首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light sheet microscopy is an easy to implement and extremely powerful alternative to established fluorescence imaging techniques such as laser scanning confocal, multi-photon and spinning disk microscopy. By illuminating the sample only with a thin slice of light, photo-bleaching is reduced to a minimum, making light sheet microscopy ideal for non-destructive imaging of fragile samples over extended periods of time. Millimeter-sized samples can be imaged rapidly with high resolution and high depth penetration. A large variety of instruments have been developed and optimized for a number of different samples: Bessel beams form thin light sheets for single cells, and selective plane illumination microscopy (SPIM) offers multi-view acquisition to image entire embryos with isotropic resolution. This review explains how light sheet microscopy involves a conceptually new microscope design and how it changes modern imaging in biology.  相似文献   

2.
Light sheet microscopy is the ideal imaging technique to study zebrafish embryonic development. Due to minimal photo-toxicity and bleaching, it is particularly suited for long-term time-lapse imaging over many hours up to several days. However, an appropriate sample mounting strategy is needed that offers both confinement and normal development of the sample. Multilayer mounting, a new embedding technique using low-concentration agarose in optically clear tubes, now overcomes this limitation and unleashes the full potential of light sheet microscopy for real-time developmental biology.  相似文献   

3.
Light sheet microscopy is a versatile imaging technique with a unique combination of capabilities. It provides high imaging speed, high signal-to-noise ratio and low levels of photobleaching and phototoxic effects. These properties are crucial in a wide range of applications in the life sciences, from live imaging of fast dynamic processes in single cells to long-term observation of developmental dynamics in entire large organisms. When combined with tissue clearing methods, light sheet microscopy furthermore allows rapid imaging of large specimens with excellent coverage and high spatial resolution. Even samples up to the size of entire mammalian brains can be efficiently recorded and quantitatively analyzed. Here, we provide an overview of the history of light sheet microscopy, review the development of tissue clearing methods, and discuss recent technical breakthroughs that have the potential to influence the future direction of the field.  相似文献   

4.
Light sheet fluorescence microscopy (LSFM) is gaining more and more popularity as a method to image embryonic development. The main advantages of LSFM compared to confocal systems are its low phototoxicity, gentle mounting strategies, fast acquisition with high signal to noise ratio and the possibility of imaging samples from various angles (views) for long periods of time. Imaging from multiple views unleashes the full potential of LSFM, but at the same time it can create terabyte-sized datasets. Processing such datasets is the biggest challenge of using LSFM. In this protocol we outline some solutions to this problem. Until recently, LSFM was mostly performed in laboratories that had the expertise to build and operate their own light sheet microscopes. However, in the last three years several commercial implementations of LSFM became available, which are multipurpose and easy to use for any developmental biologist. This article is primarily directed to those researchers, who are not LSFM technology developers, but want to employ LSFM as a tool to answer specific developmental biology questions. Here, we use imaging of zebrafish eye development as an example to introduce the reader to LSFM technology and we demonstrate applications of LSFM across multiple spatial and temporal scales. This article describes a complete experimental protocol starting with the mounting of zebrafish embryos for LSFM. We then outline the options for imaging using the commercially available light sheet microscope. Importantly, we also explain a pipeline for subsequent registration and fusion of multiview datasets using an open source solution implemented as a Fiji plugin. While this protocol focuses on imaging the developing zebrafish eye and processing data from a particular imaging setup, most of the insights and troubleshooting suggestions presented here are of general use and the protocol can be adapted to a variety of light sheet microscopy experiments.  相似文献   

5.
Light sheet microscopy techniques, such as selective plane illumination microscopy (SPIM), are ideally suited for time-lapse imaging of developmental processes lasting several hours to a few days. The success of this promising technology has mainly been limited by the lack of suitable techniques for mounting fragile samples. Embedding zebrafish embryos in agarose, which is common in conventional confocal microscopy, has resulted in severe growth defects and unreliable results. In this study, we systematically quantified the viability and mobility of zebrafish embryos mounted under more suitable conditions. We found that tubes made of fluorinated ethylene propylene (FEP) filled with low concentrations of agarose or methylcellulose provided an optimal balance between sufficient confinement of the living embryo in a physiological environment over 3 days and optical clarity suitable for fluorescence imaging. We also compared the effect of different concentrations of Tricaine on the development of zebrafish and provide guidelines for its optimal use depending on the application. Our results will make light sheet microscopy techniques applicable to more fields of developmental biology, in particular the multiview long-term imaging of zebrafish embryos and other small organisms. Furthermore, the refinement of sample preparation for in toto and in vivo imaging will promote other emerging optical imaging techniques, such as optical projection tomography (OPT).  相似文献   

6.
Novel approaches to bio-imaging and automated computational image processing allow the design of truly quantitative studies in developmental biology. Cell behavior, cell fate decisions, cell interactions during tissue morphogenesis, and gene expression dynamics can be analyzed in vivo for entire complex organisms and throughout embryonic development. We review state-of-the-art technology for live imaging, focusing on fluorescence light microscopy techniques for system-level investigations of animal development, and discuss computational approaches to image segmentation, cell tracking, automated data annotation, and biophysical modeling. We argue that the substantial increase in data complexity and size requires sophisticated new strategies to data analysis to exploit the enormous potential of these new resources.  相似文献   

