首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We find recurring amino-acid residue packing patterns, or spatial motifs, that are characteristic of protein structural families, by applying a novel frequent subgraph mining algorithm to graph representations of protein three-dimensional structure. Graph nodes represent amino acids, and edges are chosen in one of three ways: first, using a threshold for contact distance between residues; second, using Delaunay tessellation; and third, using the recently developed almost-Delaunay edges. For a set of graphs representing a protein family from the Structural Classification of Proteins (SCOP) database, subgraph mining typically identifies several hundred common subgraphs corresponding to spatial motifs that are frequently found in proteins in the family but rarely found outside of it. We find that some of the large motifs map onto known functional regions in two protein families explored in this study, i.e., serine proteases and kinases. We find that graphs based on almost-Delaunay edges significantly reduce the number of edges in the graph representation and hence present computational advantage, yet the patterns extracted from such graphs have a biological interpretation approximately equivalent to that of those extracted from distance based graphs.  相似文献   

2.
The characterization of protein interactions is essential for understanding biological systems. While genome-scale methods are available for identifying interacting proteins, they do not pinpoint the interacting motifs (e.g., a domain, sequence segments, a binding site, or a set of residues). Here, we develop and apply a method for delineating the interacting motifs of hub proteins (i.e., highly connected proteins). The method relies on the observation that proteins with common interaction partners tend to interact with these partners through a common interacting motif. The sole input for the method are binary protein interactions; neither sequence nor structure information is needed. The approach is evaluated by comparing the inferred interacting motifs with domain families defined for 368 proteins in the Structural Classification of Proteins (SCOP). The positive predictive value of the method for detecting proteins with common SCOP families is 75% at sensitivity of 10%. Most of the inferred interacting motifs were significantly associated with sequence patterns, which could be responsible for the common interactions. We find that yeast hubs with multiple interacting motifs are more likely to be essential than hubs with one or two interacting motifs, thus rationalizing the previously observed correlation between essentiality and the number of interacting partners of a protein. We also find that yeast hubs with multiple interacting motifs evolve slower than the average protein, contrary to the hubs with one or two interacting motifs. The proposed method will help us discover unknown interacting motifs and provide biological insights about protein hubs and their roles in interaction networks.  相似文献   

3.
Short motifs are known to play diverse roles in proteins, such as in mediating the interactions with other molecules, binding to membranes, or conducting a specific biological function. Standard approaches currently employed to detect short motifs in proteins search for enrichment of amino acid motifs considering mostly the sequence information. Here, we presented a new approach to search for common motifs (protein signatures) which share both physicochemical and structural properties, looking simultaneously at different features. Our method takes as an input an amino acid sequence and translates it to a new alphabet that reflects its intrinsic structural and chemical properties. Using the MEME search algorithm, we identified the proteins signatures within subsets of protein which encompass common sequence and structural information. We demonstrated that we can detect enriched structural motifs, such as the amphipathic helix, from large datasets of linear sequences, as well as predicting common structural properties (such as disorder, surface accessibility, or secondary structures) of known functional‐motifs. Finally, we applied the method to the yeast protein interactome and identified novel putative interacting motifs. We propose that our approach can be applied for de novo protein function prediction given either sequence or structural information. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   

