首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The initial establishment of lactic acid bacteria (LAB) and bifidobacteria in the newborn and the role of breast-milk as a source of these microorganisms are not yet well understood. The establishment of these microorganisms during the first 3 months of life in 20 vaginally delivered breast-fed full-term infants, and the presence of viable Bifidobacterium in the corresponding breast-milk samples was evaluated. In 1 day-old newborns Enterococcus and Streptococcus were the microorganisms most frequently isolated, from 10 days of age until 3 months bifidobacteria become the predominant group. In breast-milk, Streptococcus was the genus most frequently isolated and Lactobacillus and Bifidobacterium were also obtained. Breast-milk contains viable lactobacilli and bifidobacteria that might contribute to the initial establishment of the microbiota in the newborn.  相似文献   

2.
3.
Human gut microbiota and bifidobacteria: from composition to functionality   总被引:1,自引:0,他引:1  
The human gut is the home of an estimated 10(18) bacterial cells, many of which are uncharacterized or unculturable. Novel culture-independent approaches have revealed that the majority of the human gut microbiota consists of members of the phyla Bacteroidetes and Firmicutes. Nevertheless the role of bifidobacteria in gut ecology illustrates the importance of Actinomycetes and other Actinobacteria that may be underestimated. The human gut microbiota represents an extremely complex microbial community the collective genome of which, the microbiome, encodes functions that are believed to have a significant impact on human physiology. The microbiome is assumed to significantly enhance the metabolism of amino and glycan acids, the turnover of xenobiotics, methanogenesis and the biosynthesis of vitamins. Co-colonisation of the gut commensals Bifidobacterium longum and Bacteroides thetaiotaomicron in a murine model system revealed that the presence of bifidobacteria induced an expansion in the diversity of polysaccharides targeted for degradation by Bacteroides and also induced host genes involved in innate immunity. In addition, comparative analysis of individual human gut microbiomes has revealed various strategies that the microbiota use to adapt to the intestinal environment while also pointing to the existence of a distinct infant and adult-type microbiota.  相似文献   

4.
5.
双歧杆菌是婴儿肠道中最丰富的微生物,对婴儿肠道微生物的成熟和稳定有显著影响,与婴儿健康紧密相关。大量研究表明,婴儿肠道中最广泛存在的双歧杆菌有长双歧杆菌、短双歧杆菌和两歧双歧杆菌。母婴之间垂直传递可直接影响婴儿肠道中双歧杆菌各种属的早期定植和相对丰度变化,特别是分娩方式和喂养方式会显著影响婴儿肠道双歧杆菌。此外,胎龄和辅食等因素对婴儿肠道中双歧杆菌的组成与多样性也有一定影响。本文对婴儿肠道双歧杆菌的种属组成、相对丰度变化以及影响其多样性的因素进行了综述,为婴儿双歧杆菌群落的认识提供一定的理论依据。  相似文献   

6.
7.
昆虫肠道微生物的多样性、功能及应用   总被引:1,自引:0,他引:1  
昆虫肠道微生物种类繁多、数量巨大,在与宿主长期的协同进化过程中,不仅形成极为多样的种群结构,也进化出多样的生物学功能,对宿主的营养、生理、发育、防御、抗逆等方面都产生显著影响。近年来,越来越多的昆虫肠道微生物的多样性和生物学特性被揭示,具有农业、能源和环保价值的众多微生物种类和活性基因得到了开发,展现出巨大的应用潜力。本文将从昆虫肠道微生物的多样性、生物学功能、应用三个方面对近年来的研究进展进行总结,并进行展望。  相似文献   

8.
Worlds within worlds: evolution of the vertebrate gut microbiota   总被引:3,自引:0,他引:3  
In this Analysis we use published 16S ribosomal RNA gene sequences to compare the bacterial assemblages that are associated with humans and other mammals, metazoa and free-living microbial communities that span a range of environments. The composition of the vertebrate gut microbiota is influenced by diet, host morphology and phylogeny, and in this respect the human gut bacterial community is typical of an omnivorous primate. However, the vertebrate gut microbiota is different from free-living communities that are not associated with animal body habitats. We propose that the recently initiated international Human Microbiome Project should strive to include a broad representation of humans, as well as other mammalian and environmental samples, as comparative analyses of microbiotas and their microbiomes are a powerful way to explore the evolutionary history of the biosphere.  相似文献   

