首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clerc P  Polster BM 《PloS one》2012,7(4):e34465
Mitochondrial dysfunction is a component of many neurodegenerative conditions. Measurement of oxygen consumption from intact neurons enables evaluation of mitochondrial bioenergetics under conditions that are more physiologically realistic compared to isolated mitochondria. However, mechanistic analysis of mitochondrial function in cells is complicated by changing energy demands and lack of substrate control. Here we describe a technique for sequentially measuring respiration from intact and saponin-permeabilized cortical neurons on single microplates. This technique allows control of substrates to individual electron transport chain complexes following permeabilization, as well as side-by-side comparisons to intact cells. To illustrate the utility of the technique, we demonstrate that inhibition of respiration by the drug KB-R7943 in intact neurons is relieved by delivery of the complex II substrate succinate, but not by complex I substrates, via acute saponin permeabilization. In contrast, methyl succinate, a putative cell permeable complex II substrate, failed to rescue respiration in intact neurons and was a poor complex II substrate in permeabilized cells. Sequential measurements of intact and permeabilized cell respiration should be particularly useful for evaluating indirect mitochondrial toxicity due to drugs or cellular signaling events which cannot be readily studied using isolated mitochondria.  相似文献   

2.
Recent evidences include mitochondrial dysfunctions in pathophysiology of mood disorders. We examined association between depressive disorders and mitochondrial respiration using both intact and permeabilized blood platelets. In intact platelets, physiological respiration, maximal capacity of electron transport system and respiratory rate after complex I inhibition were decreased in depressive patients, who reached partial remission, compared to healthy controls. Respiratory rates were unchanged in several respiratory states in permeabilized platelets. Results indicate that changes in respiratory rate in intact platelets can be used as biological marker of depressive disorder. The hypothesis that decreased mitochondrial respiratory rate participate in pathophysiology of depression was supported.  相似文献   

3.
Activated macrophages inhibit replication of murine lymphoblastic leukemia L1210 cells without lysis. This inhibition of replication is associated with abnormalities of mitochondrial electron transport at the level of NADH dehydrogenase (NADH-DH) and succinate dehydrogenase (SDH). The mechanism of inhibition is unknown, although it has been demonstrated that as NADH-DH and SDH activity is lost, iron is released from cells. Because both NADH-DH and SDH contain numerous iron-sulfur clusters, damage to these structures may be one result of injury by activated macrophages. L1210 cells were labeled with 55Fe and co-cultivated with activated murine peritoneal macrophages (injured L1210 cells). At 48 h, injured L1210 cells had released 83 +/- 8% (mean +/- SEM of 55Fe activity into the media, compared with 25 +/- 4% release from control and 37 +/- 7% from nondividing mitomycin C-treated control cells. All cells were greater than 90% viable. These differences were also reflected in the iron content of the cells. Mitochondria were then separated by centrifugation after cell disruption and 55Fe activity was found to be similarly decreased in both mitochondrial and nonmitochondrial fractions of injured L1210 cells. To further characterize the changes in mitochondrial iron content, mitochondrial proteins from injured and control L1210 cells were separated by IEF and 55Fe activity of gel slices was determined. There was selective loss of 55Fe activity in the area of the gel corresponding to SDH and NADH-DH, suggesting that iron loss from iron-sulfur clusters may occur in L1210 cells injured by activated macrophages. Iron uptake into L1210 cells after removal from macrophages showed a rapid large influx of radioactive iron. L1210 cells in contact with macrophages appear to develop an iron-depleted state, which is dependent on the continued presence of macrophages.  相似文献   

