首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the ubiquitously expressed secretory-pathway Ca(2+)-ATPase (SPCA1) Ca(2+) pump result in Hailey-Hailey disease, which almost exclusively affects the epidermal part of the skin. We have studied Ca(2+) signaling in human keratinocytes by measuring the free Ca(2+) concentration in the cytoplasm and in the lumen of both the Golgi apparatus and the endoplasmic reticulum. These signals were compared with those recorded in SPCA1-overexpressing and control COS-1 cells. Both the sarco(endo)plasmic-reticulum Ca(2+)-ATPase (SERCA) and SPCA1 can mediate Ca(2+) uptake into the Golgi stacks. Our results indicate that keratinocytes mainly used the SPCA1 Ca(2+) pump to load the Golgi complex with Ca(2+) whereas the SERCA Ca(2+) pump was mainly used in control COS-1 cells. Cytosolic Ca(2+) signals in keratinocytes induced by extracellular ATP or capacitative Ca(2+) entry were characterized by an unusually long latency reflecting extra Ca(2+) buffering by an SPCA1-containing Ca(2+) store, similarly as in SPCA1-overexpressing COS-1 cells. Removal of extracellular Ca(2+) elicited spontaneous cytosolic Ca(2+) transients in keratinocytes, similarly as in SPCA1-overexpressing COS-1 cells. With respect to Ca(2+) signaling keratinocytes and SPCA1-overexpressing COS-1 cells therefore behaved similarly but differed from control COS-1 cells. The relatively large contribution of the SPCA1 pumps for loading the Golgi stores with Ca(2+) in keratinocytes may, at least partially, explain why mutations in the SPCA1 gene preferentially affect the skin in Hailey-Hailey patients.  相似文献   

2.
In mammalian tissues, uptake of Ca(2+) and Mn(2+) by Golgi membranes is mediated by the secretory pathway Ca(2+) -ATPases, SPCA1 and SPCA2, encoded by the ATP2C1 and ATP2C2 genes. Loss of one copy of the ATP2C1 gene, which causes SPCA1 haploinsufficiency, leads to squamous cell tumors of keratinized epithelia in mice and to Hailey-Hailey disease, an acantholytic skin disease, in humans. Although the disease phenotypes resulting from SPCA1 haploinsufficiency in mice and humans are quite different, each species-specific phenotype is remarkably similar to those arising as a result of null mutations in one copy of the ATP2A2 gene, encoding SERCA2, the endoplasmic reticulum (ER) Ca(2+) pump. SERCA2 haploinsufficiency, like SPCA1 haploinsufficiency, causes squamous cell tumors in mice and Darier's disease, also an acantholytic skin disease, in humans. The phenotypic similarities between SPCA1 and SERCA2 haploinsufficiency in the two species, and the general functions of the two pumps in consecutive compartments of the secretory pathway, suggest that the underlying disease mechanisms are similar. In this review, we discuss evidence supporting the view that chronic Golgi stress and/or ER stress resulting from Ca(2+) pump haploinsufficiencies leads to activation of cellular stress responses in keratinocytes, with the predominance of proapoptotic pathways (although not necessarily apoptosis itself) leading to acantholytic skin disease in humans and the predominance of prosurvival pathways leading to tumors in mice.  相似文献   

3.
The Ca2+/Mn2+ pumps in the Golgi apparatus   总被引:3,自引:0,他引:3  
Recent evidence highlights the functional importance of the Golgi apparatus as an agonist-sensitive intracellular Ca(2+) store. Besides Ca(2+)-release channels and Ca(2+)-binding proteins, the Golgi complex contains Ca(2+)-uptake mechanisms consisting of the well-known sarco/endoplasmic reticulum Ca(2+)-transport ATPases (SERCA) and the much less characterized secretory-pathway Ca(2+)-transport ATPases (SPCA). SPCA supplies the Golgi compartments and, possibly, the more distal compartments of the secretory pathway with both Ca(2+) and Mn(2+) and, therefore, plays an important role in the cytosolic and intra-Golgi Ca(2+) and Mn(2+) homeostasis. Mutations in the human gene encoding the SPCA1 pump (ATP2C1) resulting in Hailey-Hailey disease, an autosomal dominant skin disorder, are discussed.  相似文献   