9.
Lactobacilli are believed to be beneficial for the human hosts and are currently being evaluated as potentially probiotic bacteria. In this study, Lactobacillus strains were isolated from infant faeces and were examined in vitro for potential probiotic properties. Faecal specimens from 63 healthy, full-term infants were collected at 4, 30 and 90 days after delivery. Seventy-four Lactobacillus strains were isolated and one or more different phenotypes from each infant (n = 44) were selected for further testing. The bacterial isolates were identified mainly as L. gasseri, L. crispatus, Lactobacillus paracasei, L. salivarius, L. fermentum after amplification and sequencing of 16s rRNA gene. The strains were examined for acid and bile tolerance, adhesion to Caco-2 cells, antibiotic susceptibility and antimicrobial activity against selected enteric pathogens. The great majority of the isolated lactobacilli were susceptible to ampicillin, amoxicillin/clavulanic acid, tetracycline, erythromycin, cephalothin, chloramphenicol and rifampicin. Resistance to vancomycin or bacitracin was detected to 34% of the strains. Twenty strains out of forty-four exhibited significant tolerance to bile salts. Those strains were subsequently tested for resistance to low pH conditions (pH 2 and 3). Interestingly, 85% (17 strains) of the tested lactobacilli remained unaffected at pH 3 after 3 h of incubation, 6 strains were found resistant at pH 2 after 1.5 h and only 2 strains found resistant after 3 h of incubation. Two of the strains were able to adhere to Caco-2 cells. In conclusion, two isolates fulfilled the in vitro probiotic criteria and are good candidates for further in vivo evaluation.  相似文献   

10.
11.
The aim of the study was to assess the quantitative and qualitative differences of the gut microbiota in infants. We evaluated gut microbiota at the age of 6 months in 32 infants who were either exclusively breast-fed, formula-fed, nursed by a formula supplemented with prebiotics (a mixture of fructo- and galacto-oligosaccharides) or breast-fed by mothers who had been given probiotics. The Bifidobacterium, Bacteroides, Clostridium and Lactobacillus/Enterococcus microbiota were assessed by the fluorescence in situ hybridization, and Bifidobacterium species were further characterized by PCR. Total number of bifidobacteria was lower among the formula-fed group than in other groups (P=0.044). Total amounts of the other bacteria were comparable between the groups. The specific Bifidobacterium microbiota composition of the breast-fed infants was achieved in infants receiving prebiotic supplemented formula. This would suggest that early gut Bifidobacterium microbiota can be modified by special diets up to the age of 6 months.  相似文献   

12.
Here we report the effects of starvation and insect age on the diversity of gut microbiota of adult desert locusts, Schistocerca gregaria, using denaturing gradient gel electrophoretic (DGGE) analysis of bacterial 16S rRNA genes. Sequencing of excised DGGE bands revealed the presence of only one potentially novel uncultured member of the Gammaproteobacteria in the guts of fed, starved, young or old locusts. Most of the 16S rRNA gene sequences were closely related to known cultured bacterial species. DGGE profiles suggested that bacterial diversity increased with insect age and did not provide evidence for a characteristic locust gut bacterial community. Starved insects are often more prone to disease, probably because they compromise on immune defence. However, the increased diversity of Gammaproteobacteria in starved locusts shown here may improve defence against enteric threats because of the role of gut bacteria in colonization resistance.  相似文献   

13.
The acquisition of the infant gut microbiota is key to establishing a host-microbiota symbiosis. Microbially produced metabolites tightly interact with the immune system, and the fermentation-derived short-chain fatty acid butyrate is considered an important mediator linked to chronic diseases later in life. The intestinal butyrate-forming bacterial population is taxonomically and functionally diverse and includes endospore formers with high transmission potential. Succession, and contribution of butyrate-producing taxa during infant gut microbiota development have been little investigated. We determined the abundance of major butyrate-forming groups and fermentation metabolites in faeces, isolated, cultivated and characterized the heat-resistant cell population, which included endospores, and compared butyrate formation efficiency of representative taxa in batch cultures. The endospore community contributed about 0.001% to total cells, and was mainly composed of the pioneer butyrate-producing Clostridium sensu stricto. We observed an increase in abundance of Faecalibacterium prausnitzii, butyrate-producing Lachnospiraceae and faecal butyrate levels with age that is likely explained by higher butyrate production capacity of contributing taxa compared with Clostridium sensu stricto. Our data suggest that a successional arrangement and an overall increase in abundance of butyrate forming populations occur during the first year of life, which is associated with an increase of intestinal butyrate formation capacity.  相似文献   

14.
目的利用婴儿菌群人源化小鼠(IHFA小鼠)观察阿莫西林对其干预后及成年后肠道菌群的影响。方法新生Balb/c无菌小鼠接种纯母乳喂养的婴儿粪便获得IHFA小鼠。7~21日龄灌胃给予100mg/kg阿莫西林,对照组给予等量的生理盐水。采用变性梯度凝胶电泳(DGGE)检测小鼠在21日龄及53日龄的肠道菌群。结果 21日龄的阿莫西林处理组IHFA小鼠肠道菌群与正常对照组比较差异有统计学意义(P<0.05);即使在停药后饲养至53日龄的成年小鼠,阿莫西林处理组小鼠肠道菌群仍然存在细微差异。结论哺乳期治疗剂量阿莫西林处理不仅严重干扰小鼠肠道菌群结构,同时导致其成年后肠道菌群不能完全恢复。  相似文献   