4.
Proper coordination between glycolysis and respiration is essential, yet the regulatory mechanisms involved in sensing respiratory chain defects and modifying mitochondrial functions accordingly are unclear. To investigate the nature of this regulation, we introduced respiratory bypass enzymes into cultured human (HEK293T) cells and studied mitochondrial responses to respiratory chain inhibition. In the absence of respiratory chain inhibitors, the expression of alternative respiratory enzymes did not detectably alter cell physiology or mitochondrial function. However, in permeabilized cells NDI1 (alternative NADH dehydrogenase) bypassed complex I inhibition, whereas alternative oxidase (AOX) bypassed complex III or IV inhibition. In contrast, in intact cells the effects of the AOX bypass were suppressed by growth on glucose, whereas those produced by NDI1 were unaffected. Moreover, NDI1 abolished the glucose suppression of AOX-driven respiration, implicating complex I as the target of this regulation. Rapid Complex I down-regulation was partly released upon prolonged respiratory inhibition, suggesting that it provides an “emergency shutdown” system to regulate metabolism in response to dysfunctions of the oxidative phosphorylation. This system was independent of HIF1, mitochondrial superoxide, or ATP synthase regulation. Our findings reveal a novel pathway for adaptation to mitochondrial dysfunction and could provide new opportunities for combatting diseases.  相似文献   

5.
Acetonitrile extracts of cigarette tar inhibit state 3 and state 4 respiration of intact mitochondria. Exposure of respiring submitochondrial particles to acetonitrile extracts of cigarette tar results in a dose-dependent inhibition of oxygen consumption and reduced nicotinamide adenine dinucleotide (NADH) oxidation. This inhibition was not due to a solvent effect since acetonitrile alone did not alter oxygen consumption or NADH oxidation. Intact mitochondria are less sensitive to extracts of tar than submitochondrial particles. The NADH-ubiquinone (Q) reductase complex is more sensitive to inhibition by tar extract than the succinate-Q reductase and cytochrome complexes. Nicotine or catechol did not inhibit respiration of intact mitochondria. Treatment of submitochondrial particles with cigarette tar results in the formation of hydroxyl radicals, detected by electron spin resonance (ESR) spin trapping. The ESR signal attributable to the hydroxyl radical spin adduct requires the presence of NADH and is completely abolished by catalase and to a lesser extent superoxide dismutase (SOD). Catalase and SOD did not protect the mitochondrial respiratory chain from inhibition by tar extract, indicating that the radicals detected by ESR spin trapping are not responsible for the inhibition of the electron transport. We propose that tar causes at least two effects: (1) Tar components interact with the electron transport chain and inhibit electron flow, and (2) tar components interact with the electron transport chain, ultimately to form hydroxyl radicals.  相似文献   

6.
T Lichtor  B Tung  G S Getz 《Biochemistry》1979,18(12):2582-2590
Mouse fibroblasts resistant to the drug rutamycin were isolated and found also to be respiratory deficient. These cells produce large amounts of lactic acid, and oxygen consumption data indicate that the first complex of the electron transport chain, NADH-coenzyme Q reductase, is defective. Levels of rotenone-sensitive NADH-cytochrome c reductase and pyruvate decarboxylase of the pyruvate dehydrogenase complex are markedly depressed in the mutant cells. Other components of the electron transport chain appear to be fully functional. The mutant cells were enucleated and fused with another cell line, and the resulting cybrid demonstrated a similar pattern of respiratory deficiency as did the original mutant. These results indicate that this defect in respiration is a cytoplasmically inherited characteristic in this cell line.  相似文献   

7.
The effect of glucagon on hepatic respiratory capacity   总被引:1,自引:0,他引:1  
Data from numerous laboratories show that mitochondria isolated from livers treated acutely with glucagon have higher rates of state 3 respiration than control mitochondria. The purpose of the present study was to learn whether this phenomenon is an isolation artifact resulting from a stabilization of the mitochondrial membrane or whether it represents a real increase in the maximal respiratory capacity of liver cells due to glucagon treatment. Electron transport was measured through different spans of the electron transport chain by using ferricyanide as an alternate electron acceptor to O2. With isolated intact liver mitochondria, pretreatment with glucagon was found to cause an increase in electron flow, through both Complex I and Complex III, suggesting that the effect of glucagon was not specific for a single site in the electron transport chain. Using intact isolated hepatocytes, different results are obtained. Respiration was measured in isolated hepatocytes after quantitation of the hepatocyte mitochondrial content by assay of citrate synthase. Hepatocyte respiration could therefore be reported per mg of mitochondrial protein. By providing durohydroquinone to the cells, it was possible to measure electron flow from coenzyme Q to O2 in the absence of the physiological regulation of substrate supply. Likewise, the addition of carbonyl cyanide p-trifluoromethoxyphenylhydrazone released the in situ mitochondria from control by the cytosolic ATP/ADP ratio and it was possible to measure maximal electron flow rates through Complex III. In the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, electron flow was higher in mitochondria in the cell than in isolated mitochondria. Glucagon caused no increase in mitochondrial respiration in situ either in the presence of the physiological substrates or in the presence of durohydroquinone. The data obtained do not support a role for the electron transport chain as a target of glucagon action in hepatocytes.  相似文献   

