首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reviews the role of the n-3 fatty acids in the regulation of cognitive functions, locomotor and exploratory activity and emotional status in rodents. There are disparate data on the performance of n-3 fatty acid deficient animals in the open field test and elevated plus maze. Results obtained in our laboratory indicated slower habituation to the open field in deficient mice, which affects total locomotor and exploratory parameters. We also observed no change in plus maze performance of deficient mice under low-stress but elevated anxiety under high-stress conditions. There is some evidence of elevated aggression and increased immobility time in the forced swimming test caused by n-3 fatty acid deficiency in rodents. Effects of n-3 fatty acid deficiency and supplementation on learning in several tests such as the Morris water maze, two odor olfactory discriminations, radial arm maze performance and avoidance tasks are reviewed in detail. There is some evidence of an enhanced vulnerability to stress of n-3 fatty acid deficient animals and this factor can influence performance in a variety of tests. Thus, behavioral tasks that involve a higher level of stress may better differentiate behavioral effects related to brain docosahexaenoic acid (DHA) status. It is suggested that a fruitful area for future investigations of functional alterations related to brain DHA status will be the delineation of the factors underlying changes in performance in behavioral tasks. The possible role of non-cognitive factors like emotionality and attention in the impaired performance of n-3 fatty acid deficient animals also requires further investigation.  相似文献   

2.
The purpose of this study was to determine if relatively short-term vitamin E supplementation could reverse age-associated impairments in cognitive or motor function and the accumulated oxidative damage in the brain of aged mice. Separate groups of 5- or 20-month-old C57BL6 mice were placed on either a control diet or the same diet supplemented with alpha-tocopheryl acetate (1.65 g/kg). After 4 weeks on the diets, mice were tested for cognitive and motor functions over the next 8 weeks, during which the supplementation was maintained. Vitamin E supplementation increased the concentration of alpha-tocopherol in the cerebral cortex of both the young and old mice, but did not significantly affect oxidative damage to proteins and lipids in the brain cortex. When compared with young controls, the old control mice showed slower learning of a swim maze, longer reaction times, diminished auditory and shock-startle responsiveness, and diminished motor performance on tests of coordinated running and bridge walking. The vitamin E-administered old mice failed to show improvement of function relative to age-matched controls on any of the tests, but did show altered retention performance on the swim maze task and impaired performance in the test of coordinated running. The latter effects were not evident in young mice on the supplemented diet. Results of this study suggest that, when implemented in relatively old mice, supplementation of vitamin E is ineffective in reversing preexisting age-related impairments of cognitive or motor function, and has little effect on common measures of protein or lipid oxidative damage in the mouse brain. Moreover, the current findings indicate that vitamin E could have detrimental effects on some brain functions when implemented in older animals.  相似文献   

3.
4.
Long-term vaccinations with human beta-amyloid peptide 1-42 (Abeta1-42) have recently been shown to prevent or markedly reduce Abeta deposition in the PDAPP transgenic model of Alzheimer's disease (AD). Using a similar protocol to vaccinate 7.5-month-old APP (Tg2576) and APP+PS1 transgenic mice over an 8-month period, we previously reported modest reductions in brain Abeta deposition at 16 months. In these same mice, Abeta vaccinations had no deleterious behavioral effects and, in fact, benefited the mice by providing partial protection from age-related deficits in spatial working memory in the radial arm water maze task (RAWM) at 15.5 months. By contrast, control-vaccinated transgenic mice exhibited impaired performance throughout the entire RAWM test period at 15.5 months. The present study expands on our initial report by presenting additional behavioral results following long-term Abeta vaccination, as well as correlational analyses between cognitive performance and Abeta deposition in vaccinated animals. We report that 8 months of Abeta vaccinations did not reverse an early-onset balance beam impairment in transgenic mice. Additionally, in Y-maze testing at 16 months, all mice showed comparable spontaneous alternation irrespective of genotype or vaccination status. Strong correlations were nonetheless present between RAWM performance and extent of "compact" Abeta deposition in both the hippocampus and the frontal cortex of vaccinated APP+PS1 mice. Our results suggest that the behavioral protection of long-term Abeta vaccinations is task specific, with preservation of hippocampal-associated working memory tasks most likely to occur. In view of the early short-term memory deficits exhibited by AD patients, Abeta vaccination of presymptomatic AD patients could be an effective therapeutic to protect against such cognitive impairments.  相似文献   