4.
The function of a protein is often fulfilled via molecular interactions on its surfaces, so identifying the functional surface(s) of a protein is helpful for understanding its function. Here, we introduce the concept of a split pocket, which is a pocket that is split by a cognate ligand. We use a geometric approach that is site‐specific. Specifically, we first compute a set of all pockets in the protein with its ligand(s) and a set of all pockets with the ligand(s) removed and then compare the two sets of pockets to identify the split pocket(s) of the protein. To reduce the search space and expedite the process of surface partitioning, we design probe radii according to the physicochemical textures of molecules. Our method achieves a success rate of 96% on a benchmark test set. We conduct a large‐scale computation to identify ~19,000 split pockets from 11,328 structures (1.16 million potential pockets); for each pocket, we obtain residue composition, solvent‐accessible area, and molecular volume. With this database of split pockets, our method can be used to predict the functional surfaces of unbound structures. Indeed, the functional surface of an unbound protein may often be found from its similarity to remotely related bound forms that belong to distinct folds. Finally, we apply our method to identify glucose‐binding proteins, including unbound structures. Our study demonstrates the power of geometric and evolutionary matching for studying protein functional evolution and provides a framework for classifying protein functions by local spatial patterns of functional surfaces. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Proteins sample a multitude of different conformations by undergoing small‐ and large‐scale conformational changes that are often intrinsic to their functions. Information about these changes is often captured in the Protein Data Bank by the apparently redundant deposition of independent structural solutions of identical proteins. Here, we mine these data to examine the conservation of large‐scale conformational changes between homologous proteins. This is important for both practical reasons, such as predicting alternative conformations of a protein by comparative modeling, and conceptual reasons, such as understanding the extent of conservation of different features in evolution. To study this question, we introduce a novel approach to compare conformational changes between proteins by the comparison of their difference distance maps (DDMs). We found that proteins undergoing similar conformational changes have similar DDMs and that this similarity could be quantified by the correlation between the DDMs. By comparing the DDMs of homologous protein pairs, we found that large‐scale conformational changes show a high level of conservation across a broad range of sequence identities. This shows that conformational space is usually conserved between homologs, even relatively distant ones.  相似文献   

6.
We report a method for detection of recurring side-chain patterns (DRESPAT) using an unbiased and automated graph theoretic approach. We first list all structural patterns as sub-graphs where the protein is represented as a graph. The patterns from proteins are compared pair-wise to detect patterns common to a protein pair based on content and geometry criteria. The recurring pattern is then detected using an automated search algorithm from the all-against-all pair-wise comparison data of proteins. Intra-protein pattern comparison data are used to enable detection of patterns recurring within a protein. A method has been proposed for empirical calculation of statistical significance of recurring pattern. The method was tested on 17 protein sets of varying size, composed of non-redundant representatives from SCOP superfamilies. Recurring patterns in serine proteases, cysteine proteases, lipases, cupredoxin, ferredoxin, ferritin, cytochrome c, aspartoyl proteases, peroxidases, phospholipase A2, endonuclease, SH3 domain, EF-hand and lectins show additional residues conserved in the vicinity of the known functional sites. On the basis of the recurring patterns in ferritin, EF-hand and lectins, we could separate proteins or domains that are structurally similar yet different in metal ion-binding characteristics. In addition, novel recurring patterns were observed in glutathione-S-transferase, phospholipase A2 and ferredoxin with potential structural/functional roles. The results are discussed in relation to the known functional sites in each family. Between 2000 and 50,000 patterns were enumerated from each protein with between ten and 500 patterns detected as common to an evolutionarily related protein pair. Our results show that unbiased extraction of functional site pattern is not feasible from an evolutionarily related protein pair but is feasible from protein sets comprising five or more proteins. The DRESPAT method does not require a user-defined pattern, size or location of the pattern and therefore, has the potential to uncover new functional sites in protein families.  相似文献   

7.
A protein interaction network describes a set of physical associations that can occur between proteins. However, within any particular cell or tissue only a subset of proteins is expressed and so only a subset of interactions can occur. Integrating interaction and expression data, we analyze here this interplay between protein expression and physical interactions in humans. Proteins only expressed in restricted cell types, like recently evolved proteins, make few physical interactions. Most tissue‐specific proteins do, however, bind to universally expressed proteins, and so can function by recruiting or modifying core cellular processes. Conversely, most ‘housekeeping’ proteins that are expressed in all cells also make highly tissue‐specific protein interactions. These results suggest a model for the evolution of tissue‐specific biology, and show that most, and possibly all, ‘housekeeping’ proteins actually have important tissue‐specific molecular interactions.  相似文献   