4.
The secretory pathway Ca(2+) ATPase (SPCA) provides the Golgi apparatus with a Ca(2+) supply essential for Ca(2+)-dependent enzymes involved in the post-translational modification of proteins in transit through the secretory pathway. Ca(2+) in the Golgi apparatus is also agonist-releasable and plays a role in hormone-induced Ca(2+) transients. Although the Ca(2+) ATPase inhibitors thapsigargin is more selective for the sarcoplasmic-endoplasmic reticulum Ca(2+) ATPase (SERCA) than for SPCA, no inhibitor has been characterised that selectively inhibits SPCA. A number of inhibitors were assessed for their selectivity to the human SPCA1d compared to the more ubiquitous human SERCA2b. Each isoform was over-expressed in COS-7 cells and the Ca(2+)-dependent ATPase activity measured in their microsomal membranes. Both bis(2-hydroxy-3-tert-butyl-5-methyl-phenyl)methane(bis-phenol) and 2-aminoethoxydiphenylborate (2-APB) selectively inhibited SPCA1d (with IC(50) values of 0.13μM and 0.18mM, respectively), which were of 62- and 8.3-fold greater potency than the values for hSERCA2b (IC(50) values; 8.1μM and 1.5mM, respectively). Other inhibitors tested such as bis-phenol-A, tetrabromobisphenol-A and trifluoperazine inhibited both Ca(2+) ATPases similarly. Furthermore, bis-phenol was able to mobilize Ca(2+) in cells that had been pre-treated with thapsigargin. Therefore we conclude that given the potency and selectivity of bis-phenol it may prove a valuable tool in further understanding the role of SPCA in cellular processes.  相似文献   

5.
Steady-state and transient kinetic studies were performed to functionally analyze the overall and partial reactions of the Ca(2+) transport cycle of the human secretory pathway Ca(2+)/Mn(2+)-ATPase 1 (SPCA1) isoforms: SPCA1a, SPCA1b, SPCA1c, and SPCA1d (encoded by ATP2C1, the gene defective in Hailey-Hailey disease) upon heterologous expression in mammalian cells. The expression levels of SPCA1 isoforms were 200-350-fold higher than in control cells except for SPCA1c, whose low expression level appears to be the effect of rapid degradation because of protein misfolding. Relative to SERCA1a, the active SPCA1a, SPCA1b, and SPCA1d enzymes displayed extremely high apparent affinities for cytosolic Ca(2+) in activation of the overall ATPase and phosphorylation activities. The maximal turnover rates of the ATPase activity for SPCA1 isoforms were 4.7-6.4-fold lower than that of SERCA1a (lowest for the shortest SPCA1a isoform). The kinetic analysis traced these differences to a decreased rate of the E(1) approximately P(Ca) to E(2)-P transition. The apparent affinity for inorganic phosphate was reduced in the SPCA1 enzymes. This could be accounted for by an enhanced rate of the E(2)-P hydrolysis, which showed constitutive activation, lacking the SERCA1a-specific dependence on pH and K(+).  相似文献   

6.
Membrane fractions of pig cerebellum show Ca2+-ATPase activity and Ca2+ transport due to the presence of the secretory pathway Ca2+-ATPase (SPCA). The SPCA1 isoform shows a wide distribution in the neurons of pig cerebellum, where it is found in the Golgi complex of the soma of Purkinje, stellate, basket and granule cells, and also in more distal components of the secretory pathway associated with a synaptic localization such as in cerebellar glomeruli. The SPCA1 may be involved in loading the Golgi complex and the secretory vesicles of these specific neuronal cell types with Ca2+ and also Mn2+. This study of the cellular and subcellular localization of SPCA1 pumps relative to the sarco(endo) plasmic reticulum Ca2+-ATPase and plasma membrane Ca2+-ATPase pumps hints to a possible specific role of SPCA1 in controlling the luminal secretory pathway Ca2+ (or Mn2+) levels as well as the local cytosolic Ca2+ levels. In addition, it helps to specify the zones that are most vulnerable to Ca2+ and/or Mn2+ dyshomeostasis, a condition that is held responsible of an increasing number of neurological disorders.  相似文献   