7.
Light sheet fluorescence microscopy (LSFM) functions as a non-destructive microtome and microscope that uses a plane of light to optically section and view tissues with subcellular resolution. This method is well suited for imaging deep within transparent tissues or within whole organisms, and because tissues are exposed to only a thin plane of light, specimen photobleaching and phototoxicity are minimized compared to wide-field fluorescence, confocal, or multiphoton microscopy. LSFMs produce well-registered serial sections that are suitable for three-dimensional reconstruction of tissue structures. Because of a lack of a commercial LSFM microscope, numerous versions of light sheet microscopes have been constructed by different investigators. This review describes development of the technology, reviews existing devices, provides details of one LSFM device, and shows examples of images and three-dimensional reconstructions of tissues that were produced by LSFM.  相似文献   

8.
We describe the development and utilization of a new imaging technology for plant biology, optical coherence microscopy (OCM), which allows true in vivo visualization of plants and plant cells. This novel technology allows the direct, in situ (e.g. plants in soil), three-dimensional visualization of cells and events in shoot tissues without causing damage. With OCM we can image cells or groups of cells that are up to 1 mm deep in living tissues, resolving structures less than 5 microm in size, with a typical collection time of 5 to 6 min. OCM measures the inherent light-scattering properties of biological tissues and cells. These optical properties vary and provide endogenous developmental markers. Singly scattered photons from small (e.g. 5 x 5 x 10 microm) volume elements (voxels) are collected, assembled, and quantitatively false-colored to form a three-dimensional image. These images can be cropped or sliced in any plane. Adjusting the colors and opacities assigned to voxels allows us to enhance different features within the tissues and cells. We show that light-scattering properties are the greatest in regions of the Arabidopsis shoot undergoing developmental processes. In large cells, high light scattering is produced from nuclei, intermediate light scatter is produced from cytoplasm, and little if any light scattering originates from the vacuole and cell wall. OCM allows the rapid, repetitive, non-destructive collection of quantitative data about inherent properties of cells, so it provides a means of continuously monitoring plants and plant cells during development and in response to exogenous stimuli.  相似文献   

9.
光学透明技术是一种通过各种化学试剂, 将原本不透明的生物样本实现透明化, 并在光学显微镜下深度成像的技术。结合多种光学显微成像新技术, 光学透明技术可对整个组织进行成像和三维重建, 深度剖析生物体内部空间特征与形成机制。近年来, 多种植物光学透明技术和多尺度成像技术被陆续研发, 并取得了丰硕的研究成果。该文综述了生物体光学透明技术的基本原理和一些新技术, 重点介绍基于光学透明技术开发的新型成像方法及其在植物成像与细胞生物学中的应用, 为后续植物整体、组织或器官的透明、成像与三维重构及功能研究提供理论依据和技术支持。  相似文献   

10.
The vertebrate limb is a powerful model system for studying the cellular and molecular interactions that determine morphological pattern during embryonic development. Recent advances in our understanding of these interactions have shed new light on the molecular mechanisms of vertebrate limb development, evolution and congenital malformations. The transfer of information has, until recently, been largely one way, with developmental studies informing our understanding of the fossil record and clinical limb anomalies; however, evolutionary and clinical studies are now beginning to shed light onto one another and onto basic developmental processes. In this review, we discuss recent advances in these fields and how they are interacting to improve our understanding of vertebrate limb biology.  相似文献   

11.
Fundamental questions in developmental biology are: what genes are expressed, where and when they are expressed, what is the level of expression and how are these programs changed by the functional and structural alteration of genes? These questions have been addressed by studying one gene at a time, but a new research field that handles many genes in parallel is emerging. The methodology is at the interface of large-scale genomics approaches and developmental biology. Genomics needs developmental biology because one of the goals of genomics – collection and analysis of all genes in an organism – cannot be completed without working on embryonic tissues in which many genes are uniquely expressed. However, developmental biology needs genomics – the high-throughput approaches of genomics generate information about genes and pathways that can give an integrated view of complex processes. This article discusses these new approaches and their applications to mammalian developmental biology.  相似文献   

12.
Light-based imaging has extensive applications for medicine and biology, and recent advances in optical imaging modalities, such as confocal and multi-photon scanning fluorescence microscopy, bioluminescence, optical coherence tomography, and spectral imaging, have opened new avenues for visualizing and recording over time dynamic changes in genetic, developmental, and disease mechanisms that cannot be captured by conventional light microscopy. In the present article, we focus on spectral imaging, and using human melanoma and its precursor lesions as an example, we describe the ability of spectral imaging to detect early-stage disease, capture gene expression profiles in tissue specimens, and visualize gene functions in tumors growing in living animals.  相似文献   