8.
9.
Pratiti Bhadra  Debnath Pal 《Proteins》2014,82(10):2443-2454
Inference of molecular function of proteins is the fundamental task in the quest for understanding cellular processes. The task is getting increasingly difficult with thousands of new proteins discovered each day. The difficulty arises primarily due to lack of high‐throughput experimental technique for assessing protein molecular function, a lacunae that computational approaches are trying hard to fill. The latter too faces a major bottleneck in absence of clear evidence based on evolutionary information. Here we propose a de novo approach to annotate protein molecular function through structural dynamics match for a pair of segments from two dissimilar proteins, which may share even <10% sequence identity. To screen these matches, corresponding 1 µs coarse‐grained (CG) molecular dynamics trajectories were used to compute normalized root‐mean‐square‐fluctuation graphs and select mobile segments, which were, thereafter, matched for all pairs using unweighted three‐dimensional autocorrelation vectors. Our in‐house custom‐built forcefield (FF), extensively validated against dynamics information obtained from experimental nuclear magnetic resonance data, was specifically used to generate the CG dynamics trajectories. The test for correspondence of dynamics‐signature of protein segments and function revealed 87% true positive rate and 93.5% true negative rate, on a dataset of 60 experimentally validated proteins, including moonlighting proteins and those with novel functional motifs. A random test against 315 unique fold/function proteins for a negative test gave >99% true recall. A blind prediction on a novel protein appears consistent with additional evidences retrieved therein. This is the first proof‐of‐principle of generalized use of structural dynamics for inferring protein molecular function leveraging our custom‐made CG FF, useful to all. Proteins 2014; 82:2443–2454. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Naturally occurring proteins in cellular networks often share peptide motifs. These motifs have been known to play a pivotal role in protein interactions among the components of a network. However, it remains unknown how these motifs have contributed to the evolution of the protein network. Here we addressed this issue by a synthetic biology approach. Through the motif programming method, we have constructed an artificial protein library by mixing four peptide motifs shared among the Bcl-2 family proteins that positively or negatively regulate the apoptosis networks. We found one strong pro-apoptotic protein, d29, and two proteins having moderate, but unambiguous anti-apoptotic functions, a10 and d16, from the 28 tested clones. Thus both the pro- and anti-apoptotic modulators were present in the library, demonstrating that functional proteins with opposing effects can emerge from a single pool prepared from common motifs. Motif programming studies have exhibited that the annotated function of the motifs were significantly influenced by the context that the motifs embedded. The results further revealed that reshuffling of a set of motifs realized the promiscuous state of protein, from which disparate functions could emerge. Our finding suggests that motifs contributed to the plastic evolvability of the protein network.  相似文献   

11.
Here, we present a systematic analysis of the open-faced beta-sheet topologies in a set of non-redundant protein domain structures; in particular, we focus on the topological diversity of four-stranded beta-sheet motifs. Of the 96 topologies that are possible for a four-stranded beta-sheet, 42 were identified in known protein structures. Of these, four account for 50% of the structures that we have studied. Two sets of the topologies that were not observed may represent the section of the topological space that is not readily accessible to proteins on either thermodynamic or kinetic grounds. The first set contains topologies with alternating parallel and antiparallel beta-ladders. Their rare occurrence reflects the expectation that it is energetically unfavorable to match different hydrogen bonding patterns. The polypeptide chains in the second set of topologies go through convoluted paths and are expected to experience great kinetic frustrations during the folding processes. A knowledge of the potential causes for the topological preference of small beta-sheets also helps us to understand the topological properties of larger beta-sheet structures which frequently contain four-stranded motifs. The notion that protein topologies can only be taken from a confined and discrete space has important implications for structural genomics.  相似文献   

