compromised by temperature-sensitive alleles of either the DCP1 or the DCP2 genes. In these cases, deletion of EDC3 caused a synergistic mRNA-decapping defect at the permissive temperatures. The edc3Delta had no effect when combined with the lsm1Delta, dhh1Delta, or pat1Delta mutations, which appear to affect an early step in the decapping pathway. This suggests that Edc3p specifically affects the function of the decapping enzyme per se. Consistent with a functional role in decapping, GFP-tagged Edc3p localizes to cytoplasmic foci involved in mRNA decapping referred to as P-bodies. These results identify Edc3p as a new protein involved in the decapping reaction.  相似文献   

2.
3.
HeLa cytoplasmic extracts contain both 3'-5' and 5'-3' exonuclease activities that may play important roles in mRNA decay. Using an in vitro RNA deadenylation/decay assay, mRNA decay intermediates were trapped using phosphothioate-modified RNAs. These data indicate that 3'-5' exonucleolytic decay is the major pathway of RNA degradation following deadenylation in HeLa cytoplasmic extracts. Immunodepletion using antibodies specific for the exosomal protein PM-Scl75 demonstrated that the human exosome complex is required for efficient 3'-5' exonucleolytic decay. Furthermore, 3'-5' exonucleolytic decay was stimulated dramatically by AU-rich instability elements (AREs), implicating a role for the exosome in the regulation of mRNA turnover. Finally, PM-Scl75 protein was found to interact specifically with AREs. These data suggest that the interaction between the exosome and AREs plays a key role in regulating the efficiency of ARE-containing mRNA turnover.  相似文献   

4.
5.
6.
Exoribonucleases function in the processing and degradation of a variety of RNAs in all organisms. These enzymes play a particularly important role in the maturation of rRNAs and in a quality-control pathway that degrades rRNA precursors upon inhibition of ribosome biogenesis. Strains with defects in 3'-5' exoribonucleolytic components of the RNA processing exosome accumulate polyadenylated precursor rRNAs that also arise in strains with ribosome biogenesis defects. These findings suggested that polyadenylation might target pre-rRNAs for degradation by the exosome. Here we report experiments that indicate a role for the 5'-3' exoribonuclease Rat1p and its associated protein Rai1p in the degradation of poly(A)(+) pre-rRNAs. Depletion of Rat1p enhances the amount of poly(A)(+) pre-rRNA that accumulates in strains deleted for the exosome subunit Rrp6p and decreases their 5' heterogeneity. Deletion of RAI1 results in the accumulation of poly(A)(+) pre-rRNAs, and inhibits Rat1p-dependent 5'-end processing and Rrp6p-dependent 3'-end processing of 5.8S rRNA. RAT1 and RAI1 mutations cause synergistic growth defects in the presence of rrp6-Delta, consistent with the interdependence of 5'-end and 3'-end processing pathways. These findings suggest that Rai1p may coordinate the 5'-end and 3'-end processing and degradation activities of Rat1p and the nuclear exosome.  相似文献   

7.
Hilleren PJ  Parker R 《Molecular cell》2003,12(6):1453-1465
Specific systems of nuclear RNA degradation appear to target and degrade aberrant pre-mRNA molecules. In this work we report on a Dbr1p-dependent RNA decay pathway that limits the accumulation of splice-defective lariat intermediates stalled at the second step of splicing. In this pathway, splice-defective lariat intermediates are debranched by Dbr1p and subsequently degraded 5' to 3' primarily by the cytoplasmic exonuclease, Xrn1p. When debranching is blocked, these splicing intermediates can be degraded in a 3' to 5' direction in a manner dependent on Ski2p, a cofactor for the cytoplasmic exosome. In that Xrn1p and Ski2p are cytoplasmic and Dbr1p localizes to both the nucleus and the cytoplasm, these data suggest that this decay pathway occurs within the cytoplasm. Furthermore, the finding that lariat intermediates accumulate in the dbr1Delta strain suggests that this pathway also functions as an inherent quality control mechanism for the process of pre-mRNA splicing.  相似文献   

