首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. Wutzler  K. Foerster  B. Kempenaers 《Genetica》2012,140(7-9):349-364
The major histocompatibility complex (MHC) is central to the vertebrate immune system and its highly polymorphic genes are considered to influence several life-history traits of individuals. To characterize the MHC in a natural population of blue tits (Cyanistes caeruleus) we investigated the class I exon 3 diversity of more than 900 individuals. We designed two pairs of motif-specific primers that reliably amplify independent subsets of MHC alleles. Applying denaturing gradient gel electrophoresis (DGGE) we obtained 48 independently inherited units of unique band patterns (DGGE-haplogroups), which were validated in a segregation analysis within 105 families. In a second approach, we extensively sequenced 6 unrelated individuals to confirm that DGGE-haplogroup composition reflects individual allelic variation. The highest number of different DGGE-haplogroups in a single individual corresponded in 19 MHC exon 3 sequences, suggesting a minimum of 10 amplified MHC class I loci in the blue tit. In total, we identified 50 unique functional and 3 non-functional sequences. Functional sequences showed high levels of recombination and strong positive selection in the antigen binding region, whereas nucleotide diversity was comparatively low in the range of all passerine species. Finally, in a phylogenetic comparison of passerine MHC class I exon 3 sequences we discuss conflicting evolutionary signals possibly due to recent gene duplication, recombination events and concerted evolution. Our results indicate that the described method is suitable to effectively explore the MHC diversity and its ecological impacts in blue tits in future studies.  相似文献   

2.
The major histcompatibility complex (MHC) is a vital component of the adaptive immune system in all vertebrates. This study is the first to characterize MHC class I (MHC-I) in blue tits (Cyanistes caeruleus), and we use MHC-I exon 3 sequence data from individuals originating from three locations across Europe: Spain, the Netherlands to Sweden. Our phylogeny of the 17 blue tit MHC-I alleles contains one allele cluster with low nucleotide diversity compared to the remaining more diverse alleles. We found a significant evidence for balancing selection in the peptide-binding region in the diverse allele group only. No separation according to geographic location was found in the phylogeny of alleles. Although the number of MHC-I loci of the blue tit is comparable to that of other passerine species, the nucleotide diversity of MHC-I appears to be much lower than that of other passerine species, including the closely related great tit (Parus major) and the severely inbred Seychelles warbler (Acrocephalus sechellensis). We believe that this initial MHC-I characterization in blue tits provides an important step towards understanding the mechanisms shaping MHC-I diversity in natural populations.  相似文献   

3.
The genes of the major histocompatibility complex (MHC) are a central component of the immune system in vertebrates and have become important markers of functional, fitness-related genetic variation. We have investigated the evolutionary processes that generate diversity at MHC class I genes in a large population of an archaic reptile species, the tuatara (Sphenodon punctatus), found on Stephens Island, Cook Strait, New Zealand. We identified at least 2 highly polymorphic (UA type) loci and one locus (UZ) exhibiting low polymorphism. The UZ locus is characterized by low nucleotide diversity and weak balancing selection and may be either a nonclassical class I gene or a pseudogene. In contrast, the UA-type alleles have high nucleotide diversity and show evidence of balancing selection at putative peptide-binding sites. Twenty-one different UA-type genotypes were identified among 26 individuals, suggesting that the Stephens Island population has high levels of MHC class I variation. UA-type allelic diversity is generated by a mixture of point mutation and gene conversion. As has been found in birds and fish, gene conversion obscures the genealogical relationships among alleles and prevents the assignment of alleles to loci. Our results suggest that the molecular mechanisms that underpin MHC evolution in nonmammals make locus-specific amplification impossible in some species.  相似文献   

