共查询到20条相似文献,搜索用时 15 毫秒
1.
Amyloid fibrils and partially unfolded intermediates can be distinguished serologically from native amyloidogenic precursor proteins or peptides. In this regard, we previously had reported that mAb 11-1F4, generated by immunizing mice with a thermally denatured variable domain (VL) fragment of the human kappa4 Bence Jones protein Len, bound to a non-native conformational epitope located within the N-terminal 18 residues of fibrillar, as well as partially denatured, Ig light chains (O'Nuallain, B., et al. (2006) Biochemistry 46, 1240-1247). To define further the antibody binding site, we used random peptide phage display and epitope mapping of VL Len using wild-type and alanine-mutated Len peptides where it was shown that the antibody epitope was reliant on up to 10 of the first 15 residues of protein Len. Comparison of Vkappa and Vlambda N-terminal germline consensus sequences with protein Len and 11-1F4-binding phages indicated that this antibody's cross-reactivity with light chains was related to an invariant proline at position(s) 7 and/or 8, bulky hydrophobic residues at positions 11 and 13, and additionally, to the ability to accommodate amino acid diversity at positions 1-4. Sequence alignments of the phage peptides revealed a central proline, often flanked by aromatic residues. Taken together, these results have provided evidence for the structural basis of the specificity of 11-1F4 for both kappa and lambda light chain fibrils. We posit that the associated binding site involves a rare type VI beta-turn or touch-turn that is anchored by a cis-proline residue. The identification of an 11-1F4-related mimotope should facilitate development of pan-light chain fibril-reactive antibodies that could be used in the diagnosis and treatment of patients with AL amyloidosis. 相似文献
2.
Qizhen Cao Shuanglong Liu Gang Niu Kai Chen Yongjun Yan Zhaofei Liu Xiaoyuan Chen 《Amino acids》2011,41(5):1103-1112
Early evaluation of cancer response to a therapeutic regimen can help increase the effectiveness of treatment schemes and,
by enabling early termination of ineffective treatments, minimize toxicity, and reduce expenses. Biomarkers that provide early
indication of tumor therapy response are urgently needed. Solid tumors require blood vessels for growth, and new anti-angiogenic
agents can act by preventing the development of a suitable blood supply to sustain tumor growth. The purpose of this study
is to develop a class of novel molecular imaging probes that will predict tumor early response to an anti-angiogenic regimen
with the humanized vascular endothelial growth factor antibody bevacizumab. Using a bevacizumab-sensitive LS174T colorectal
cancer model and a 12-mer bacteriophage (phage) display peptide library, a bevacizumab-responsive peptide (BRP) was identified
after six rounds of biopanning and tested in vitro and in vivo. This 12-mer peptide was metabolically stable and had low toxicity
to both endothelial cells and tumor cells. Near-infrared dye IRDye800-labeled BRP phage showed strong binding to bevacizumab-treated
tumors, but not to untreated control LS174T tumors. In addition, both IRDye800- and 18F-labeled BRP peptide had significantly higher uptake in tumors treated with bevacizumab than in controls treated with phosphate-buffered
saline. Ex vivo histopathology confirmed the specificity of the BRP peptide to bevacizumab-treated tumor vasculature. In summary,
a novel 12-mer peptide BRP selected using phage display techniques allowed non-invasive visualization of early responses to
anti-angiogenic treatment. Suitably labeled BRP peptide may be potentially useful pre-clinically and clinically for monitoring
treatment response. 相似文献
3.
4.
Joseph K. Welply Christina N. Steininger Maire Caparon Marshall L. Michener Susan C. Howard Lyle E. Pegg Debra M. Meyer Pamela A. De Ciechi Catherine S. Devine Gerald F. Casperson 《Proteins》1996,26(3):262-270
A mixed phage library containing random peptides from four to eight residues in length flanked by cysteine residues was screened using a recombinant soluble, form of human ICAM-1, which included residues 1–453, (ICAM-11–453). Phage bound to immobilized ICAM-11–453 were eluted by three methods: (1) soluble ICAM-11–453, (2) neutralizing murine monoclonal antibody, (anti-ICAM-1, M174F5B7), (3) acidic conditions. After three rounds of binding and elution, a single, unique ICAM-1 binding phage bearing the peptide EWCEYLGGYLRYCA was isolated; the identical phage was selected with each method of elution. Attempts to isolate phage from non-constrained (i.e., not containing cysteines) libraries did not yield a phage that bound to ICAM-1. Phage displaying EWCEYLGGYLRCYA bound to immobilized ICAM-11–453 and to ICAM-11–185, a recombinant ICAM-1, which contains only the two amino-terminal immunoglobulin domains residing within residues 1–185. This is the region of the ICAM-1 that is bound by LFA-1. The phage did not bind to proteins other than ICAM-1. The phage bound to two ICAM-1 mutants, which contained amino acid substitutions that dramatically decreased or eliminated the binding to LFA-1. Studies were also performed with the corresponding synthetic peptide. The linear form of the synthetic EWCEYLGGYLRCYA peptide was found to inhibit LFA-1 binding to immobilized ICAM-11–453 in a protein-protein binding assay. By contrast, the disulfide, cyclized, form of the peptide was inactive. The EWCEYL portion of the sequence is homologous to the EWPEYL sequence found within rhinovirus coat protein 14, a nonintegrin protein that binds to ICAM-1. Taken together, the results suggests that the EWCEYLGGYLRCYA sequence is capable to binding to immobilized ICAM-1. Phage display appears to represent a new approach for the identification of peptides that interfere with ICAM-1 binding to β2 integrins. © 1996 Wiley-Liss, Inc. 相似文献
5.