8.
Eukaryotic mRNAs can be degraded in either decapping/5'-to-3' or 3'-to-5' direction after deadenylation. In yeast and mammalian cells, decay factors involved in the 5'-to-3' decay pathway are concentrated in cytoplasmic processing bodies (P bodies). The mechanistic steps and localization of mammalian mRNA decay are still not completely understood. Here, we investigate functions of human mRNA decay enzymes in AU-rich element (ARE)-mediated mRNA decay (AMD) and find that the deadenylase, poly(A) ribonuclease PARN, and enzymes involved in the 5'-to-3' and 3'-to-5' decay pathways are required for AMD. The ARE-containing reporter mRNA accumulates in discrete cytoplasmic granular structures, which are distinct from P bodies and stress granules. These granules consist of poly(A)-specific ribonuclease, exosome subunits, and decay-promoting ARE-binding proteins. Inhibition of AMD increases accumulation of ARE-mRNA in these granules. We refer to these structures as cytoplasmic exosome granules and suggest that some AMD may occur in these granules.  相似文献   

9.
10.
One of two general pathways of mRNA decay in the yeast Saccharomyces cerevisiae occurs by deadenylation followed by 3'-to-5' degradation of the mRNA body. Previous results have shown that this degradation requires components of the exosome and the Ski2p, Ski3p, and Ski8p proteins, which were originally identified due to their superkiller phenotype. In this work, we demonstrate that deletion of the SKI7 gene, which encodes a putative GTPase, also causes a defect in 3'-to-5' degradation of mRNA. Deletion of SKI7, like deletion of SKI2, SKI3, or SKI8, does not affect various RNA-processing reactions of the exosome. In addition, we show that a mutation in the SKI4 gene also causes a defect in 3'-to-5' mRNA degradation. We show that the SKI4 gene is identical to the CSL4 gene, which encodes a core component of the exosome. Interestingly, the ski4-1 allele contains a point mutation resulting in a mutation in the putative RNA binding domain of the Csl4p protein. This point mutation strongly affects mRNA degradation without affecting exosome function in rRNA or snRNA processing, 5' externally transcribed spacer (ETS) degradation, or viability. In contrast, the csl4-1 allele of the same gene affects rRNA processing but not 3'-to-5' mRNA degradation. We identify csl4-1 as resulting from a partial-loss-of-function mutation in the promoter of the CSL4 gene. These data indicate that the distinct functions of the exosome can be separated genetically and suggest that the RNA binding domain of Csl4p may have a specific function in mRNA degradation.  相似文献   

11.
12.
Many mRNAs in mammalian cells decay via a sequential pathway involving rapid conversion of polyadenylated molecules to a poly(A)-deficient state followed by rapid degradation of the poly(A)-deficient molecules. However, the rapidity of this latter step(s) has precluded further analyses of the decay pathways involved. Decay intermediates derived from degradation of poly(A)-deficient molecules could offer clues regarding decay pathways, but these intermediates have not been readily detected. Cell-free mRNA decay systems have proven useful in analyses of decay pathways because decay intermediates are rather stable in vitro. Cell-free systems indicate that many mRNAs decay by a sequential 3'-5' pathway because 3'-terminal decay intermediates form following deadenylation. However, if 3'-terminal, in vitro decay intermediates reflect a biologically significant aspect of mRNA turnover, then similar intermediates should be present in cells. Here, I have compared the in vivo and in vitro decay of mRNA encoded by the c-myc proto-oncogene. Its decay both in vivo and in vitro occurs by rapid removal of the poly(A) tract and generation of a 3'-terminal decay intermediate. These data strongly suggest that a 3'-5' pathway contributes to turnover of c-myc mRNA in cells. It is likely that 3'-5' decay represents a major turnover pathway in mammalian cells.  相似文献   

13.
S Tharun  R Parker 《Molecular cell》2001,8(5):1075-1083
The major pathway of eukaryotic mRNA decay involves deadenylation-dependent decapping followed by 5' to 3' exonucleolytic degradation. By examining interactions among mRNA decay factors, the mRNA, and key translation factors, we have identified a critical transition in mRNP organization that leads to decapping and degradation of yeast mRNAs. This transition occurs after deadenylation and includes loss of Pab1p, eIF4E, and eIF4G from the mRNA and association of the decapping activator complex, Lsm1p-7p, which enhances the coimmunoprecipitation of a decapping enzyme complex (Dcp1p and Dcp2p) with the mRNA. These results define an important rearrangement in mRNP organization and suggest that deadenylation promotes mRNA decapping by both the loss of Pab1p and the recruitment of the Lsm1p-7p complex.  相似文献   