7.
Human secretory pathway Ca2+/Mn2+-ATPase (SPCA) 2 encoded by ATP2C2 is only expressed in a limited number of tissues, unlike the ubiquitously expressed SPCA1 pump (encoded by ATP2C1, the gene defective in Hailey-Hailey disease). It has not been determined whether there are significant functional differences between SPCA1 and SPCA2 pump enzymes. Therefore, steady-state and transient kinetic approaches were used to characterize the overall and partial reactions of the Ca2+ transport cycle mediated by the human SPCA2 enzyme upon heterologous expression in HEK-293 cells. The catalytic turnover rate of SPCA2 was found enhanced relative to SPCA1 pumps. SPCA2 displayed a very high apparent affinity for cytosolic Ca2+ (K0.5 = 0.025 microm) in activation of the phosphorylation activity but still 2.5-fold lower than that of SPCA1d. Our kinetic analysis traced both differences to the increased rate characterizing the E1 approximately PCa to E2-P transition of SPCA2. Moreover, the reduced rate of the E2 to E1 transition seems to contribute in determining the lower apparent Ca2+ affinity and the increased sensitivity to thapsigargin inhibition, relative to SPCA1d. SPCA2 also displayed a reduced apparent affinity for inorganic phosphate, which could be explained by the observed enhanced rate of the E2-P dephosphorylation. The insensitivity to modulation by pH and K+ concentration of the constitutively enhanced E2-P dephosphorylation of SPCA2 is similar to SPCA1d and possibly represents a novel SPCA-specific feature, which is not shared by sarco(endo)plasmic reticulum Ca2+-ATPases.  相似文献   

8.
The discovery and biochemical characterization of the secretory pathway Ca(2+)-ATPase, PMR1, in Saccharomyces cerevisiae, has paved the way for identification of PMR1 homologues in many species including rat, Caenorhabditis elegans, and Homo sapiens. In yeast, PMR1 has been shown to function as a high affinity Ca(2+)/Mn(2+) pump and has been localized to the Golgi compartment where it is important for protein sorting, processing, and glycosylation. However, little is known about PMR1 homologues in higher organisms. Loss of one functional allele of the human gene, hSPCA1, has been linked to Hailey-Hailey disease, characterized by skin ulceration and improper keratinocyte adhesion. We demonstrate that expression of hSPCA1 in yeast fully complements pmr1 phenotypes of hypersensitivity to Ca(2+) chelators and Mn(2+) toxicity. Similar to PMR1, epitope-tagged hSPCA1 also resides in the Golgi when expressed in yeast or in chinese hamster ovary cells. (45)Ca(2+) transport by hSPCA1 into isolated yeast Golgi vesicles shows an apparent Ca(2+) affinity of 0.26 microm, is inhibitable by Mn(2+), but is thapsigargin-insensitive. In contrast, heterologous expression of vertebrate sarcoplasmic reticulum and plasma membrane Ca(2+)-ATPases in yeast complement the Ca(2+)- but not Mn(2+)-related phenotypes of the pmr1-null strain, suggesting that high affinity Mn(2+) transport is a unique feature of the secretory pathway Ca(2+)-ATPases.  相似文献   

9.
10.
Relatively few clues have been uncovered to elucidate the cell biological role(s) of mammalian ATP2C1 encoding an inwardly directed secretory pathway Ca2+/Mn2+ pump that is ubiquitously expressed. Deficiency of ATP2C1 results in a human disease (Hailey-Hailey), which primarily affects keratinocytes. ATP2C1-encoded protein is detected in the Golgi complex in a calcium-dependent manner. A small interfering RNA causes knockdown of ATP2C1 expression, resulting in defects in both post-translational processing of wild-type thyroglobulin (a secretory glycoprotein) as well as endoplasmic reticulum-associated protein degradation of mutant thyroglobulin, whereas degradation of a nonglycosylated misfolded secretory protein substrate appears unaffected. Knockdown of ATP2C1 is not associated with elevated steady state levels of ER chaperone proteins, nor does it block cellular activation of either the PERK, ATF6, or Ire1/XBP1 portions of the ER stress response. However, deficiency of ATP2C1 renders cells hypersensitive to ER stress. These data point to the important contributions of the Golgi-localized ATP2C1 protein in homeostatic maintenance throughout the secretory pathway.  相似文献   

11.
Ca(2+) is an essential and ubiquitous second messenger. Changes in cytosolic Ca(2+) trigger events critical for tumorigenesis, such as cellular motility, proliferation, and apoptosis. We show that an isoform of Secretory Pathway Ca(2+)-ATPase, SPCA2, is upregulated in breast cancer-derived cells and human breast tumors, and suppression of SPCA2 attenuates basal Ca(2+) levels and tumorigenicity. Contrary to its conventional role in Golgi Ca(2+) sequestration, expression of SPCA2 increased Ca(2+) influx by a mechanism dependent on the store-operated Ca(2+) channel Orai1. Unexpectedly, SPCA2-Orai1 signaling was independent of ER Ca(2+) stores or STIM1 and STIM2 sensors and uncoupled from Ca(2+)-ATPase activity of SPCA2. Binding of the SPCA2 amino terminus to Orai1 enabled access of its carboxyl terminus to Orai1 and activation of Ca(2+) influx. Our findings reveal a signaling pathway in which the Orai1-SPCA2 complex elicits constitutive store-independent Ca(2+) signaling that promotes tumorigenesis.  相似文献   