Kasai S Urushibata S Hozumi K Yokoyama F Ichikawa N Kadoya Y Nishi N Watanabe N Yamada Y Nomizu M 《Biochemistry》2007,46(13):3966-3974
Amyloid fibril formation is associated with several pathologies, including Alzheimer's disease, Parkinson's disease, type II diabetes, and prion diseases. Recently, a relationship between basement membrane components and amyloid deposits has been reported. The basement membrane protein, laminin, may be involved in amyloid-related diseases, since laminin is present in amyloid plaques in Alzheimer's disease and binds to amyloid precursor protein. Recently, we showed that peptide A208 (AASIKVAVSADR), the IKVAV-containing peptide, formed amyloid-like fibrils. We previously identified 60 cell adhesive sequences in laminin-1 using a total of 673 12-mer synthetic peptides. Here, we screened for additional amyloidogenic sequences among 60 cell adhesive peptides derived from laminin-1. We first examined amyloid-like fibril formation by the 60 active peptides with Congo red, a histological dye binding to many amyloid-like proteins. Thirteen peptides were stained with Congo red. Four of the 13 peptides promoted cell attachment and neurite outgrowth like the IKVAV-containing peptide. The four peptides also showed amyloid-like fibril formation in both X-ray diffraction and electron microscopic analyses. The amyloidogenic peptides contain consensus amino acid components, including both basic and acidic amino acids and Ser and Ile residues. These results indicate that at least five laminin-derived peptides can form amyloid-like fibrils. We conclude that the laminin-derived amyloidogenic peptides have the potential to form amyloid-like fibrils in vivo, possibly when laminin-1 is degraded. 相似文献
6.
alpha-Dystroglycan was quantitatively enriched from mammalian brain based on its uniform reactivity with Vicia villosa agglutinin and resolved into sub-populations possessing or lacking the sulfated glucuronic acid epitope recognized by monoclonal antibody HNK-1. We generated a new monoclonal antibody specific for a glycoepitope on brain alpha-dystroglycan but absent from alpha-dystroglycan expressed in all other tissues examined. Finally, we found that laminin-10/11 preferentially bound to brain alpha-dystroglycan compared to skeletal muscle alpha-dystroglycan. Our results suggest that tissue-specific glycosylation modifies the laminin binding specificity of alpha-dystroglycan. 相似文献
7.
Electron microscopic structure of agrin and mapping of its binding site in laminin-1. 总被引:7,自引:0,他引:7
下载免费PDF全文

A J Denzer T Schulthess C Fauser B Schumacher R A Kammerer J Engel M A Ruegg 《The EMBO journal》1998,17(2):335-343
Agrin is a large, multidomain heparan sulfate proteoglycan that is associated with basement membranes of several tissues. Particular splice variants of agrin are essential for the formation of synaptic structures at the neuromuscular junction. The binding of agrin to laminin appears to be required for its localization to synaptic basal lamina and other basement membranes. Here, electron microscopy was used to determine the structure of agrin and to localize its binding site in laminin-1. Agrin appears as an approximately 95 nm long particle that consists of a globular, N-terminal laminin-binding domain, a central rod predominantly formed by the follistatin-like domains and three globular, C-terminal laminin G-like domains. In a few cases, heparan sulfate glycosaminoglycan chains were seen emerging from the central portion of the core protein. Moreover, we show that agrin binds to the central region of the three-stranded, coiled-coil oligomerization domain in the long arm of laminin-1, which mediates subunit assembly of the native laminin molecule. In summary, our data show for the first time a protein-protein interaction of the extracellular matrix that involves a coiled-coil domain, and they assign a novel role to this domain of laminin-1. Based on this, we propose that agrin associates with basal lamina in a polarized way. 相似文献
8.