8.
Trypanosoma brucei procyclic trypomastigotes were made permeable by using digitonin (0-70 micrograms/mg of protein). This procedure allowed exposure of coupled mitochondria to different substrates. Only succinate and glycerol phosphate (but not NADH-dependent substrates) were capable of stimulating oxygen consumption. Fluorescence studies on intact cells indicated that addition of succinate stimulates NAD(P)H oxidation, contrary to what happens in mammalian mitochondria. Addition of malonate, an inhibitor of succinate dehydrogenase, stimulated NAD(P)H reduction. Malonate also inhibited intact-cell respiration and motility, both of which were restored by further addition of succinate. Experiments carried out with isolated mitochondrial membranes showed that, although the electron transfer from succinate to cytochrome c was inhibitable by antimycin, NADH-cytochrome c reductase was antimycin-insensitive. We postulate that the NADH-ubiquinone segment of the respiratory chain is replaced by NADH-fumarate reductase, which reoxidizes the mitochondrial NADH and in turn generates succinate for the respiratory chain. This hypothesis is further supported by the inhibitory effect on cell growth and respiration of 3-methoxyphenylacetic acid, an inhibitor of the NADH-fumarate reductase of T. brucei.  相似文献   

9.
SIRT3 (sirtuin 3) modulates respiration via the deacetylation of lysine residues in electron transport chain proteins. Whether mitochondrial protein acetylation is controlled by a counter-regulatory program has remained elusive. In the present study we identify an essential component of this previously undefined mitochondrial acetyltransferase system. We show that GCN5L1 [GCN5 (general control of amino acid synthesis 5)-like 1; also known as Bloc1s1] counters the acetylation and respiratory effects of SIRT3. GCN5L1 is mitochondrial-enriched and displays significant homology with a prokaryotic acetyltransferase. Genetic knockdown of GCN5L1 blunts mitochondrial protein acetylation, and its reconstitution in intact mitochondria restores protein acetylation. GCN5L1 interacts with and promotes acetylation of SIRT3 respiratory chain targets and reverses global SIRT3 effects on mitochondrial protein acetylation, respiration and bioenergetics. The results of the present study identify GCN5L1 as a critical prokaryote-derived component of the mitochondrial acetyltransferase programme.  相似文献   

10.
The rumen bacterium Wolinella succinogenes grows by respiratory nitrate ammonification with formate as electron donor. Whereas the enzymology and coupling mechanism of nitrite respiration is well known, nitrate reduction to nitrite has not yet been examined. We report here that intact cells and cell fractions catalyse nitrate and chlorate reduction by reduced viologen dyes with high specific activities. A gene cluster encoding components of a putative periplasmic nitrate reductase system (napA, G, H, B, F, L, D) was sequenced. The napA gene was inactivated by inserting a kanamycin resistance gene cassette. The resulting mutant did not grow by nitrate respiration and did not reduce nitrate during growth by fumarate respiration, in contrast to the wild type. An antigen was detected in wild-type cells using an antiserum raised against the periplasmic nitrate reductase (NapA) from Paracoccus pantotrophus. This antigen was absent in the W. succinogenes napA mutant. It is concluded that the periplasmic nitrate reductase NapA is the only respiratory nitrate reductase in W. succinogenes, although a second nitrate-reducing enzyme is apparently induced in the napA mutant. The nap cluster of W. succinogenes lacks a napC gene whose product is thought to function in quinol oxidation and electron transfer to NapA in other bacteria. The W. succinogenes genome encodes two members of the NapC/NirT family, NrfH and FccC. Characterization of corresponding deletion mutants indicates that neither of these two proteins is required for nitrate respiration. A mutant lacking the genes encoding respiratory nitrite reductase (nrfHA) had wild-type properties with respect to nitrate respiration. A model of the electron transport chain of nitrate respiration is proposed in which one or more of the napF, G, H and L gene products mediate electron transport from menaquinol to the periplasmic NapAB complex. Inspection of the W. succinogenes genome sequence suggests that ammonia formation from nitrate is catalysed exclusively by periplasmic respiratory enzymes.  相似文献   