4.
5.
Axtner J  Sommer S 《Immunogenetics》2007,59(5):417-426
The generation and maintenance of allelic polymorphism in genes of the major histocompatibility complex (MHC) is a central issue in evolutionary genetics. Recently, the focus has changed from ex situ to in situ populations to understand the mechanisms that determine adaptive MHC polymorphism under natural selection. Birth-and-death evolution and gene conversion events are considered to generate sequence diversity in MHC genes, which subsequently is maintained by balancing selection through parasites. The ongoing arms race between the host and parasites leads to an adaptive selection pressure upon the MHC, evident in high rates of non-synonymous vs synonymous substitution rates. We characterised the MHC class II DRB exon 2 of free living bank voles, Clethrionomys glareolus by single-strand conformation polymorphism and direct sequencing. Unlike other arvicolid species, the DRB locus of the bank vole is at least quadruplicated. No evidence for gene conversion events in the Clgl-DRB sequences was observed. We found not only high allelic polymorphism with 26 alleles in 36 individuals but also high rates of silent polymorphism. Exceptional for MHC class II genes is a purifying selection pressure upon the majority of MHC-DRB sequences. Further, we analysed the association between certain DRB alleles and the parasite burden with gastrointestinal trichostrongyle nematodes Heligmosomum mixtum and Heligmosomoides glareoli and found significant quality differences between specific alleles with respect to infection intensity. Our findings suggest a snapshot in an evolutionary process of ongoing birth-and-death evolution. One allele cluster has lost its function and is already silenced, another is loosing its adaptive value in terms of gastrointestinal nematode resistance, while a third group of alleles indicates all signs of classical functional MHC alleles.  相似文献   

6.
7.
The mangrove killifish Rivulus marmoratus, a neotropical fish in the order Cyprinodontiformes, is the only known obligatorily selfing, synchronous hermaphroditic vertebrate. To shed light on its population structure and the origin of hermaphroditism, major histocompatibility complex (Mhc) class I genes of the killifish from seven different localities in Florida, Belize, and the Bahamas were cloned and sequenced. Thirteen loci and their alleles were identified and classified into eight groups. The loci apparently arose approximately 20 million years ago (MYA) by gene duplications from a single common progenitor in the ancestors of R. marmoratus and its closest relatives. Distinct loci were found to be restricted to different populations and different individuals in the same population. Up to 44% of the fish were heterozygotes at Mhc loci, as compared to near homozygosity at non-Mhc loci. Large genetic distances between some of the Mhc alleles revealed the presence of ancestral allelic lineages. Computer simulation designed to explain these findings indicated that selfing is incomplete in R. marmoratus populations, that Mhc allelic lineages must have diverged before the onset of selfing, and that the hermaphroditism arose in a population containing multiple ancestral Mhc lineages. A model is proposed in which hermaphroditism arose stage-wise by mutations, each of which spread through the entire population and was fixed independently in the emerging clones.  相似文献   

8.
Enhanced selection for MHC diversity in social tuco-tucos   总被引:2,自引:0,他引:2  
To explore the effects of behavior and demography on balancing selection at major histocompatibility complex (MHC) loci, we examined allelic diversity at exon 2 of the MHC class II DQbeta locus in a social and a solitary species of tuco-tuco (Rodentia: Ctenomyidae: Ctenomys), both of which occur in the same valley in southwestern Argentina. By comparing patterns of diversity at this MHC gene to the diversity evident at fifteen microsatellite loci, we demonstrate that balancing selection at the DQbeta locus is enhanced in the social species compared to its solitary congener. These findings have intriguing implications for the role of behavioral and demographic parameters in maintaining diversity at MHC loci.  相似文献   

9.
Sequence diversity of Mhc genes in lake whitefish   总被引:1,自引:0,他引:1  
The sequence variation of three exons of the major histocompatibility complex ( Mhc ) was examined in a lake whitefish Coregonus sp., population from the Swiss lake of Hallwil. DNA sequences from the Mhc class I A1 , A2 and class II B1 exons, corresponding to the α1, α2 and β1 domains of the Mhc glycoproteins, were obtained by the polymerase chain reaction followed by cloning and sequencing. The numbers of variable sequences detected for each exon were 15 ( A1 ), 11 ( A2 ) and 20 ( B1 ). Levels of nucleotide similarity ranged from 82 to 99% for the A1 exon, 58–96% for the A2 and 88–99% for the B1 exon. At the A1 and B1 exons, the nonsynonymous substitution rates ( dn ) exceeded synonymous substitution rates ( ds ) greatly within the peptide binding regions, indicating the effect of balancing selection. Sequence diversity at the A2 exon did not seem to be maintained by balancing selection ( ds > dn ). Phylogenetic comparison of whitefish Mhc sequences with sequences from other salmonid species and more distantly related teleosts indicated shared ancestral (trans-species) polymorphism.  相似文献   