5.
Cell adhesion molecules, such as neuronal cell adhesion molecule (Nr-CAM), mediate cell–cell interactions in both the developing and mature nervous system. Neuronal cell adhesion molecule is believed to play a critical role in cell adhesion and migration, axonal growth, guidance, target recognition and synapse formation. Here, wild-type, heterozygous and Nr-CAM null mice were assessed on a battery of five learning tasks (Lashley maze, odor discrimination, passive avoidance, spatial water maze and fear conditioning) previously developed to characterize the general learning abilities of laboratory mice. Additionally, all animals were tested on 10 measures of sensory/motor function, emotionality and stress reactivity. We report that the Nr-CAM deletion had no impact on four of the learning tasks (fear conditioning, spatial water maze, Lashley maze and odor discrimination). However, Nr-CAM null mice exhibited impaired performance on a task that required animals to suppress movement (passive avoidance). Although Nr-CAM mutants expressed normal levels of general activity and body weights, they did exhibit an increased propensity to enter stressful areas of novel environments (the center of an open field and the lighted side of a dark/light box), exhibited higher sensitivity to pain (hot plate) and were more sensitive to the aversive effects of foot shock (shock-induced freezing). This behavioral phenotype suggests that Nr-CAM does not play a central role in the regulation of general cognitive abilities but may have a critical function in regulating impulsivity and possibly an animal's susceptibility to drug abuse and addiction.  相似文献   

6.
Clinical irradiation of the brain induces hippocampus-dependent cognitive impairments in some but not all individuals, suggesting the involvement of genetic risk factors. Deficiency of apolipoprotein E (APOE), which is important for the metabolism and redistribution of lipoproteins and cholesterol, increases behavioral impairments after irradiation, supporting a protective role for APOE against radiation-induced cognitive injury. Compared to APOE3, APOE4 increases while APOE2 decreases the risk of developing age-related cognitive decline and Alzheimer's disease, particularly in women. To determine the potential effects of APOE isoform and sex on radiation-induced cognitive impairments, we irradiated 2-month-old male and female APOE2, APOE3 and APOE4 mice and assessed their cognitive performance 3 months later. When hippocampus-dependent spatial learning and memory were assessed in the water maze, sham-irradiated female APOE2, APOE3 and APOE4 and irradiated female APOE2 mice showed spatial memory retention, but irradiated female APOE3 and APOE4 mice did not. Compared to sham-irradiated female APOE4 mice, irradiated female APOE4 mice also required more trials to reach criterion in the hippocampus-dependent passive avoidance test. Radiation had no effects on water maze or passive avoidance learning and memory of male APOE2, APOE3 or APOE4 mice, indicating that the effects of radiation on cognitive performance are dependent on sex- and APOE isoform.  相似文献   

7.
Androgens affect cognitive processes in both humans and animals. The effects of androgens may be limited to certain cognitive domains, specifically spatial memory, but this hypothesis remains elusive. Here, we tested castrated and sham-operated mice in various behavioral tasks to ask whether androgens affect multiple or specific cognitive domains in male mice. Castration impaired spatial working memory performance in the delayed matching to place water maze task following a 1-h, but not a 1-min, retention interval, as has been reported for rats. In contrast, castration had no effect on novel object recognition memory, spatial reference memory in the water maze, motor coordination, or passive avoidance memory. Castration increased anxiety-like behavior in the open field test, but not the elevated zero maze. Finally, we assessed the effects of androgen replacement with non-aromatizable dihydrotestosterone on spatial working memory following various retention intervals. Dihydrotestosterone recovered spatial memory performance following a 24-h, but not a 1-h retention interval, and had no effect at other retention intervals. These data support that in male mice androgens specifically affect spatial working memory performance, and that the neurobiological processes underlying spatial memory formation may be differentially affected by androgens.  相似文献   