11.
12.
L5178Y-R mouse lymphoma (LY-R) cells undergo rapid apoptosis when treated with photodynamic therapy (PDT) sensitized with the silicon phthalocyanine Pc 4. In this study we show that cytochrome c is released into the cytosol within 10 min of an LD99.9 dose of PDT. Cellular respiration is inhibited by 42% at 15 min, and 60% at 30 min after PDT treatment, and caspase 3-like protease activity is elevated by 15 min post-PDT. In digitonin-permeabilized cells addition of cytochrome c to the respiration buffer reverses PDT-induced inhibition of state 3 respiration via Complex I by 40-60%, and via Complex III by 50-90%. In contrast, extramitochondrial cytochrome c does not stimulate respiration in permeabilized control cells, and catalyzes only a low rate of oxygen consumption via electron transfer to cytochrome b5 on the outer mitochondrial membrane. These results demonstrate that PDT-induced inhibition of respiration is primarily due to leakage of cytochrome c into the cytosol rather than to damage to the major enzyme complexes of the electron transport chain. Whether or not inhibition of respiration influences the time course or extent of Pc 4-PDT-induced apoptosis in LY-R cells is not clear at the present time.  相似文献   

13.
Structural mitochondrial damage accompanies the cytotoxic effects of several drugs including tumor necrosis factor (TNF). Using various inhibitors of mitochondrial electron transport we have investigated the mechanism of TNF-mediated cytotoxicity in L929 and WEHI 164 clone 13 mouse fibrosarcoma cells. Inhibitors with different sites of action modulated TNF cytotoxicity, however, with contrasting effects on final cell viability. Inhibition of mitochondrial electron transport at complex III (cytochrome c reductase) by antimycin A resulted in a marked potentiation of TNF-mediated injury. In contrast, when the electron flow to ubiquinone was blocked, either at complex I (NADH-ubiquinone oxidoreductase) with amytal or at complex II (succinate-ubiquinone reductase) with thenoyltrifluoroacetone, cells were markedly protected against TNF cytotoxicity. Neither uncouplers nor inhibitors of oxidative phosphorylation nor complex IV (cytochrome c oxidase) inhibitors significantly interfered with TNF-mediated effects, ruling out the involvement of energy-coupled phenomena. In addition, the toxic effects of TNF were counteracted by the addition of antioxidants and iron chelators. Furthermore, we analyzed the direct effect of TNF on mitochondrial morphology and functions. Treatment of L929 cells with TNF led to an early degeneration of the mitochondrial ultrastructure without any pronounced damage of other cellular organelles. Analysis of the mitochondrial electron flow revealed that TNF treatment led to a rapid inhibition of the mitochondria to oxidize succinate and NADH-linked substrates. The inhibition of electron transport was dose-dependent and became readily detectable 60 min after the start of TNF treatment, thus preceding the onset of cell death by at least 3-6 h. In contrast, only minor effects were observed on complex IV activity. The different effects observed with the mitochondrial respiratory chain inhibitors provide suggestive evidence that mitochondrial production of oxygen radicals mainly generated at the ubisemiquinone site is a causal mechanism of TNF cytotoxicity. This conclusion is further supported by the protective effect of antioxidants as well as the selective pattern of damage of mitochondrial chain components and characteristic alterations of the mitochondrial ultrastructure.  相似文献   

14.
1. Gossypol acetic acid inhibits collective motility of ejaculated ram spermatozoa. 2. Oxygen consumption was stimulated at low gossypol concentrations and inhibited as the concentrations are increased. 3. Gossypol inhibits respiration of permeabilized spermatozoa supported by durohydroquinome, which indicates a direct inhibition of mitochondrial electron transport chain. 4. The rapid reduction of mitochondrial dependent motility, high uncoupling effect and almost complete inhibition of mitochondrial calcium accumulation, indicate that gossypol inhibits motility in a mechanism by which mitochondrial uncoupling is involved.  相似文献   