10.
两栖类正经历全球范围内的种群衰退,很多两栖动物集群灭绝事件与环境病原体(如壶菌(Batrachochytrium dendrobatidis)的侵扰有关。MHC基因的表达产物在有颌脊椎动物免疫应答过程中起关键作用,其多态性通常与动物对疾病的抗性或易感性密切相关,因而被认为是研究动物适应性进化的最佳候选基因之一。本文对中国特有的无尾两栖动物凹耳蛙(Odorrana tormota)MHC II类B基因多态性进行初步研究。首先,利用1对通用引物扩增出凹耳蛙MHC II类B基因exon2长约180bp的DNA片段。在此基础上,利用ligation-mediated PCR进一步获取侧翼未知序列,序列拼接后长2,030bp,包含exon2以及intron1和intron2的部分序列。基于上述序列设计出凹耳蛙B基因exon2特异性引物(IIQ1BU/IIQ1BD),对该物种黄山种群32个样品进行PCR扩增和克隆测序,共获得34个不同的等位基因,等位基因序列核苷酸和氨基酸变异位点的比例分别为16.17%(33/204)和26.87%(18/67),大多数氨基酸变异位点位于推测的抗原结合位点(antigen binding sites,ABS)。每个样品包含2-5个等位基因,结合等位基因序列特征以及cDNA表达分析结果,推测凹耳蛙至少拥有3个可表达的B基因座位。与文献报道的蛙科其他物种比较后发现,尽管凹耳蛙目前的分布区非常狭窄,但其MHC II类B基因多态性明显高于蛙科其他动物。等位基因碱基替换模式提示凹耳蛙MHC II类B基因曾经历过强烈的正选择作用,ABS区的dN值显著大于dS(P<0.05),PAML软件包CODEML程序中不同模型的似然比检测(likelihood rate test)结果同样支持上述推论,贝叶斯经验贝叶斯路径(Bayesian Em-pirical Bayes)共检测出5个显著受正选择作用的氨基酸位点。贝叶斯系统树的拓扑结构显示,无尾两栖类不同科的等位基因分别形成单系群,但蛙科不同属的等位基因未能形成单系群,蛙属绿池蛙(Rana clamitans)的1个等位基因与臭蛙属凹耳蛙的部分等位基因享有共同的谱系关系,提示蛙科不同属间的B基因存在跨种多态性。  相似文献   

11.
Twenty-three sequence haplotypes spanning the boundary of the second exon and intron of a red-winged blackbird Mhc class II B gene, Agph-DAB1, are presented. The polymorphism of the exon segment is distributed in two divergent allelic lineages which appear to be maintained by balancing selection. The silent nucleotide diversity of the exon (pi = 0.101) is more than five times that of the intron (pi = 0.018) and decays rapidly across the exon-intron boundary. Additionally, genealogical reconstruction indicates that divergence from a common ancestor in the exon sample is over four times that of the intron. The intron sequences reveal a pattern of polymorphism which is characteristic of directional selection, rather than a pattern expected from linkage to a balanced polymorphism. These results suggest that the evolutionary histories of these two adjacent regions have been disassociated by recombination or gene conversion. The estimated population recombination parameter between the exon and the intron is sufficiently high (4NeC = 8.545) to explain the homogenization of intron sequences. Compatibility analyses estimate that these events primarily occur from the exon-intron boundary to about 20-30 bases into the intron. Additionally, the observation that divergent exon alleles share identical intron sequence supports the conclusion of disassociation of exon and intron evolutionary histories by recombination.  相似文献   

12.
The DNA sequences of four exons of the MHC (major histocompatibilty complex) were examined in chinook salmon ( Oncorhynchus tshawytscha ) from an interior (Nechako River) and a coastal (Harrison River) population in the Fraser River drainage of British Columbia. Mhc class I A1, A2 and A3 sequences and a class II B1 sequence were obtained by PCR from each of 16–20 salmon from each population. The class I A1 and a pair of linked A2–A3 exons were derived from two different classical salmonid class I genes, Sasa-A and Onmy-UA , respectively. Allelic variation for B1, A1 and A2 was characterized by the high levels of nonsynonymous substitution indicative of the effects of natural selection on Mhc domains that contain peptide binding regions. The number of alleles detected at each of the four exons ranged from three ( B1 ) to 22 ( A1 ), but levels of nucleotide sequence divergence at all four exons were low relative to classical mammalian Mhc genes. The nucleotide similarity among alleles ranged between 89 and 99% over all exons, and all four domains possessed only two major sequence motifs. Allelic distributions at B1, A1 and A3 confirmed the genetic distinctiveness of the Harrison and Nechako chinook salmon populations revealed in previous studies. The two major allelic motifs of B1 and A1 segregated strongly between the populations. In spite of evidence that allelic diversity at these chinook salmon Mhc exons has been generated by selection, the level and distribution of diversity in the two salmon populations strongly reflected the demographic history of the species, which has been characterized by repeated bottlenecks and isolation-by-distance in glacial refugia.  相似文献   

