首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparison of the 23S rRNA gene sequences of Edwardsiella tarda and Edw. ictaluri confirmed a close phylogenetic relationship between these two fish pathogen species and a distant relation with the 'core' members of the Enterobacteriaceae family. Analysis of the rrl gene for 23S rRNA in Edw. ictaluri revealed the presence of an intervening sequence (IVS) in helix-45. This new 98bp IVS shared 97% nucleotide identity with Salmonella typhimurium helix-45 IVS. Edw. ictaluri helix-45 IVS was present in all Edw. ictaluri strains analyzed and in at least six rrl operons within each cell. Fragmentation of 23S rRNA due to IVS excision by RNase III was observed by methylene blue staining of ribosomal RNA extracted from Edw. ictaluri isolates. This is the first report of an IVS in the 23S rRNA gene of the genus Edwardsiella.  相似文献   

2.
Edwardsiella ictaluri is a facultative intracellular bacterium that causes enteric septicemia of catfish (ESC). In this study, we aimed to develop bioluminescent E. ictaluri that can be monitored by noninvasive bioluminescence imaging (BLI). To accomplish this, the luxCDABE operon of Photorhabdus luminescens was cloned downstream of the lacZ promoter in the broad host range plasmid pBBR1MCS4. Edwardsiella ictaluri strain 93-146 transformed with the new plasmid, pAKlux1, was highly bioluminescent. pAKlux1 was stably maintained in E. ictaluri without any apparent effect on growth or native plasmid stability. To assess the usefulness of the bioluminescent strain in disease studies, catfish were infected with 93-146 pAKlux1 by intraperitoneal injection and by bath immersion, and in vivo bacterial dissemination was observed using BLI. This study demonstrated that bioluminescent E. ictaluri can be used for real-time monitoring of ESC in live fish, which should enable observation of pathogen attachment sites and tissue predilections.  相似文献   

3.
4.
AIMS: To analyse interspecies and intraspecies differences based on the 16S-23S rRNA intergenic spacer region (ISR) sequences of the fish pathogens Edwardsiella ictaluri and Edwardsiella tarda. METHODS AND RESULTS: The 16S-23S rRNA spacer regions of 19 Edw. ictaluri and four Edw. tarda isolates from four geographical regions were amplified by PCR with primers complementary to conserved sequences within the flanking 16S-23S rRNA coding sequences. Two products were generated from all isolates, without interspecies or intraspecific size polymorphisms. Sequence analysis of the amplified fragments revealed a smaller ISR of 350 bp, which contained a gene for tRNA(Glu), and a larger ISR of 441 bp, which contained genes for tRNA(Ile) and tRNA(Ala). The sequences of the smaller ISR of different Edw. ictaluri isolates were essentially identical to each other. Partial sequences of larger ISR from several Edw. ictaluri isolates also revealed no differences from the one complete Edw. ictaluri large ISR sequence obtained. The sequences of the smaller ISR of Edw. tarda were 97% identical to the Edw. ictaluri smaller ISR and the larger ISR were 96-98% identical to the Edw. ictaluri larger ISR sequence. The Edw. tarda isolates displayed limited ISR sequence heterogeneity, with > or =97% sequence identity among isolates for both small and large ISR. CONCLUSIONS: There is a high degree of size and sequence similarity of 16S-23S ISR both among isolates within Edw. ictaluri and Edw. tarda species and between the two species. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results confirm a close genetic relationship between Edw. ictaluri and Edw. tarda and the relative homogeneity of Edw. ictaluri isolates compared with Edw. tarda isolates. Because no differences were found in ISR sequences among Edw. ictaluri isolates, sequence analysis of the ISR will not be useful to distinguish isolates of Edw. ictaluri. However, we identified restriction sites that differ between ISR sequences of Edw. ictaluri and Edw. tarda, which will be useful in distinguishing the two species.  相似文献   

5.
Edwardsiella ictaluri is the cause of extensive mortalities and economic losses to the channel catfish industry of the southeast United States. Here we report the complete genome of Edwardsiella ictaluri 93-146. Whole-genome sequence analysis of E. ictaluri provides a tool for understanding the genomic regions specific to the species and the Edwardsiella genus.  相似文献   