15.
The consequence of blocking the de novo synthesis of ubiquinone (coenzyme Q) on mitochondrial ubiquinone content and respiratory function was studied in cultured C1300 (Neuro 2A) murine neuroblastoma cells. Mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, was used to suppress the synthesis of mevalonate, an essential precursor for the isoprenoid side chain of ubiquinone. At a concentration of 25 microM, mevinolin completely inhibited the incorporation of [3H]acetate into ubiquinone, isolated from cell extracts by two-dimensional thin-layer chromatography. Similar results were obtained when [14C]tyrosine was used as a precursor for the quinone ring. Through the use of reverse-phase thin-layer chromatography, it was established that the principal product of the ubiquinone pathway in murine neuroblastoma cells was ubiquinone-9. Inhibition of ubiquinone synthesis for 24h in cells cultured in the presence of 10% fetal calf serum (which contains 0.14 nmol of ubiquinone/ml of serum) resulted in a 40-57% decline in the concentration of ubiquinone in the mitochondria. However, the activities of succinate-cytochrome c reductase and succinate dehydrogenase in whole-cell homogenates or mitochondria were not inhibited. The state 3 and uncoupled rates of respiration, determined by polarographic measurements of oxygen consumption in homogenates and mitochondria, were elevated slightly in the mevinolin-treated cells. The data demonstrate that, although mevalonate synthesis is important for the maintenance of the intramitochondrial ubiquinone pool in cultured cells, major changes in the ubiquinone content of the mitochondria can occur in intact cells without perturbation of respiratory function. However, the coincidence of decreased mitochondrial ubiquinone concentration and the inhibition of cell cycling previously observed in mevinolin-treated cells (Maltese, W.A. (1984) Biochem. Biophys. Res. Commun. 120, 454-460) suggests that the availability of ubiquinone may play a role in the regulation of mitochondrial and cellular proliferation.  相似文献   

16.
Poliovirus infection of COS-1 and T47D cells caused a rapid decrease in total cell respiration, and this was attributed to an inhibition of mitochondrial respiration. The stimulation of mitochondrial respiration by pyruvate plus malate or succinate was impaired in saponin-permeabilised cells. However, this inhibition could be overcome by the addition of N,N,N',N'-tetramethyl-1, 4-phenylenediamine and ascorbate. The activity of succinate dehydrogenase was impaired in parallel with the inhibition of mitochondrial respiration during poliovirus infection. This shows that mitochondrial function is profoundly altered during poliovirus infection and that this occurs primarily through inhibition of electron flow at complex II of the mitochondrial respiratory chain.  相似文献   

17.
1. The rates of oxidation of various substrates (beta-hydroxybutyrate, succinate, ascorbate + TMPD) and the rate of ATP synthesis in liver mitochondria from active and hibernating ground squirrels were measured. 2. It was shown that the rate of mitochondrial respiration is significantly lower in hibernating animals than in active animals. 3. The degree of inhibition of mitochondrial respiration in hibernating ground squirrels was found to correlate with the length of the respiratory chain fragment involved in the oxidation of a given substrate. 4. The inhibition of mitochondrial respiration in hibernating animals was accompanied by a decrease in the rate of ATP synthesis. 5. The activity of phospholipase A2 in liver mitochondria from hibernating ground squirrels was found to be decreased. The activation of phospholipase A2 by Ca2+ ions eliminated the inhibition of respiration almost completely. 6. It was assumed that the inhibition of mitochondrial respiration during hibernation is (a) related to the suppression of phospholipase A2 activity and (b) caused by the reduced rates of electron transport through the respiratory chain and/or of substrate transport across the mitochondrial membrane.  相似文献   