14.
In yeast, the activators of mRNA decapping, Pat1, Lsm1 and Dhh1, accumulate in processing bodies (P bodies) together with other proteins of the 5'-3'-deadenylation-dependent mRNA decay pathway. The Pat1 protein is of particular interest because it functions in the opposing processes of mRNA translation and mRNA degradation, thus suggesting an important regulatory role. In contrast to other components of this mRNA decay pathway, the human homolog of the yeast Pat1 protein was unknown. Here we describe the identification of two human PAT1 genes and show that one of them, PATL1, codes for an ORF with similar features as the yeast PAT1. As expected for a protein with a fundamental role in translation control, PATL1 mRNA was ubiquitously expressed in all human tissues as were the mRNAs of LSM1 and RCK, the human homologs of yeast LSM1 and DHH1, respectively. Furthermore, fluorescence-tagged PatL1 protein accumulated in distinct foci that correspond to P bodies, as they co-localized with the P body components Lsm1, Rck/p54 and the decapping enzyme Dcp1. In addition, as for its yeast counterpart, PatL1 expression was required for P body formation. Taken together, these data emphasize the conservation of important P body components from yeast to human cells.  相似文献   

15.
RNase mitochondrial RNA processing (RNase MRP) mutants have been shown to have an exit-from-mitosis defect that is caused by an increase in CLB2 mRNA levels, leading to increased Clb2p (B-cyclin) levels and a resulting late anaphase delay. Here we describe the molecular defect behind this delay. CLB2 mRNA normally disappears rapidly as cells complete mitosis, but the level remains high in RNase MRP mutants. This is in direct contrast to other exit-from-mitosis mutants and is the result of an increase in CLB2 mRNA stability. We found that highly purified RNase MRP cleaved the 5' untranslated region (UTR) of the CLB2 mRNA in several places in an in vitro assay. In vivo, we identified RNase MRP-dependent cleavage products on the CLB2 mRNA that closely matched in vitro products. Disposal of these products was dependent on the 5'-->3' exoribonuclease Xrn1 and not the exosome. Our results demonstrate that the endoribonuclease RNase MRP specifically cleaves the CLB2 mRNA in its 5'-UTR to allow rapid 5' to 3' degradation by the Xrn1 nuclease. Degradation of the CLB2 mRNA by the RNase MRP endonuclease provides a novel way to regulate the cell cycle that complements the protein degradation machinery. In addition, these results denote a new mechanism of mRNA degradation not seen before in the yeast Saccharomyces cerevisiae.  相似文献   

16.
17.
The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1   总被引:4,自引:0,他引:4  
Fischer N  Weis K 《The EMBO journal》2002,21(11):2788-2797
An important control step in the regulation of cytoplasmic mRNA turnover is the removal of the m(7)G cap structure at the 5' end of the message. Here, we describe the functional characterization of Dhh1, a highly conserved member of the family of DEAD box-containing proteins, as a regulator of mRNA decapping in Saccharomyces cerevisiae. Dhh1 is a cytoplasmic protein and is shown to be in a complex with the mRNA degradation factor Pat1/Mtr1 and with the 5'-3' exoribonuclease Xrn1. Dhh1 specifically affects mRNA turnover in the deadenylation-dependent decay pathway, but does not act on the degradation of nonsense-containing mRNAs. Cells that lack dhh1 accumulate degradation intermediates that have lost their poly(A) tail but contain an intact 5' cap structure, suggesting that Dhh1 is required for efficient decapping in vivo. Furthermore, recombinant Dhh1 is able to stimulate the activity of the purified decapping enzyme Dcp1 in an in vitro decapping assay. We propose that the DEAD box protein Dhh1 regulates the access of the decapping enzyme to the m(7)G cap by modulating the structure at the 5' end of mRNAs.  相似文献   

18.
19.
20.
Lejeune F  Li X  Maquat LE 《Molecular cell》2003,12(3):675-687
Nonsense-mediated mRNA decay (NMD) is a mechanism by which cells recognize and degrade mRNAs that prematurely terminate translation. To date, the polarity and enzymology of NMD in mammalian cells is unknown. We show here that downregulating the Dcp2 decapping protein or the PM/Scl100 component of the exosome (1) significantly increases the abundance of steady-state nonsense-containing but not nonsense-free mRNAs, and (2) significantly slows the decay rate of transiently induced nonsense-containing but not nonsense-free mRNA. Downregulating poly(A) ribonuclease (PARN) also increases the abundance of nonsense-containing mRNAs. Furthermore, NMD factors Upf1, Upf2, and Upf3X coimmunopurify with the decapping enzyme Dcp2, the putative 5'-->3' exonuclease Rat1, the proven 5'-->3' exonuclease Xrn1, exosomal components PM/Scl100, Rrp4, and Rrp41, and PARN. From these and other data, we conclude that NMD in mammalian cells degrades mRNAs from both 5' and 3' ends by recruiting decapping and 5'-->3' exonuclease activities as well as deadenylating and 3'-->5' exonuclease activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号