8.
Children with malformations of cortical development (MCD) frequently have associated cognitive impairments which reduce quality of life. We hypothesized that cognitive deficits associated with MCD can be improved with environmental manipulation or additional training. The E17 methylazoxymethanol acetate (MAM) exposure model bears many anatomical hallmarks seen in human MCDs as well as similar behavioral and cognitive deficits. We divided control and MAM exposed Sprague-Dawley rats into enriched and non-enriched groups and tested performance in the Morris water maze. Another group similarly divided underwent sociability testing and also underwent Magnetic Resonance Imaging (MRI) scans pre and post enrichment. A third group of control and MAM rats without enrichment were trained until they reached criterion on the place avoidance task. MAM rats had impaired performance on spatial tasks and enrichment improved performance of both control and MAM animals. Although MAM rats did not have a deficit in sociability they showed similar improvement with enrichment as controls. MRI revealed a whole brain volume decrease with MAM exposure, and an increase in both MAM and control enriched volumes in comparison to non-enriched animals. In the place avoidance task, MAM rats required approximately 3 times as long to reach criterion as control animals, but with additional training were able to reach control performance. Environmental manipulation and additional training can improve cognition in a rodent MCD model. We therefore suggest that patients with MCD may benefit from appropriate alterations in educational strategies, social interaction and environment. These factors should be considered in therapeutic strategies.  相似文献   

9.
Mice with global deletion of one brain-derived neurotrophic factor (BDNF) allele or with forebrain-restricted deletion of both alleles show elevated aggression, but this phenotype is accompanied by other behavioral changes, including increases in anxiety and deficits in cognition. Here we performed behavioral characterization of conditional BDNF knockout mice generated using a Cre recombinase driver line, KA1-Cre, which expresses Cre in few areas of brain: highly at hippocampal area CA3 and moderately in dentate gyrus, cerebellum and facial nerve nucleus. The mutant animals exhibited elevated conspecific aggression and social dominance, but did not show changes in anxiety-like behaviors assessed using the elevated plus maze and open field test. There were no changes in depression-like behaviors tested in the forced swim test, but small increase in immobility in the tail suspension test. In cognitive tasks, mutants showed normal social recognition and normal spatial and fear memory, but exhibited a deficit in object recognition. Thus, this knockout can serve as a robust model for BDNF-dependent aggression and object recognition deficiency.  相似文献   

10.
11.
Traumatic brain injury is a well-recognized environmental risk factor for developing Alzheimer's disease. Repetitive concussive brain injury (RCBI) exacerbates brain lipid peroxidation, accelerates amyloid (Abeta) formation and deposition, as well as cognitive impairments in Tg2576 mice. This study evaluated the effects of vitamin E on these four parameters in Tg2576 mice following RCBI. Eleven-month-old mice were randomized to receive either regular chow or chow-supplemented with vitamin E for 4 weeks, and subjected to RCBI (two injuries, 24 h apart) using a modified controlled cortical impact model of closed head injury. The same dietary regimens were maintained up to 8 weeks post-injury, when the animals were killed for biochemical and immunohistochemical analyses after behavioral evaluation. Vitamin E-treated animals showed a significant increase in brain vitamin E levels and a significant decrease in brain lipid peroxidation levels. After RBCI, compared with the group on regular chow, animals receiving vitamin E did not show the increase in Abeta peptides, and had a significant attenuation of learning deficits. This study suggests that the exacerbation of brain oxidative stress following RCBI plays a mechanistic role in accelerating Alphabeta accumulation and behavioral impairments in the Tg2576 mice.  相似文献   