18.
It is suggested that the recently developed benzothiazole and amoscanate derivatives with antifilarial activity exert their action in vitro by an inhibition of mitochondrial-derived respiration. It was confirmed that the drugs CGP 20376, 21835, 20308, 21306, and 6140 cause a rapid immobilization in vitro of the adult filarial worm, Litomosoides carinii, the time required being similar to rotenone at the same concentration. The other drugs investigated, CGPs 20309, 21833, 24589, 23518, and 13231, were also effective; however, they required much longer incubation times. Submitochondrial particles (SMP) were prepared from Ascaris muscle and rat liver. The concentration of drug causing 50% inhibition of respiration (IC50) was calculated. It was found that the drugs most rapidly inhibiting respiration have IC50s for NADH oxidase of less than 25 microM in both Ascaris and rat liver SMP. This effect on SMP respiration could be overcome by using succinate as a substrate, indicating the site of inhibition to be within complex I of the mitochondrial respiratory chain. Further experiments showed that whereas the respiratory chain's NADH:ferricyanide reductase was unaffected by these drugs, there were pronounced effects on both Ascaris and rat liver NADH:quinone reductase activity. This suggests that the inhibition within complex I occurs after the flavoprotein dehydrogenase, but before the site of the quinone reduction. The other compounds examined, which had a slower effect on motility, also showed inhibition of the NADH oxidase, but not to as great an extent as the aforementioned compounds. The compounds most active against motility were also most effective at inhibiting respiration in intact adult L. carinii. Analysis of the aerobic end products produced by L. carinii showed that acetate production was greatly reduced even in the presence of low concentrations of the drugs. There was also a slight decrease in lactate production. However, a direct effect on the glycolytic pathway was ruled out by two observations. One, that the production of lactate from cell-free extracts of L. carinii is unaffected by the presence of the drugs, and secondly, that a protozoan, Giardia lamblia, reliant on glycolysis for energy production, can survive for long periods of time in the presence of high concentrations of the drugs. A correlation can be observed between the time for immobilization of the filarial worm and the strength of inhibition of mitochondrial respiration. Therefore, it is suggested that, at least in vitro, the mechanism of toxicity of these antifilarials in L. carinii is due to the blocking of the respiratory chain at a site similar to that of rotenone.  相似文献   

19.
The aim of this study was to analyze quantitatively cellular respiration in intraoperational tissue samples taken from human breast cancer (BC) patients. We used oxygraphy and the permeabilized cell techniques in combination with Metabolic Control Analysis (MCA) to measure a corresponding flux control coefficient (FCC). The activity of all components of ATP synthasome, and respiratory chain complexes was found to be significantly increased in human BC cells in situ as compared to the adjacent control tissue. FCC(s) were determined upon direct activation of respiration with exogenously-added ADP and by titrating the complexes with their specific inhibitors to stepwise decrease their activity. MCA showed very high sensitivity of all complexes and carriers studied in human BC cells to inhibition as compared to mitochondria in normal oxidative tissues. The sum of FCC(s) for all ATP synthasome and respiratory chain components was found to be around 4, and the value exceeded significantly that for normal tissue (close to 1). In BC cells, the key sites of the regulation of respiration are Complex IV (FCC?=?0.74), ATP synthase (FCC?=?0.61), and phosphate carrier (FCC?=?0.60); these FCC(s) exceed considerably (~10-fold) those for normal oxidative tissues. In human BC cells, the outer mitochondrial membrane is characterized by an increased permeability towards adenine nucleotides, the mean value of the apparent K(m) for ADP being equal to 114.8?±?13.6?μM. Our data support the two-compartment hypothesis of tumor metabolism, the high sum of FCC(s) showing structural and functional organization of mitochondrial respiratory chain and ATP synthasome as supercomplexes in human BC.  相似文献   

20.
The 4-quinolone antibiotics nalidixic acid and ciprofloxacin and potent inhibitors of the bacterial type II topoisomerase DNA gyrase. Treatment of mouse L1210 leukemia cells with these drugs resulted in a delayed inhibition of cell proliferation. Prior to inhibition of cell proliferation, there was a time-dependent decrease in the cellular content of mitochondrial DNA (mtDNA). The decrease in mtDNA was associated with a decrease in the rate of mitochondrial respiration and an increase in the concentration of lactate in the growth medium. Inhibition of cell proliferation by 4-quinolones was reversible upon drug washout. However, there was a 2- to 4-day lag before the growth rate returned to normal levels. This was preceeded by an increase in mtDNA content and mitochondrial respiration. These studies suggest that inhibition of mammalian cell proliferation by 4-quinolone drugs is related to the selective depletion of mtDNA. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号