13.
We present here an outline of the lectures and laboratory exercises for undergraduate developmental biology students at the University of Tokyo. The main aim of our course is to help students fill the gap between natural history, classical embryology and molecular developmental biology. To achieve this aim, we take up various topics in the lectures, from fertilization and early development to developmental engineering. Our laboratory exercises begin with an introduction to the natural history of the organism. The entire class and the instructors collect newts in the field and discuss features of their mating behavior and so on. In the laboratory, students are absorbed by exercises such as a lampbrush chromosome preparation and an in vitro beating heart induction. After that, students choose their own research projects for which they will employ both classical embryological and modern molecular biological techniques. At the end of our course, the connectivity principle from field to gel blot will be part of the students' understanding.  相似文献   

14.
15.
To understand dynamic developmental processes, living tissues have to be imaged frequently and for extended periods of time. Root development is extensively studied at cellular resolution to understand basic mechanisms underlying pattern formation and maintenance in plants. Unfortunately, ensuring continuous specimen access, while preserving physiological conditions and preventing photo-damage, poses major barriers to measurements of cellular dynamics in growing organs such as plant roots. We present a system that integrates optical sectioning through light sheet fluorescence microscopy with hydroponic culture that enables us to image, at cellular resolution, a vertically growing Arabidopsis root every few minutes and for several consecutive days. We describe novel automated routines to track the root tip as it grows, to track cellular nuclei and to identify cell divisions. We demonstrate the system's capabilities by collecting data on divisions and nuclear dynamics.  相似文献   

16.
Databases have become integral parts of data management, dissemination, and mining in biology. At the Second Annual Conference on Electron Tomography, held in Amsterdam in 2001, we proposed that electron tomography data should be shared in a manner analogous to structural data at the protein and sequence scales. At that time, we outlined our progress in creating a database to bring together cell level imaging data across scales, The Cell Centered Database (CCDB). The CCDB was formally launched in 2002 as an on-line repository of high-resolution 3D light and electron microscopic reconstructions of cells and subcellular structures. It contains 2D, 3D, and 4D structural and protein distribution information from confocal, multiphoton, and electron microscopy, including correlated light and electron microscopy. Many of the data sets are derived from electron tomography of cells and tissues. In the 5 years since its debut, we have moved the CCDB from a prototype to a stable resource and expanded the scope of the project to include data management and knowledge engineering. Here, we provide an update on the CCDB and how it is used by the scientific community. We also describe our work in developing additional knowledge tools, e.g., ontologies, for annotation and query of electron microscopic data.  相似文献   

17.
Yuste R 《Nature methods》2005,2(12):902-904
Fluorescence microscopy has undergone a renaissance in the last decade. The introduction of green fluorescent protein (GFP) and two-photon microscopy has allowed systematic imaging studies of protein localization in living cells and of the structure and function of living tissues. The impact of these and other new imaging methods in biophysics, neuroscience, and developmental and cell biology has been remarkable. Further advances in fluorophore design, molecular biological tools and nonlinear and hyper-resolution microscopies are poised to profoundly transform many fields of biological research.  相似文献   

18.
The heartbeat is initiated and coordinated by a heterogeneous set of tissues, collectively referred to as the pacemaking and conduction system (PCS). While the structural and physiological properties of these specialized tissues has been studied for more than a century, distinct new insights have emerged in recent years. The tools of molecular biology and the lessons of modern embryology are beginning to uncover the mechanisms governing induction, patterning and developmental integration of the PCS. In particular, significant advances have been made in understanding the developmental biology of the fast conduction network in the ventricles--the His-Purkinje system. Although this progress has largely been made by using animal models such as the chick and mouse, the insights gained may help explain cardiac disease in humans, as well as lead to new treatment strategies.  相似文献   

19.
In 1983, a new theory, the New Head Hypothesis, was generated within the context of the Tunicate Hypothesis of deuterostome evolution. The New Head Hypothesis comprised four claims: (1) neural crest, neurogenic placodes, and muscularized hypomere are unique to vertebrates, (2) the structures derived from these tissues allowed a shift from filter feeding to active predation, (3) the rostral head of vertebrates is a neomorphic unit, and (4) neural crest and neurogenic placodes evolved from the epidermal nerve plexus of ancestral deuterostomes. These claims are re-examined within the context of evolutionary developmental biology. The first may or may not be valid, depending on whether protochordates have these tissues in rudimentary form. Regarding the second, clearly, the elaboration of these tissues in vertebrates is correlated with a shift from filter feeding to active predation. The third claim is clarified, i.e., that the elaboration of the alar portion of the rostral brain and the development of olfactory organs and their associated connective tissues represent a neomorphic unit, which appears to be valid. The fourth is rejected. When the origin of neural crest and neurogenic placodes is examined within the context of developmental biology, it appears they evolved due to the rearrangement of germ layers in the blastulae of the deuterostomes that gave rise to chordates. Deuterostome evolution and the origin of vertebrates are also re-examined in the context of new data from developmental biology and taxonomy. The Tunicate Hypothesis is rejected, and a new version of the Dipleurula Hypothesis is presented.  相似文献   

20.
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird’s- up to worm’s-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in “histo-biochemical” techniques and their manifold applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号