12.
SPCA1 pumps and Hailey-Hailey disease   总被引:1,自引:0,他引:1  
Both the endoplasmic reticulum and the Golgi apparatus are agonist-sensitive intracellular Ca2+ stores. The Golgi apparatus has Ca2+-release channels and a Ca2+-uptake mechanism consisting of sarco(endo)plasmic-reticulum Ca2+-ATPases (SERCA) and secretory-pathway Ca2+-ATPases (SPCA). SPCA1 has been shown to transport both Ca2+ and Mn2+ in the Golgi lumen and therefore plays an important role in the cytosolic and intra-Golgi Ca2+ and Mn2+ homeostasis. Human genetic studies have provided new information on the physiological role of SPCA1. Loss of one functional copy of the SPCA1 (ATP2C1) gene causes Hailey-Hailey disease, a skin disorder arising in the adult age with recurrent vesicles and erosions in the flexural areas. Here, we review recent experimental evidence showing that the Golgi apparatus plays a much more important role in intracellular ion homeostasis than previously anticipated.  相似文献   

13.
The mechanism of cargo sorting at the trans-Golgi network (TGN) for secretion is poorly understood. We previously reported the involvement of the actin-severing protein cofilin and the Ca(2+) ATPase secretory pathway calcium ATPase 1 (SPCA1) in the sorting of soluble secretory cargo at the TGN in mammalian cells. Now we report that cofilin in yeast is required for export of selective secretory cargo at the late Golgi membranes. In cofilin mutant (cof1-8) cells, the cell wall protein Bgl2 was secreted at a reduced rate and retained in a late Golgi compartment, whereas the plasma membrane H(+) ATPase Pma1, which is transported in the same class of carriers, reached the cell surface. In addition, sorting of carboxypeptidase Y (CPY) to the vacuole was delayed, and CPY was secreted from cof1-8 cells. Loss of the yeast orthologue of SPCA1 (Pmr1) exhibited similar sorting defects and displayed synthetic sickness with cof1-8. In addition, overexpression of PMR1 restored Bgl2 secretion in cof1-8 cells. These findings highlight the conserved role of cofilin and SPCA1/Pmr1 in sorting of the soluble secretory proteins at the TGN/late Golgi membranes in eukaryotes.  相似文献   

14.
Y Wei  V Marchi  R Wang  R Rao 《Biochemistry》1999,38(44):14534-14541
Pmr1, a novel member of the family of P-type ATPases, localizes to the Golgi compartment in yeast where it provides Ca(2+) and Mn(2+) for a variety of normal secretory processes. We have previously characterized Ca(2+) transport in isolated Golgi vesicles, and described an expression system for the analysis of Pmr1 mutants in a yeast strain devoid of background Ca(2+) pump activity [Sorin, A., Rosas, G., and Rao, R. (1997) J. Biol. Chem. 272, 9895-9901]. Here we show, using recombinant bacterial fusions, that an N-terminal EF hand-like motif in Pmr1 binds Ca(2+). Increasing disruptions of this motif led to progressive loss of pump function; thus, the single point mutations D51A and D53A retained pump activity but with drastic reductions in the affinity for Ca(2+) transport, while the double mutant was largely unable to exit the endoplasmic reticulum. In-frame deletions of the Ca(2+)-binding motif resulted in complete loss of function. Interestingly, the single point mutations conferred differential affinities for transport of Ca(2+) and Mn(2+) ions. Further, the proteolytic stability of the catalytic ATP-binding domain is altered by the N-terminal mutations, suggesting an interaction between these two regions of polypeptide. These studies implicate the N-terminal domain of Pmr1 in the modulation of ion transport, and may help elucidate the role of N-terminal metal-binding sites of Cu(2+)-ATPases, defective in Wilson and Menkes disease.  相似文献   

15.
Accumulation of Ca(2+) into the Golgi apparatus is mediated by sarco(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs) and by secretory pathway Ca(2+)-ATPases (SPCAs). Mammals and birds express in addition to the housekeeping SPCA1 (human gene name ATP2C1, cytogenetic position 3q22.1) a homologous SPCA2 isoform (human gene name ATP2C2, cytogenetic position 16q24.1). We show here that both genes present an identical exon/intron layout. We confirmed that hSPCA2 has the ability to transport Ca(2+), demonstrated its Mn(2+)-transporting activity, showed its Ca(2+)- and Mn(2+)-dependent phosphoprotein intermediate formation, and documented the insensitivity of these functional activities to thapsigargin inhibition. The mRNA encoding hSPCA2 showed a limited tissue expression pattern mainly confined to the gastrointestinal and respiratory tract, prostate, thyroid, salivary, and mammary glands. Immunocytochemical localization in human colon sections presented a typical apical juxtanuclear Golgi-like staining. The expression in COS-1 cells allowed the direct demonstration of (45)Ca(2+) (K(0.5) = 0.27 microm) or (54)Mn(2+) transport into an A23187-releasable compartment.  相似文献   