Nur Hidayah Hairul Bahara Gee Jun Tye Yee Siew Choong Eugene Boon Beng Ong Asma Ismail Theam Soon Lim 《Biologicals》2013,41(4):209-216
With major developments in molecular biology, numerous display technologies have been successfully introduced for recombinant antibody production. Even so, phage display still remains the gold standard for recombinant antibody production. Its success is mainly attributed to the robust nature of phage particles allowing for automation and adaptation to modifications. The generation of monospecific binders provides a vital tool for diagnostics at a lower cost and higher efficiency. The flexibility to modify recombinant antibodies allows great applicability to various platforms for use. This review presents phage display technology, application and modifications of recombinant antibodies for diagnostics. 相似文献
9.
Ohkubo S Miyadera K Sugimoto Y Matsuo K Wierzba K Yamada Y 《Biochemical and biophysical research communications》1999,266(2):308-313
Membrane type-1 matrix metalloproteinase (MT1-MMP) has been reported to mediate the activation of progelatinase A (proMMP-2) which is associated with tumor invasion and metastasis, and also known to have an ability to digest extracellular matrix components. To clarify substrate specificity of MT1-MMP, we have searched for amino acid sequences cleaved by this protease using the hexamer substrate phage library consisting of a large number of randomized amino acids sequences. The consensus substrate sequences for MT1-MMP were deduced from the selected clones and appeared to be P-X-G/P-L at the P3-P1' sites. Peptide cleavage assay revealed that MT1-MMP preferentially digested a synthetic substrate containing Pro of the P1 position compared to that being substituted with Gly. Our results may have an important implication to identifying new target proteins for MT1-MMP and leading to the design of its selective inhibitors suitable for cancer chemotherapy. 相似文献
10.
Szardenings M 《Journal of receptor and signal transduction research》2003,23(4):307-349
The identification of ligands from large biological libraries by phage display has now been used for almost 15 years. Most of the successful reports on high-affinity ligand identification originated from work with different antibody libraries. In contrast, the progress of applying phage display to random peptide libraries was relatively slow. However, in the last few years several improvements have led to an increasing number of published peptide ligands identified by phage display from such libraries and which exhibited good biological activity and high affinity. This review summarizes the current state and the technical progress of the application of random peptide libraries using filamentous phage for ligand identification. 相似文献
11.
MOTIVATION: The phage display peptide selection approach is widely used for defining binding specificities of globular domains. PDZ domains recognize partner proteins via C-terminal motifs and are often used as a model for interaction predictions. Here, we investigated to which extent phage display data that were recently published for 54 human PDZ domains can be applied to the prediction of human PDZ-peptide interactions. RESULTS: Promising predictions were obtained for one-third of the 54 PDZ domains. For the other two-thirds, we detected in the phage display peptides an important bias for hydrophobic amino acids that seemed to impair correct predictions. Therefore, phage display-selected peptides may be over-hydrophobic and of high affinity, while natural interaction motifs are rather hydrophilic and mostly combine low affinity with high specificity. We suggest that potential amino acid composition bias should systematically be investigated when applying phage display data to the prediction of specific natural domain-linear motif interactions. 相似文献
12.
Phage display for detection of biological threat agents 总被引:9,自引:0,他引:9
The essential element of any immuno-based detector device is the probe that binds analyte and, as a part of the analytical platform, generates a measurable signal. The present review summarizes the state of the art in development of the probes for detection of the biological threat agents: toxins, bacteria, spores and viruses. Traditionally, the probes are antibodies, which are isolated from sera of immunized animals or culture media of hybridomas. However, the "natural" antibodies may have limited application in the new generation of real-time field detectors and monitoring systems, where stress-resistant and inexpensive long-livers are required. Phage display is a newcomer in the detection area, whose expertise is development of molecular probes for targeting of various biological structures. The probes can be selection from about billion clone libraries of recombinant phages expressing on their surface a vast variety of peptides and proteins, including antigen-binding fragments of antibodies. The selection procedure, like kind of affinity chromatography, allows separating of phage binders, which are propagated in Escherichia coli bacterial cells and purified using inexpensive technology. Although phage display traditionally is focused more on development of medical preparations and studying molecular recognition in biological systems, there are some examples of its successful use for detection, which are presented in the review. To be used as probes for detection, peptides and antibodies identified by phage display are usually chemically synthesized or produced in bacteria. Another interesting aspect is using of the selected phage itself as a probe in detector devices, like sort of substitute antibodies. This idea is illustrated in the review by "detection" of beta-galactosidase from E. coli with "landscape" phage displaying a dense array of peptide binders on the surface. 相似文献
13.