6.
Brown bullheads Amieurus nebulosus (family Ictaluridae) are commonly used as a sentinel of environmental contamination. These fish are not generally cultured under laboratory conditions and little is known about their disease susceptibility. Here we report an outbreak of disease due to Edwardsiella ictaluri in a laboratory population of tank-reared, wild-caught brown bullheads. The isolate was positively identified as E. ictaluri using standard bacteriological substrate utilization tests and a monoclonal antibody specific for this bacterium. This pathogen causes a significant disease in channel catfish Ictalurus punctatus and is associated with disease in other ictalurid and non-ictalurid fishes. It appears that E. ictaluri is also a significant pathogen in brown bullheads and produces clinical signs and lesions similar but not identical to those observed in channel catfish. Since commercial sources of bullheads for laboratory tank studies are not available, precautions should be taken to prevent potential E. ictaluri disease outbreaks from wild-caught bullheads intended for laboratory research.  相似文献   

7.
Edwardsiella ictaluri is the leading cause of mortality in channel catfish culture, but little is known about its pathogenesis. The use of signature-tagged mutagenesis in a waterborne infection model resulted in the identification of 50 mutants that were unable to infect/survive in catfish. Nineteen had minitransposon insertions in miscellaneous genes in the chromosome, 10 were in genes that matched to hypothetical proteins, and 13 were in genes that had no significant matches in the NCBI databases. Eight insertions were in genes encoding proteins associated with virulence in other pathogens, including three in genes involved in lipopolysaccharide biosynthesis, three in genes involved in type III secretion systems (TTSS), and two in genes involved in urease activity. With the use of a sequence from a lambda clone carrying several TTSS genes, Blastn analysis of the partially completed E. ictaluri genome identified a 26,135-bp pathogenicity island containing 33 genes of a TTSS with similarity to the Salmonella pathogenicity island 2 class of TTSS. The characterization of a TTSS apparatus mutant indicated that it retained its ability to invade catfish cell lines and macrophages but was defective in intracellular replication. The mutant also invaded catfish tissues in numbers equal to those of invading wild-type E. ictaluri bacteria but replicated poorly and was slowly cleared from the tissues, while the wild type increased in number.  相似文献   

8.
The inter-kingdom communication with the mammalian hosts mediated by autoinducer-3 (AI-3)/epinephrine (Epi)/norepinephrine (NE), and transduced by two-component systems QseBC has recently been described. As a fish pathogen and opportunistic pathogen for human beings, Edwardsiella tarda develops surface structures such as flagellar and fimbriae to cause different hemagglutination phenotypes and serotypes and initiate pathogen-host recognition and invasion process. E. tarda survives within macrophages in fish using type III secretion system (TTSS). Here, the genes of E. tarda two-component system, qseB and qseC, were found to be co-transcribed. Phylogenetic analysis indicated that evolution of QseC strongly correlated to different host niches. Compared with the wild type and their complemented strains, ΔqseB and ΔqseC mutants exhibited significant impaired flagellar motilities. Mammalian Epi was able to stimuli the flagellar motility in E. tarda via QseBC. Hemagglutination caused by fimbriae was induced in ΔqseB but repressed in ΔqseC. Disruption of qseB or qseC down-regulated the intracellular expressions of TTSS elements EseB and EsaC, and impaired their intracellular survival capabilities as well as in vivo competitive abilities. Furthermore, in vitro tests indicated that expression of EseB was induced by Epi via QseBC. Our results revealed that the QseBC system modified the virulence-related surface structures (flagellum, fimbriae and secretion system) and that hormone might stimulate the virulence of the pathogen in fish.  相似文献   