13.
Genetic diversity is fundamental to maintaining the long‐term viability of populations, yet reduced genetic variation is often associated with small, isolated populations. To examine the relationship between demography and genetic variation, variation at hypervariable loci (e.g., microsatellite DNA loci) is often measured. However, these loci are selectively neutral (or near neutral) and may not accurately reflect genomewide variation. Variation at functional trait loci, such as the major histocompatibility complex (MHC), can provide a better assessment of adaptive genetic variation in fragmented populations. We compared patterns of microsatellite and MHC variation across three Eastern Massasauga (Sistrurus catenatus) populations representing a gradient of demographic histories to assess the relative roles of natural selection and genetic drift. Using 454 deep amplicon sequencing, we identified 24 putatively functional MHC IIB exon 2 alleles belonging to a minimum of six loci. Analysis of synonymous and nonsynonymous substitution rates provided evidence of historical positive selection at the nucleotide level, and Tajima's D provided support for balancing selection in each population. As predicted, estimates of microsatellite allelic richness, observed, heterozygosity, and expected heterozygosity varied among populations in a pattern qualitatively consistent with demographic history and abundance. While MHC allelic richness at the population and individual levels revealed similar trends, MHC nucleotide diversity was unexpectedly high in the smallest population. Overall, these results suggest that genetic variation in the Eastern Massasauga populations in Illinois has been shaped by multiple evolutionary mechanisms. Thus, conservation efforts should consider both neutral and functional genetic variation when managing captive and wild Eastern Massasauga populations.  相似文献   

14.
A cDNA library screening using the conserved exon 4 of Atlantic salmon Mhc class I as probe provided the basis for a study on Mhc class I polymorphism in a breeding population. Twelve different alleles were identified in the 82 dams and sires studied. No individual expressed more than two alleles, which corresponded to the diploid segregation patterns of the polymorphic marker residing within the 3'-untranslated tail. Close linkage between the Sasa-UBA and Sasa-TAP2B loci strengthens the claim that Sasa-UBA is the major Mhc class I locus in Atlantic salmon. We found no evidence for a second expressed classical or non-classical Mhc class I locus in Atlantic salmon. A phylogenetic analysis of salmonid Mhc class I sequences showed domains conserved between rainbow trout, brown trout and Atlantic salmon. Evidence for shuffling of the alpha(1) domain was identified and lineages of the remaining alpha(2) through the cytoplasmic tail gene segment can be defined. The coding sequence of one allele was found associated with two different markers, suggesting recombination within the 3'-tail dinucleotide repeat itself. Protein modelling of several Sasa-UBA alleles shows distinct differences in their peptide binding domains and enables a further understanding of the functionality of the high polymorphism.  相似文献   

15.
Balancing selection, an evolutionary force that retains genetic diversity, has been detected in multiple genes and organisms, such as the sexual mating loci in fungi. However, to quantify the strength of balancing selection and define the mating-related genes require a large number of strains. In tetrapolar basidiomycete fungi, sexual type is determined by two unlinked loci, MATA and MATB. Genes in both loci define mating type identity, control successful mating and completion of the life cycle. These loci are usually highly diverse. Previous studies have speculated, based on culture crosses, that species of the non-model genus Trichaptum (Hymenochaetales, Basidiomycota) possess a tetrapolar mating system, with multiple alleles. Here, we sequenced a hundred and eighty strains of three Trichaptum species. We characterized the chromosomal location of MATA and MATB, the molecular structure of MAT regions and their allelic richness. The sequencing effort was sufficient to molecularly characterize multiple MAT alleles segregating before the speciation event of Trichaptum species. Analyses suggested that long-term balancing selection has generated trans-species polymorphisms. Mating sequences were classified in different allelic classes based on an amino acid identity (AAI) threshold supported by phylogenetics. 17,550 mating types were predicted based on the allelic classes. In vitro crosses allowed us to support the degree of allelic divergence needed for successful mating. Even with the high amount of divergence, key amino acids in functional domains are conserved. We conclude that the genetic diversity of mating loci in Trichaptum is due to long-term balancing selection, with limited recombination and duplication activity. The large number of sequenced strains highlighted the importance of sequencing multiple individuals from different species to detect the mating-related genes, the mechanisms generating diversity and the evolutionary forces maintaining them.  相似文献   