12.
13.
Structure is only the first step in understanding the interactions and functions of proteins. In this paper, we explore the flexibility of proteins across a broad database of over 250 solvated protein molecular dynamics simulations in water for an aggregate simulation time of approximately 6 micros. These simulations are from our Dynameomics project, and these proteins represent approximately 75% of all known protein structures. We employ principal component analysis of the atomic coordinates over time to determine the primary axis and magnitude of the flexibility of each atom in a simulation. This technique gives us both a database of flexibility for many protein fold families and a compact visual representation of a particular protein's native-state conformational space, neither of which are available using experimental methods alone. These tools allow us to better understand the nature of protein motion and to describe its relationship to other structural and dynamical characteristics. In addition to reporting general properties of protein flexibility and detailing many dynamic motifs, we characterize the relationship between protein native-state flexibility and early events in thermal unfolding and show that flexibility predicts how a protein will begin to unfold. We provide evidence that fold families have conserved flexibility patterns, and family members who deviate from the conserved patterns have very low sequence identity. Finally, we examine novel aspects of highly inflexible loops that are as important to structural integrity as conventional secondary structure. These loops, which are difficult if not impossible to locate without dynamic data, may constitute new structural motifs.  相似文献   

14.
Proteins that contain similar structural elements often have analogous functions regardless of the degree of sequence similarity or structure connectivity in space. In general, protein structure comparison (PSC) provides a straightforward methodology for biologists to determine critical aspects of structure and function. Here, we developed a novel PSC technique based on angle-distance image (A-D image) transformation and matching, which is independent of sequence similarity and connectivity of secondary structure elements (SSEs). An A-D image is constructed by utilizing protein secondary structure information. According to various types of SSEs, the mutual SSE pairs of the query protein are classified into three different types of sub-images. Subsequently, corresponding sub-images between query and target protein structures are compared using modified cross-correlation approaches to identify the similarity of various patterns. Structural relationships among proteins are displayed by hierarchical clustering trees, which facilitate the establishment of the evolutionary relationships between structure and function of various proteins.Four standard testing datasets and one newly created dataset were used to evaluate the proposed method. The results demonstrate that proteins from these five datasets can be categorized in conformity with their spatial distribution of SSEs. Moreover, for proteins with low sequence identity that share high structure similarity, the proposed algorithms are an efficient and effective method for structural comparison.  相似文献   

15.
Sequence similarity is the most common measure currently used to infer homology between proteins. Typically, homologous protein domains show sequence similarity over their entire lengths. Here we identify Asp box motifs, initially found as repeats in sialidases and neuraminidases, in new structural and sequence contexts. These motifs represent significantly similar sequences, localized to beta hairpins within proteins that are otherwise different in sequence and three-dimensional structure. By performing a combined sequence- and structure-based analysis we detect Asp boxes in more than nine protein families, including bacterial ribonucleases, sulfite oxidases, reelin, netrins, some lipoprotein receptors, and a variety of glycosyl hydrolases. Although the function common to each of these proteins, if any, remains unclear, we discuss possible functions of Asp boxes on the basis of previously determined experimental results and discuss different evolutionary scenarios for the origin of Asp-box containing proteins.  相似文献   

16.
In spite of the abundance of oligomeric proteins within a cell, the structural characterization of protein–protein interactions is still a challenging task. In particular, many of these interactions involve heteromeric complexes, which are relatively difficult to determine experimentally. Hence there is growing interest in using computational techniques to model such complexes. However, assembling large heteromeric complexes computationally is a highly combinatorial problem. Nonetheless the problem can be simplified greatly by considering interactions between protein trimers. After dimers and monomers, triangular trimers (i.e. trimers with pair‐wise contacts between all three pairs of proteins) are the most frequently observed quaternary structural motifs according to the three‐dimensional (3D) complex database. This article presents DockTrina, a novel protein docking method for modeling the 3D structures of nonsymmetrical triangular trimers. The method takes as input pair‐wise contact predictions from a rigid body docking program. It then scans and scores all possible combinations of pairs of monomers using a very fast root mean square deviation test. Finally, it ranks the predictions using a scoring function which combines triples of pair‐wise contact terms and a geometric clash penalty term. The overall approach takes less than 2 min per complex on a modern desktop computer. The method is tested and validated using a benchmark set of 220 bound and seven unbound protein trimer structures. DockTrina will be made available at http://nano‐d.inrialpes.fr/software/docktrina . Proteins 2014; 82:34–44. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Methods for predicting protein function from structure are becoming more important as the rate at which structures are solved increases more rapidly than experimental knowledge. As a result, protein structures now frequently lack functional annotations. The majority of methods for predicting protein function are reliant upon identifying a similar protein and transferring its annotations to the query protein. This method fails when a similar protein cannot be identified, or when any similar proteins identified also lack reliable annotations. Here, we describe a method that can assign function from structure without the use of algorithms reliant upon alignments. Using simple attributes that can be calculated from any crystal structure, such as secondary structure content, amino acid propensities, surface properties and ligands, we describe each enzyme in a non-redundant set. The set is split according to Enzyme Classification (EC) number. We combine the predictions of one-class versus one-class support vector machine models to make overall assignments of EC number to an accuracy of 35% with the top-ranked prediction, rising to 60% accuracy with the top two ranks. In doing so we demonstrate the utility of simple structural attributes in protein function prediction and shed light on the link between structure and function. We apply our methods to predict the function of every currently unclassified protein in the Protein Data Bank.  相似文献   