9.
Santander J  Xin W  Yang Z  Curtiss R 《PloS one》2010,5(12):e15944
asdA mutants of gram-negative bacteria have an obligate requirement for diaminopimelic acid (DAP), which is an essential constituent of the peptidoglycan layer of the cell wall of these organisms. In environments deprived of DAP, i.e., animal tissues, they will undergo lysis. Deletion of the asdA gene has previously been exploited to develop antibiotic-sensitive strains of live attenuated recombinant bacterial vaccines. Introduction of an Asd(+) plasmid into a ΔasdA mutant makes the bacterial strain plasmid-dependent. This dependence on the Asd(+) plasmid vector creates a balanced-lethal complementation between the bacterial strain and the recombinant plasmid. E. ictaluri is an enteric gram-negative fish pathogen that causes enteric septicemia in catfish. Because E. ictaluri is a nasal/oral invasive intracellular pathogen, this bacterium is a candidate to develop a bath/oral live recombinant attenuated Edwardsiella vaccine (RAEV) for the catfish aquaculture industry. As a first step to develop an antibiotic-sensitive RAEV strain, we characterized and deleted the E. ictaluri asdA gene. E. ictaluri ΔasdA01 mutants exhibit an absolute requirement for DAP to grow. The asdA gene of E. ictaluri was complemented by the asdA gene from Salmonella. Several Asd(+) expression vectors with different origins of replication were transformed into E. ictaluri ΔasdA01. Asd(+) vectors were compatible with the pEI1 and pEI2 E. ictaluri native plasmids. The balanced-lethal system was satisfactorily evaluated in vivo. Recombinant GFP, PspA, and LcrV proteins were synthesized by E. ictaluri ΔasdA01 harboring Asd(+) plasmids. Here we constructed a balanced-lethal system, which is the first step to develop an antibiotic-sensitive RAEV for the aquaculture industry.  相似文献   

10.
Invasion of Edwardsiella ictaluri into cultured mammalian, fish and enzymatically harvested catfish enteric epithelial cells is described. Gentamicin survival assays were used to demonstrate the ability of this catfish pathogen to invade IEC-6 (origin: rat small intestinal epithelium), Henle 407 (origin: human embryonic intestinal epithelium), fathead minnow (FHM, minnow epithelial cells) and trypsin/pepsin-harvested channel catfish enteric epithelial cells. Invasion of all cell types occurred within 2 h of contact at 26 degrees C, in contrast to Escherichia coli DH5 alpha, which did not invade cells tested. Eight Edwardsiella ictaluri isolates from diseased catfish and the ATCC (American Type Culture Collection) strain were evaluated for invasion efficiency using FHM cells. All isolates were invasive, but at differing efficiencies. Invasion blocking assays using chemical blocking agents were performed on a single isolate (LA 89-9) using IEC-6 epithelial cells. Preincubation of IEC-6 cells with cytochalasin D (microfilament depolymerizer) and monodansylcadaverine (blocks receptor-mediated endocytosis) significantly reduced invasion by E. ictaluri, whereas exposure to colchicine (microtubule depolymerizer) had no effect on bacterial internalization. Results indicate that actin polymerization and receptor-mediated endocytosis are involved in uptake of E. ictaluri by IEC-6 epithelial cells. Invasion trials using freshly harvested cells from the intestine of the natural host, Ictalurus punctatus, show that invasion occurs, but at a low efficiency. This is possibly due to loss of outer membrane receptors during enzymatic cell harvest. This study provides the first documentation of the invasion of cultured mammalian and fish cells by E. ictaluri, and identifies possible mechanisms used for intracellular access. Additionally, the study describes several functional in vitro invasion models using commercially available cell lines as well as cells from the natural host (channel catfish, I. punctatus).  相似文献   

11.
Edwardsiella tarda, which is known to be the causative agent of edwardsiellosis in freshwater and marine fish, has two motility phenotypes. Typical strains exhibiting motility are isolated mainly from freshwater fish and Japanese flounder. Atypical strains exhibiting non-motility are isolated mainly from marine fish, with the exception of Japanese flounder. Subtractive hybridization was performed to identify genomic differences between these two phenotypes. Two fragments which showed homology to potential virulence factors were isolated from atypical strains: the autotransporter adhesin AIDA and a component of T6SS. We analysed DNA sequences of about 5 kbp containing these fragments and identified two partial ORF, and ORF encoding for other components of T6SS. The predicted amino acid sequences showed remarkably low homology to components of T6SS reported in the typical E. tarda strain PPD130/91. Furthermore, the organization of these ORF was different from the gene cluster of the typical E. tarda strain. AIDA and T6SS may therefore be associated with different pathogenicity in typical and atypical E. tarda hosts.  相似文献   