C. Schönbach Kiyoshi Miwa Masaaki Ibe Hajime Shiga Kiyoshi Nokihara Masafumi Takiguchi 《Immunogenetics》1996,45(2):121-129
HLA-B*3501 is associated with subacute thyroiditis and fast progression of AIDS. An important prerequisite to investigate the T-cell recognition of HLA-B*3501-restricted antigens is the characterization of peptide-HLA-B*3501 interactions. In this study, peptide-HLA-B*3501 interactions were determined in quantitative peptide binding assays. The results were statistically analyzed to evaluate the influence of both anchor and nonanchor positions and the predictability of peptide binding. The binding data demonstrated that all anchor residues at position 2 and the C-terminus found in 9-mers functioned equally as anchors in 10-mers and 11-mers. These minimum requirements of peptide binding were refined by assessing positive and negative effects of nonanchor residues. Aliphatic hydrophobic residues at positions 3, 5, and 8 of 10-mers and position 3 of 11-mers significantly enhanced HLA-B*3501 binding. Similar effects rendered aromatic, bulky residues, acidic or polar residues of 11-mers at position 1 as well as at positions 4, 8, and 10, respectively. Negative effects were observed for residues carrying positively charged side-chains at position 7 of 11-mers. The refined HLA-B*3501 peptide binding motifs enhanced the identification of potential T-cell epitopes. The disparity between positive effects at the middle and C-terminal part (positions 5 – 8 and 10) of 11-mers and shorter peptides supports the extrusion of 11-mer residues at positions 5, 6, and 7, away from the HLA-B*3501 binding cleft. Received: 29 May 1996 / Revised: 5 August 1996 相似文献
14.
Virus-templated fabrication of compound structures can be made through incorporating the specifically inorganic-binding peptide into the viral scaffold, widely used is phage display system. Compared to prokaryotic phages, insect cell-based baculovirus has some strengths such as the adaptability to the proteins’ posttranslational modification and non-replication in mammalian cells. As an attempt to explore the baculovirus-mediated bioconjugates, we show in this study that a genetically engineered baculovirus, with a hexahistidine (His6) tagged ZnO binding peptide fused to the N-terminus of the viral capsid protein vp39 of AcNPV, was constructed. It maintains both the viral infectivity and the fusion protein’s activity. The presence of the fusion protein on the baculovirus particle was demonstrated by western blot analysis of purified budded virus. Its display on the virus capsid was revealed by virus fractionation analysis. The binding of nanosized ZnO powders to the virus capsid was visualized by transmission electron microscopy (TEM). This is the first report of the display of the inorganic-binding peptide on the capsid of eukaryotic baculovirus. Aimed at the nanomaterials’ application in the biological field, this research could find useful in the biotracking of the baculovirus transduction process and the preparation of novel functional nanodevices. 相似文献
15.
Phage display selection on whole cells yields a small peptide specific for HCV receptor human CD81 总被引:6,自引:0,他引:6
The human CD81 (hCD81), the most recently proposed receptor of hepatitis C virus (HCV), can especifically bind to HCV envelope glycoprotein2 (E2). In this study, hCD81-expressing murine NIH/3T3 cells were used to select hCD81-binding peptides from a phage displayed nonapeptide library (PVⅢ9aaCys). Eighteen of the 75 clones selected from the library showed specific binding to the hCD81-expressing NIH/3T3 cells by enzyme linked immunosorbent assay (ELISA) and competitive inhibition test. Twelve out of the 18 clones shared the amino acid motif SPQYWTGPA. Sequence comparison of the motif showed no amino acid homology with the native HCV E2. The motif-containing phages could competitively inhibit the ability of HCV E2 binding to native hCD81-expressing MOLT-4 cells, and induce HCV E2 specific immune response in vivo. These results suggest that the selected motif SPQYWTGPA should be a mimotope of HCV E2 to bind to hCD81 molecules. Our findings cast new light on developing HCV receptor antagonists. 相似文献
16.
Display technology,especially phage display technology,has been widely applied in many fields.The theoretical core of display technology is the physical linkage... 相似文献
17.