18.

Background  

Proteins having similar functions from different sources can be identified by the occurrence in their sequences, a conserved cluster of amino acids referred to as pattern, motif, signature or fingerprint. The wide usage of protein sequence analysis in par with the growth of databases signifies the importance of using patterns or signatures to retrieve out related sequences. Blue copper proteins are found in the electron transport chain of prokaryotes and eukaryotes. The signatures already existing in the databases like the type 1 copper blue, multiple copper oxidase, cyt b/b6, photosystem 1 psaA&B, psaG&K, and reiske iron sulphur protein are not specified signatures for blue copper proteins as the name itself suggests. Most profile and motif databases strive to classify protein sequences into a broad spectrum of protein families. This work describes the signatures designed based on the copper metal binding motifs in blue copper proteins. The common feature in all blue copper proteins is a trigonal planar arrangement of two nitrogen ligands [each from histidine] and one sulphur containing thiolate ligand [from cysteine], with strong interactions between the copper center and these ligands.  相似文献   

19.
Proteins are biochemical compounds made up of one or more polypeptides in a specific order, typically folded into a functionally active form. Proteins are categorized into four different structural classes according to the topology of α-helices and β-strands. In this study, we modeled these four structural classes as an undirected network depicting amino acids as nodes and interaction between them as edges. Results infer that basic protein classes can be easily recognized as well as distinguished by utilizing protein contact maps (PCM). Toward studying the globin-like fold, the helix-loop-helix region contacts were seen to be of a unique pattern, and these remained in all the folds. Further, the averaged diagonal contacts were analyzed and identified those contacts in α/β proteins were higher in comparison with the other class. Interesting, we noticed that anti-parallel beta sheets were dominant in all-β and α + β classes that lead to similar diagonal patterns. Network properties of all four basic classes were analyzed and found to possess small-world property. Findings infer that PCM may assist classify protein structure classes and it also helps in evaluating the predicted protein structures.  相似文献   

20.
Structure motif discovery and mining the PDB   总被引:2,自引:0,他引:2  
MOTIVATION: Many of the most interesting functional and evolutionary relationships among proteins are so ancient that they cannot be reliably detected through sequence analysis and are apparent only through a comparison of the tertiary structures. The conserved features can often be described as structural motifs consisting of a few single residues or Secondary Structure (SS) elements. Confidence in such motifs is greatly boosted when they are found in more than a pair of proteins. RESULTS: We describe an algorithm for the automatic discovery of recurring patterns in protein structures. The patterns consist of individual residues having a defined order along the protein's backbone that come close together in the structure and whose spatial conformations are similar. The residues in a pattern need not be close in the protein's sequence. The work described in this paper builds on an earlier reported algorithm for motif discovery. This paper describes a significant improvement of the algorithm which makes it very efficient. The improved efficiency allows us to use it for doing unsupervised learning of patterns occurring in small subsets in a large set of structures, a non-redundant subset of the Protein Data Bank (PDB) database of all known protein structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号