12.
The promyelocytic leukemia (PML) protein is a tumor suppressor factor mostly known by its involvement in acute promyelocytic leukemia (APL). Interestingly, recent studies have provided evidence that, in the central nervous system, PML is involved in neurogenesis. However, prospective studies of PML in brain are lacking. To further understand the role of PML in the mammalian brain, we studied plasticity and behavioral changes in PML knockout mice. If PML is involved in neurogenesis, and neurogenesis is an important process for proper brain development as well as learning and memory functions, we hypothesized that PML might have a role in plasticity and cognition. Behavioral studies demonstrated that PML knockout mice present abnormalities in conditioned learning and spatial memory, as determined by fear conditioning and Morris water maze tasks. Experiments to determine normal exploratory behavior interestingly revealed that PML knockout mice present reduced anxiety‐related responses as compared to control animals. This was confirmed when PML knockout mice spent more time in the open arms of an elevated plus‐maze, which is an indication of decreased anxiety. Additionally, impairments in hippocampus‐dependent learning were mirrored by altered long‐term plasticity at Schaffer collateral‐CA1 synapses. We now provide the first evidence for an important role of PML in the brain, indicating that PML might have a role in synaptic plasticity and associated behavioral processes.  相似文献   

13.
The present study examined the neuroprotective effects of immunosuppressant cyclosporine-A (CsA) and anti-inflammatory methylprednisolone (MP) in a stroke model. Adult Sprague-Dawley rats were initially subjected to transient middle cerebral artery occlusion (MCAo) then randomly assigned to one of the following treatment conditions: low dose CsA, MP, low dose CsA plus MP, high dose CsA, or vehicle. Ischemic animals that received low dose CsA, MP or vehicle exhibited significant cognitive impairments, as revealed by passive avoidance and Morris water maze tasks, at days 1-3 after stroke. In contrast, ischemic animals that received high dose CsA exhibited near normal cognitive performance throughout the test period. Ischemic animals that received low dose CsA plus MP also showed significantly less cognitive deficits but such attenuation of stroke-induced behavioral impairments was only consistently reflected in the passive avoidance task, while performance in the Morris water maze task deteriorated over time. Histological analysis at 3 days post-stroke revealed that only those ischemic animals treated with high dose CsA had significantly reduced cerebral infarcts. These observations suggest that despite overt cerebral damage, alterations in simple, but not complex, cognitive tasks produced by MCAo could be ameliorated by low dose CsA when combined with MP.  相似文献   

14.
Transgenic Tg2576 mice overexpressing human amyloid precursor protein (hAPP) are a widely used Alzheimer’s disease (AD) mouse model to evaluate treatment effects on amyloid beta (Aβ) pathology and cognition. Tg2576 mice on a B6;SJL background strain carry a recessive rd1 mutation that leads to early retinal degeneration and visual impairment in homozygous carriers. This can impair performance in behavioral tests that rely on visual cues, and thus, affect study results. Therefore, B6;SJL/Tg2576 mice were systematically backcrossed with 129S6/SvEvTac mice resulting in 129S6/Tg2576 mice that lack the rd1 mutation. 129S6/Tg2576 mice do not develop retinal degeneration but still show Aβ accumulation in the brain that is comparable to the original B6;SJL/Tg2576 mouse. However, comprehensive studies on cognitive decline in 129S6/Tg2576 mice are limited. In this study, we used two dementia mouse models on a 129S6 background—scopolamine-treated 129S6/SvEvTac mice (3–5 month-old) and transgenic 129S6/Tg2576 mice (11–13 month-old)–to establish a behavioral test battery for assessing learning and memory. The test battery consisted of five tests to evaluate different aspects of cognitive impairment: a Y-Maze forced alternation task, a novel object recognition test, the Morris water maze, the radial arm water maze, and a Y-maze spontaneous alternation task. We first established this behavioral test battery with the scopolamine-induced dementia model using 129S6/SvEvTac mice and then evaluated 129S6/Tg2576 mice using the same testing protocol. Both models showed distinctive patterns of cognitive impairment. Together, the non-invasive behavioral test battery presented here allows detecting cognitive impairment in scopolamine-treated 129S6/SvEvTac mice and in transgenic 129S6/Tg2576 mice. Due to the modular nature of this test battery, more behavioral tests, e.g. invasive assays to gain additional cognitive information, can easily be added.  相似文献   