Phage display technology could provide a rapid means for the discovery of novel peptides. To find peptide ligands specific for the brain vascular receptors, we performed a modified phage display method. Phages were recovered from mice brain parenchyma after administrated with a random 7-mer peptide library intravenously. A longer circulation time was arranged according to the biodistributive brain/blood ratios of phage particles. Following sequential rounds of isolation, a number of phages were sequenced and a peptide sequence (CTSTSAPYC, denoted as PepC7) was identified. Clone 7-1, which encodes PepC7, exhibited translocation efficiency about 41-fold higher than the random library phage. Immunofluorescence analysis revealed that Clone 7-1 had a significant superiority on transport efficiency into the brain compared with native M13 phage. Clone 7-1 was inhibited from homing to the brain in a dose-dependent fashion when cyclic peptides of the same sequence were present in a competition assay. Interestingly, the linear peptide (ATSTSAPYA, Pep7) and a scrambled control peptide PepSC7 (CSPATSYTC) did not compete with the phage at the same tested concentration (0.2-200?pg). Labeled by Cy5.5, PepC7 exhibited significant brain-targeting capability in in vivo optical imaging analysis. The cyclic conformation of PepC7 formed by disulfide bond, and the correct structure itself play a critical role in maintaining the selectivity and affinity for the brain. In conclusion, PepC7 is a promising brain-target motif never been reported before and it could be applied to targeted drug delivery into the brain. 相似文献
18.
Phage display is the longest-standing platform among molecular display technologies. Recent developments have extended its utility to proteins that were previously recalcitrant to phage display. The technique has played a dominant role in forming the field of synthetic binding protein engineering, where novel interfaces have been generated from libraries built using antibody fragment frameworks and also alternative scaffolds. Combinatorial methods have also been developed for the rapid analysis of binding energetics across protein interfaces. The ability to rapidly select and analyze binding interfaces, and compatibility with high-throughput methods under diverse conditions, makes it likely that the combination of phage display and synthetic combinatorial libraries will prove to be the method of choice for synthetic binding protein engineering for broad applications. 相似文献
19.
Todd W. Costantini Brian P. EliceiriJames G. Putnam Vishal BansalAndrew Baird Raul Coimbra 《Peptides》2012
The injured intestine is responsible for significant morbidity and mortality after severe trauma and burn; however, targeting the intestine with therapeutics aimed at decreasing injury has proven difficult. We hypothesized that we could use intravenous phage display technology to identify peptide sequences that target the injured intestinal mucosa in a murine model, and then confirm the cross-reactivity of this peptide sequence with ex vivo human gut. Four hours following 30% TBSA burn we performed an in vivo, intravenous systemic administration of phage library containing 1012 phage in balb/c mice to biopan for gut-targeting peptides. In vivo assessment of the candidate peptide sequences identified after 4 rounds of internalization was performed by injecting 1 × 1012 copies of each selected phage clone into sham or burned animals. Internalization into the gut was assessed using quantitative polymerase chain reaction. We then incubated this gut-targeting peptide sequence with human intestine and visualized fluorescence using confocal microscopy. We identified 3 gut-targeting peptide sequences which caused collapse of the phage library (4–1: SGHQLLLNKMP, 4–5: ILANDLTAPGPR, 4–11: SFKPSGLPAQSL). Sequence 4–5 was internalized into the intestinal mucosa of burned animals 9.3-fold higher than sham animals injected with the same sequence (2.9 × 105vs. 3.1 × 104 particles per mg tissue). Sequences 4–1 and 4–11 were both internalized into the gut, but did not demonstrate specificity for the injured mucosa. Phage sequence 4–11 demonstrated cross-reactivity with human intestine. In the future, this gut-targeting peptide sequence could serve as a platform for the delivery of biotherapeutics. 相似文献
20.
Daoyuan Li Siyi Hu Qinglin Fan Wenying Bao Wei Zhou Ting Xu 《Bioscience, biotechnology, and biochemistry》2013,77(9):1683-1696
ABSTRACTThe fully synthetic humanized phage antibody library has the advantages including the minimized immunogenicity, which frequently happened in hybridoma cell-based antibody production. In this paper, using the constructed diverse complementarity determining region gene library and the germline gene as the backbone, we constructed eight single-chain antibody libraries and a combinatorial antibody library with a big capacity of 1.41 × 1010. M13EEA helper phage that was engineered from M13KO7 was applied to prepare phage antibody library. The eukaryotic expression of T-cell immune receptor with Ig and ITIM domain (TIGIT) antigen was used as a target antigen for screening. The screening of antigen-specific single-chain Fc-fused protein was performed through evaluation of binding affinity based on ELISA analysis. The IgG antibody was prepared with the screened single-chain protein. Finally, the CB3 antibody was screened out which exhibits the highest binding affinity with TIGIT with the Kd value of 8.155 × 10?10 M. 相似文献