15.
目的 探讨不同分娩方式对婴儿出生后1年内肠道菌群定植的影响.方法 选取45例新生儿为研究对象,根据分娩方式分为自然分娩组(n=27)和剖宫产组(n=18).收集婴儿出生后0(胎粪)、3、6和12个月的粪便标本,应用高通量测序技术分析肠道菌群多样性及组成.结果 与自然分娩组比较,在0个月时剖宫产组婴儿粪便标本拟杆菌门的相...  相似文献   

16.
17.
三种跳虫肠道菌群的多样性分析及功能预测   总被引:1,自引:0,他引:1  
【目的】跳虫在土壤生态系统中发挥着重要的作用。本研究旨在调查Sinella(Coecobrya)oligoseta,Proisotoma minuta和Tomocerus missus 3种跳虫肠道菌群的结构和多样性以及潜在功能。【方法】采用16S rDNA扩增子测序法对以上3种跳虫成虫肠道内容物中的菌群进行分析和比较;应用Tax4Fun法对其肠道菌群基因进行功能预测。【结果】3种跳虫中成虫肠道菌群多样性最高的是T.missus,最低的是S.(C.)oligoseta。在门水平上3种跳虫成虫肠道中最主要的菌群均为变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes),放线菌门(Actinobacteria)也具有较高的丰度;在属水平上S.(C.)oligoseta肠道中假单胞菌属Pseudomonas的丰度(16.21%)明显高于P.minuta和T.missus肠道中的丰度(分别为0.87%和1.37%);P.minuta肠道中弧菌属Vibrio的丰度(25.81%)明显高于S.(C.)oligoseta和T.missus肠...  相似文献   

18.
Propionate is produced in the human large intestine by microbial fermentation and may help maintain human health. We have examined the distribution of three different pathways used by bacteria for propionate formation using genomic and metagenomic analysis of the human gut microbiota and by designing degenerate primer sets for the detection of diagnostic genes for these pathways. Degenerate primers for the acrylate pathway (detecting the lcdA gene, encoding lactoyl-CoA dehydratase) together with metagenomic mining revealed that this pathway is restricted to only a few human colonic species within the Lachnospiraceae and Negativicutes. The operation of this pathway for lactate utilisation in Coprococcus catus (Lachnospiraceae) was confirmed using stable isotope labelling. The propanediol pathway that processes deoxy sugars such as fucose and rhamnose was more abundant within the Lachnospiraceae (based on the pduP gene, which encodes propionaldehyde dehydrogenase), occurring in relatives of Ruminococcus obeum and in Roseburia inulinivorans. The dominant source of propionate from hexose sugars, however, was concluded to be the succinate pathway, as indicated by the widespread distribution of the mmdA gene that encodes methylmalonyl-CoA decarboxylase in the Bacteroidetes and in many Negativicutes. In general, the capacity to produce propionate or butyrate from hexose sugars resided in different species, although two species of Lachnospiraceae (C. catus and R. inulinivorans) are now known to be able to switch from butyrate to propionate production on different substrates. A better understanding of the microbial ecology of short-chain fatty acid formation may allow modulation of propionate formation by the human gut microbiota.  相似文献   

19.
目的 研究哺乳期过度喂养对幼鼠肠道细菌组成的影响以及肠道细菌与哺乳期过度喂养导致的幼年肥胖的相关性.方法 将正常出生体重的4日龄雄性ICR仔鼠分为正常喂养组(NF组,每8只由1只母鼠喂养)和哺乳期过度喂养组(OF组,每4只由1只母鼠喂养),哺乳至3周龄时,对仔鼠进行口服糖耐量试验(OGTT),称量体重、各种器官和脂肪组织的重量,用基于细菌16S rRNA基因的变性梯度凝胶电泳(DGGE)和实时定量PCR分析仔鼠的粪便细菌组成,对细菌类群数量与表型数据进行相关分析.结果 OF组仔鼠从10日龄起体重显著高于NF组,3周龄时附睾和肾周脂肪垫重量显著高于NF组,两组仔鼠的空腹血糖以及OGTT血糖曲线下面积比较差异无统计学意义.对DGGE图谱的主成分分析表明两组仔鼠的菌群结构比较差异有统计学意义.定量PCR显示,OF组仔鼠粪便中产生内毒素的肠杆菌科细菌和产生破坏肠屏障功能的H2S的硫酸盐还原菌的数量显著高于NF组,而双歧杆菌、乳杆菌和丁酸盐产生菌的数量在两组仔鼠之间差异无统计学意义.粪便硫酸盐还原菌的数量与内脏脂肪的重量显著正相关.结论 哺乳期过度喂养增加了肠道中肠杆菌科细菌和硫酸盐还原菌的数量,这些细菌的增加与仔鼠幼年期肥胖相关.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号