15.
Oxidative stress is implicated in carcinogenesis, aging, and neurodegenerative diseases. The E3 ligase C terminus of Hsc-70 interacting protein (CHIP) has a protective role against various stresses by targeting damaged proteins for proteasomal degradation, and thus maintains protein quality control. However, the detailed mechanism by which CHIP protects cells from oxidative stress has not been demonstrated. Here, we show that depletion of CHIP led to elevated Endonuclease G (EndoG) levels and enhanced cell death upon oxidative stress. In contrast, CHIP overexpression reduced EndoG levels, and resulted in reduced or no oxidative stress-induced cell death in cancer cells and primary rat cortical neurons. Under normal conditions Hsp70 mediated the interaction between EndoG and CHIP, downregulating EndoG levels in a Hsp70/proteasome-dependent manner. However, under oxidative stress Hsp70 no longer interacted with EndoG, and the stabilized EndoG translocated to the nucleus and degraded chromosomal DNA. Our data suggest that regulation of the level of EndoG by CHIP in normal conditions may determine the sensitivity to cell death upon oxidative stress. Indeed, injection of H2O2 into the rat brain markedly increased cell death in aged mice compared with young mice, which correlated with elevated levels of EndoG and concurrent downregulation of CHIP in aged mice. Taken together, our findings demonstrate a novel protective mechanism of CHIP against oxidative stress through regulation of EndoG, and provide an opportunity to modulate oxidative stress-induced cell death in cancer and aging.  相似文献   

16.
Lee B  Choi Y  Kim H  Kim SY  Hahm DH  Lee HJ  Shim I 《Life sciences》2003,74(4):435-450
Acori graminei rhizoma (AGR) and Uncariae Ramulus et Uncus (URE) have been widely used as herbal medicine against ischemia. In order to investigate whether AGR and URE influenced cerebral ischemia-induced neuronal and cognitive impairments, we examined the effect of AGR and URE on ischemia-induced cell death in the striatum, cortex and hippocampus, and on the impaired learning and memory in the Morris water maze and radial eight-arm maze in rats. After middle cerebral artery occlusion (MCAO) for 2 h, rats were administered saline, AGR or URE (100 mg/kg, p.o.) daily for three weeks, followed by their training to the tasks. In the water maze test, the animals were trained to find a platform in a fixed position during 6 days and then received a 60-s probe trial in which the platform was removed from the pool on the 7th day. In the radial eight-arm maze, animals were tested six times per week for 1 week. Rats with ischemic insults showed impaired learning and memory on the tasks. Pretreatment with AGR and URE produced a significant improvement in escape latency to find the platform in the Morris water maze and in the number of choice errors in the radial arm maze test. Consistent with behavioral data, pretreatments with AGR and URE significantly reduced ischemia-induced cell death in the hippocampal CA1 area. These results demonstrated that AGR and URE have a protective effect against ischemia-induced neuronal loss and learning and memory damage. Our studies suggest that AGR and URE may be useful in the treatment of vascular dementia.  相似文献   