12.
13.
Edwardsiella ictaluri is an Enterobacteriaceae that causes lethal enteric septicemia in catfish. Being a mucosal facultative intracellular pathogen, this bacterium is an excellent candidate to develop immersion-oral live attenuated vaccines for the catfish aquaculture industry. Deletion of the cyclic 3',5'-adenosine monophosphate (cAMP) receptor protein (crp) gene in several Enterobacteriaceae has been utilized in live attenuated vaccines for mammals and birds. Here we characterize the crp gene and report the effect of a crp deletion in E. ictaluri. The E. ictaluri crp gene and encoded protein are similar to other Enterobacteriaceae family members, complementing Salmonella enterica Δcrp mutants in a cAMP-dependent fashion. The E. ictaluri Δcrp-10 in-frame deletion mutant demonstrated growth defects, loss of maltose utilization, and lack of flagella synthesis. We found that the E. ictaluri Δcrp-10 mutant was attenuated, colonized lymphoid tissues, and conferred immune protection against E. ictaluri infection to zebrafish (Danio rerio) and catfish (Ictalurus punctatus). Evaluation of the IgM titers indicated that bath immunization with the E. ictaluri Δcrp-10 mutant triggered systemic and skin immune responses in catfish. We propose that deletion of the crp gene in E. ictaluri is an effective strategy to develop immersion live attenuated antibiotic-sensitive vaccines for the catfish aquaculture industry.  相似文献   

14.
Edwardsiella tarda is an important cause of haemorrhagic septicaemia in fish and also of gastro- and extraintestinal infections in humans. Using a combination of comparative proteomics and TnphoA mutagenesis, we have identified five proteins that may contribute to E. tarda PPD130/91 pathogenesis. Lowered protein secretion, impaired autoaggregation and the absence of six proteins were observed only in three highly attenuated mutants when cultured in Dulbecco's modified eagle medium (DMEM). Five out of six proteins could be identified by their mass spectra. Three proteins were identified as putative effector proteins (EseB, EseC and EseD) that are homologous to SseB, SseC and SseD of a type III secretion system (TTSS) in Salmonella species. The other two were EvpA and EvpC, homologous to Eip20 and Eip18 in Edwardsiella ictaluri. The complete sequencing and homology studies of evpA-H indicate that similar gene clusters are widely distributed in other pathogens such as Escherichia, Salmonella, Vibrio and Yersinia species with unknown functions. Insertional inactivation and deletion of evpB or evpC led to lower replication rates in gourami phagocytes, and reduced protein secretion and virulence in blue gourami. Complementation of these deletion mutants showed partial recovery in the above three phenotypes, indicating that these genes are vital for E. tarda pathogenesis. The transport of the EvpC protein may not use the TTSS in E. tarda. The expression of EvpA and EvpC as well as EseB, EseC and EseD was temperature dependent (suppressed at 37 degrees C), and disruption of esrB affected their expression. The present study identifies two possible secretion systems (TTSS and Evp) that are vital for E. tarda pathogenesis.  相似文献   

15.
为了探讨饲料中维生素D3添加水平对黄颡鱼(Pelteobagrus fulvidraco)生长和Toll样受体的影响,研究设计了5个不同浓度梯度的维生素D3饲料(1120、2260、3950、8030和16600 IU/kg),对体重为(5.0±0.2) g的黄颡鱼进行了为期12周的生长实验,并在生长实验结束后进行鮰爱德华氏菌(Edwardsiella ictaluri)攻毒72h。于攻毒前(0)和攻毒后(72h)采样,每个饲料组分别取6尾鱼的脾脏、头肾、肝脏和前肠四个组织,检测不同浓度维生素D3处理对攻毒前和攻毒后TLR18、TLR19和TLR21基因表达量的影响。同时另取6条新鲜黄颡鱼的肌肉、头肾、肾脏、皮肤、脑、鳃、脾脏、胃上皮、小肠和肝脏,检测TLR18、TLR19和TLR21基因在黄颡鱼中的组织分布。结果表明:不同的维生素D3添加水平会显著影响黄颡鱼幼鱼的生长性能; TLR18、TLR19和TLR21基因在所检测的组织中均有表达,但在脾脏中表达量最高;饲料中不同维生素D3含量在攻毒前后均会显著影响TLR18、TLR19和TLR21在头肾、脾脏、肝脏和前肠中的表达,攻毒后基因的...  相似文献   