16.
17.
The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next‐generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans‐species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long‐term survival of the species.  相似文献   

18.
The European rabbit (Oryctolagus cuniculus) is used as a model for many human diseases, yet comparatively little is known of its genetics, particularly at important loci such as the major histocompatibility complex (MHC). This study investigated genetic diversity and evolutionary history of the DQA gene in a range of leporid species by analysing coding sequence diversity of exon 2 and intron 2 in 53 individuals of 16 different species. Fifty leporid DQA alleles were detected, including 13 novel European rabbit alleles. In the rabbit, the highest levels of diversity were observed in wild rabbits from Portugal, with wild rabbits from England and domestic rabbits showing less diversity. Within the sample, several recombination events were detected and trans-specific evolution of alleles was evidenced, both being general characteristics of mammalian MHC genes. Positive selection is implicated as operating on six codons within exon 2, which are also subject to positive selection in other mammals. Some of these positions are putative antigen recognition sites and underline the importance of pathogen-driven selection on these MHC genes.  相似文献   

19.
Jugo BM  Vicario A 《Immunogenetics》2000,51(11):887-897
Single-strand conformational polymorphism analysis and DNA sequencing were used to characterize Mhc-DRB second exon variability in the Latxa and Karrantzar breeds of sheep. The presence of more than two sequences in some animals indicates that alleles of two different loci have been amplified. Six new alleles were identified by sequencing. The allele frequency distribution of the DRB1 gene is striking, with two alleles accounting for half of the gene pool in both breeds under study. The most frequent allele in both breeds was the same (named DRB1*0702), with some specific amino acids: Tyr in position 31 and Thr in 51. A species variability analysis was also performed including the entire set of sheep DRB exon 2 sequences. Based on the patchwork patterns of different alleles, interallelic recombination appears to be playing a significant role in the generation of allelic diversity at this locus in sheep. The phylogenetic tree of all known Caprinae DRB sequences shows that certain alleles from one species are more closely related to those from other species than they are to each other. Allele DRB1*0702 merits special attention due to its high similarity to the Mufflon allele. As this is the most frequent in both breeds analyzed, one can hypothesize that in sheep, both Mufflon and Argali have had different influences depending on the sheep breed under study and that the relationship between domestic sheep and Mufflon is greater than previously thought. The data generated in this study can serve as a basis for developing a typing assay for the sheep DRB genes in the Latxa and Karrantzar populations.  相似文献   

20.
Cutrera AP  Lacey EA 《Immunogenetics》2007,59(12):937-948
Balancing selection acting over the evolutionary history of a lineage can result in the retention of alleles among species for longer than expected under neutral evolution. The associated pattern of trans-species polymorphism, in which similar or even identical alleles are shared among species, is often used to infer that balancing selection has occurred. The genes of the major histocompatibility complex (MHC) are thought to be subject to balancing selection that maintains alleles associated with response to specific pathogens. To explore the role of balancing selection in shaping MHC diversity in ctenomyid rodents, we examined allelic variability at the class II DRB and DQA loci in 18 species in the genus Ctenomys. Previous studies of four of these species had revealed significant within-population evidence of positive selection on MHC loci. The current study expands upon these analyses to (1) evaluate among-species evidence of positive selection and (2) explore the potential for balancing selection on MHC genes. Interspecific nucleotide sequence variation revealed significant evidence of positive selection on the DRB and DQA loci. At the same time, comparisons of phylogenetic trees for these MHC loci with a putative species tree based on mitochondrial sequence data revealed multiple examples of trans-specific polymorphism, including sharing of identical DRB and DQA alleles among distantly related species of Ctenomys. These findings suggest that MHC genes in these animals have historically been subject to balancing selection and yield new insights into the complex suite of forces shaping MHC diversity in free-living vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号