17.
18.
The fragile X mental retardation 1 (FMR1) protein binds mRNA and acts as a negative regulator of translation. Lack of FMR1 causes the most common neurological disorder, fragile X syndrome, while its overexpression is associated with metastasis of breast cancer. Its activity has been well-studied in nervous tissue, but recent evidence as well as its role in cancer indicates that it also acts in other tissues. We have investigated the expression of FMR1 in brain and other tissues of mouse and examined its regulation. We detected expression of FMR1 in liver and heart tissues of mice as well as in brain tissue, supporting other contentions that it acts in non-nervous tissue. Expression of FMR1 inversely correlated with expression of the C-terminus of Hsc70-interacting protein (CHIP) and, based on the known activity of CHIP in protein homeostasis, we suggest that CHIP regulates expression of FMR1. CHIP ubiquitinated FMR1 for proteasomal degradation in a molecular chaperone-independent manner. FMR1 expression was reduced following treatment with okadaic acid, a phosphatase inhibitor, but not in CHIP-depleted cells. Also, a non-phospho FMR1 mutant was much less efficiently ubiquitinated by CHIP and had a longer half-life compared to either wild-type FMR or a phospho-mimic mutant. Taken together, our results demonstrate that CHIP regulates the levels of FMR1 as an E3 ubiquitin ligase in phosphorylation-dependent manner, suggesting that CHIP regulates FMR1-mediated translational repression by regulating the levels of FMR1.  相似文献   

19.
Cholinergic neurons elaborate a hemicholinium-3 (HC-3) sensitive choline transporter (CHT) that mediates presynaptic, high-affinity choline uptake (HACU) in support of acetylcholine (ACh) synthesis and release. Homozygous deletion of CHT (-/-) is lethal shortly after birth (Ferguson et al. 2004), consistent with CHT as an essential component of cholinergic signaling, but precluding functional analyses of CHT contributions in adult animals. In contrast, CHT+/- mice are viable, fertile and display normal levels of synaptosomal HACU, yet demonstrate reduced CHT protein and increased sensitivity to HC-3, suggestive of underlying cholinergic hypofunction. We find that CHT+/- mice are equivalent to CHT+/+ siblings on measures of motor co-ordination (rotarod), general activity (open field), anxiety (elevated plus maze, light/dark paradigms) and spatial learning and memory (Morris water maze). However, CHT+/- mice display impaired performance as a result of physical challenge in the treadmill paradigm, as well as reduced sensitivity to challenge with the muscarinic receptor antagonist scopolamine in the open field paradigm. These behavioral alterations are accompanied by significantly reduced brain ACh levels, elevated choline levels and brain region-specific decreased expression of M1 and M2 muscarinic acetylcholine receptors. Our studies suggest that CHT hemizygosity results in adequate baseline ACh stores, sufficient to sustain many phenotypes, but normal sensitivities to physical and/or pharmacological challenge require full cholinergic signaling capacity.  相似文献   

20.
Sensing external stimulation is crucial for central processing in the brain and subsequent behavioral expression. Although sensory alteration or deprivation may result in behavioral changes, most studies related to the control of behavior have focused on central mechanisms. Here we created a sensory deficit model of mice lacking acid‐sensing ion channel 3 (Asic3?/?) to probe behavioral alterations. ASIC3 is predominately distributed in the peripheral nervous system. RT‐PCR and immunohistochemistry used to examine the expression of Asic3 in the mouse brain showed near‐background mRNA and protein levels of ASIC3 throughout the whole brain, except for the sensory mesencephalic trigeminal nucleus. Consistent with the expression results, Asic3 knockout had no effect on synaptic plasticity of the hippocampus and the behavioral tasks of motor function, learning and memory. In anxiety behavior tasks, Asic3?/? mice spent more time in the open arms of an elevated plus maze than did their wild‐type littermates. Asic3?/? mice also displayed less aggressiveness toward intruders but more stereotypic repetitive behaviors during resident–intruder testing than did wild‐type littermates. Therefore, loss of ASIC3 produced behavioral changes in anxiety and aggression in mice, which suggests that ASIC3‐dependent sensory activities might relate to the central process of emotion modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号