16.
There is limited information on whether parasites act as vectors to transmit bacteria in fish. In this trial, we used Ichthyophthirius multifiliis and fluorescent Edwardsiella ictaluri as a model to study the interaction between parasite, bacterium, and fish. The percentage (23-39%) of theronts fluorescing after exposure to E.?ictaluri was significantly higher than control theronts (~?6%) using flow cytometry. Theronts exposed to E.?ictaluri at 4?×?10(7) CFU?mL(-1) showed a higher percentage (~?60%) of fluorescent theronts compared to those (42%) exposed to 4?×?10(3) CFU?mL(-1) at 4?h. All tomonts (100%) carried the bacterium after exposure to E.?ictaluri. Edwardsiella ictaluri survived and replicated during tomont division. Confocal microscopy demonstrated that E.?ictaluri was associated with the tomont surface. Among theronts released from tomonts exposed to E.?ictaluri, 31-66% were observed with attached E.?ictaluri. Sixty percent of fish exposed to theronts treated with 5?×?10(7) E.?ictaluri?mL(-1) were positive for E.?ictaluri at 4?h as determined by qPCR or fluorescent microscopy. Fluorescent E.?ictaluri were observed on trophonts in skin and gill wet mounts of dead fish. This study demonstrated that Ich could vector E.?ictaluri to channel catfish.  相似文献   

17.
Eighteen different strains of Edwardsiella ictaluri isolated from infected channel catfish (Ictalurus punctatus) were screened to determine whether plasmid DNA was present. Two plasmids of 5,700 and 4,900 base pairs were identified. Restriction enzyme analysis showed that each of the strains harbored these same two plasmids. Restriction maps of the separated plasmids indicated that these plasmids were not closely related to each other. A rapid screening technique was developed that would allow the presence of these plasmids from either broth cultures or single colonies of E. ictaluri to be determined within 2 to 3 h by agarose gel electrophoresis. These results suggest that plasmid fingerprinting of E. ictaluri should become a useful tool in the presumptive identification of this bacterium from infected channel catfish.  相似文献   

18.
19.
Eighteen different strains of Edwardsiella ictaluri isolated from infected channel catfish (Ictalurus punctatus) were screened to determine whether plasmid DNA was present. Two plasmids of 5,700 and 4,900 base pairs were identified. Restriction enzyme analysis showed that each of the strains harbored these same two plasmids. Restriction maps of the separated plasmids indicated that these plasmids were not closely related to each other. A rapid screening technique was developed that would allow the presence of these plasmids from either broth cultures or single colonies of E. ictaluri to be determined within 2 to 3 h by agarose gel electrophoresis. These results suggest that plasmid fingerprinting of E. ictaluri should become a useful tool in the presumptive identification of this bacterium from infected channel catfish.  相似文献   

20.
Diseases in catfish farming are prevalent and costly, particularly the bacterial disease Enteric Septicemia of Catfish. Considerable research has focused on different aspects of this disease, including the biology of the causative agent, Edwardsiella ictaluri. However, no satisfactory treatment or preventive has resulted from these efforts. One solution is to increase the natural disease resistance of the fish through genetic selection. Recent research has demonstrated that genetic factors influence resistance to infection in mammals as well as fish. Selective breeding for disease resistance in channel catfish is ongoing, however differences in defence mechanisms among E. ictaluri challenged strains and families are only now being investigated. Antigen-specific as well as non-specific immune responses of full-sib families of channel catfish to laboratory challenge with E. ictaluri have been investigated. Both resistant and sensitive families produce a humoral response as specific antibody, but there were no differences found in the level of specific antibody produced. The sensitive family produced a slightly higher percentage of B lymphocytes in mononuclear cell preparations from peripheral blood, while the resistant family had a higher percentage of T lymphocytes in those preparations. The most significant observation was that the resistant family produced more macrophage aggregations in the spleen and posterior kidney throughout the infection than the sensitive family. Neither family produced stress-associated amounts of cortisol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号