16.
Thirty-five mutations were generated in the yeast secretory pathway/Golgi ion pump, Pmr1, targeting oxygen-containing side chains within the predicted transmembrane segments M4, M5, M6, M7, and M8, likely to be involved in coordination of Ca(2+) and Mn(2+) ions. Mutants were expressed in low copy number in a yeast strain devoid of endogenous Ca(2+) pumps and screened for loss of Ca(2+) and Mn(2+) transport on the basis of hypersensitivity to 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and Mn(2+) toxicity, respectively. Three classes of mutants were found: mutants indistinguishable from wild type (Class 1), mutants indistinguishable from the pmr1 null strain (Class 2), and mutants with differential sensitivity to BAPTA and Mn(2+) toxicity (Class 3). We show that Class 1 mutants retain normal/near normal properties, including (45)Ca transport, Golgi localization, and polypeptide conformation. In contrast, Class 2 mutants lacked any detectable (45)Ca transport; of these, a subset also showed defects in trafficking and protein folding, indicative of structural problems. Two residues identified as Class 2 mutants in this screen, Asn(774) and Asp(778) in M6, also play critical roles in related ion pumps and are therefore likely to be common architectural components of the cation-binding site. Class 3 mutants appear to have altered selectivity for Ca(2+) and Mn(2+) ions, as exemplified by mutant Q783A in M6. These results demonstrate the utility of phenotypic screening in the identification of residues critical for ion transport and selectivity in cation pumps.  相似文献   

17.
18.
The distribution of the secretory pathway Ca2+ -ATPase (SPCA1) was investigated at both the mRNA and protein level in a variety of tissues. The mRNA and the protein for SPCA1 were relatively abundant in rat brain, testis and testicular derived cells (myoid cells, germ cells, primary Sertoli cells and TM4 cells; a mouse Sertoli cell line) and epididymal fat pads. Lower levels were found in aorta (rat and porcine), heart, liver, lung and kidney. SPCA activities from a number of tissues were measured and shown to be particularly high in brain, aorta, heart, fat pads and testis. As the proportion of SPCA activity compared to total Ca2+ ATPase activity in brain, aorta, fat pads and testis were relatively high, this suggests that SPCA1 plays a major role in Ca2+ storage within these tissues. The subcellular localisation of SPCA1 was shown to be predominantly around the Golgi in both human aortic smooth muscle cells and TM4 cells.  相似文献   

19.
The LDB1 gene of Saccharomyces cerevisiae was identified by complementation of the ldb1 mutant phenotype with a genomic library. We found that the ldb1 defect is complemented by PMR1 which codes for the yeast secretory pathway/Golgi Ca(2+)/Mn(2+)-ATPase. Besides that, the analysis of a null mutation of the PMR1 gene revealed a phenotype identical to that of ldb1 mutant. Thus, LDB1 must be considered a synonym of PMR1.  相似文献   

20.
Unlike lower eukaryotes, mammalian genomes have a second gene, ATP2C2, encoding a putative member of the family of secretory pathway Ca2+,Mn(2+)-ATPases, SPCA2. Human SPCA2 shares 64% amino acid identity with the protein defective in Hailey Hailey disease, hSPCA1. We show that human SPCA2 (hSPCA2) has a more limited tissue distribution than hSPCA1, with prominent protein expression in brain and testis. In primary neuronal cells, endogenous SPCA2 has a highly punctate distribution that overlaps with vesicles derived from the trans-Golgi network and is thus different from the compact perinuclear distribution of hSPCA1 seen in keratinocytes and nonpolarized cells. Heterologous expression in a yeast strain lacking endogenous Ca2+ pumps reveals further functional differences from hSPCA1. Although the Mn(2+)-specific phenotype of hSPCA2 is similar to that of hSPCA1, Ca2+ ions are transported with much poorer affinity, resulting in only weak complementation of Ca(2+)-specific yeast phenotypes. These observations suggest that SPCA2 may have a more specialized role in mammalian cells, possibly in cellular detoxification of Mn2+ ions, similar to that in yeast. We point to the close links between manganese neurotoxicity and Parkinsonism that would predict an important physiological role for SPCA2 in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号