首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substance P (SP) enhances antigen-dependent T cell IFN-gamma production. It was determined if a T cell neurokinin-1 receptor (NK-1R) was critical for IFN-gamma regulation. T cells from schistosome-infected mice were mixed with splenocytes from uninfected NK-1R knockout (KO) animals. Thus only the schistosome egg antigen-specific T cells expressed NK-1R. The cells were cultured 18 h with or without SP. SP enhanced antigen-induced IFN-gamma production fourfold without affecting IL-4 or IL-5 secretion. NK-1R inhibitor blocked this stimulation. Neither purified T cells nor naive KO splenocytes cultured alone responded to antigen. To further define the importance of T cell NK-1R, we developed a T cell-selective NK-1R KO mouse by reconstituting T cell-deficient Rag mice with NK-1R KO T cells. These mice challanged with schistosomiasis developed abnormal liver granulomas. Granuloma size was smaller in T cell-selective NK-1R KO mice compared with granulomas in Rag reconstituted with normal T cells. Splenocytes and granuloma cells from NK-1R KO mice made less IFN-gamma. The mice also made less IgG2a. Thus T cell NK-1R is important for IFN-gamma regulation.  相似文献   

2.
Two main forms of therapy-related myelodysplastic syndrome and acute myeloid leukemia (t-MDS/AML) have been recognized. The most frequent type, occurring after treatment with alkylating agents, is characterized by abnormalities of chromosomes 5 and/or 7 and t-MDS/AML following treatment with topoisomerase II inhibitors and is associated with molecular aberrations of MLL (11q23) and AML-1 (21q22). Individuals with certain polymorphisms associated with impaired detoxification of cytotoxic agents have an increased risk of developing MDS or AML after treatment of unrelated cancers. Multidrug chemotherapy is less effective for patients with MDS, or AML following MDS, or t-MDS/AML when compared with primary AML, and results in lower complete remission (CR) rates and lower long-term survival. Patients with good risk cytogenetic features, such as t(15; 17), t(8; 21) and inversion 16 are an exception as their treatment outcome is comparable with primary AML patients. Patients who attain a polyclonal and/or a cytogenetic CR may be candidates for autologous stem cell transplantation. For the remaining patients, the only curative option is allogeneic stem cell transplantation with stem cells from a histocompatible sibling or an alternative donor. Reduced intensity conditioning regimens may be considered for patients older than 50 years or patients with comorbidities. The advice is to treat patients early after diagnosis and preferably before progression as these patients have the highest chance of a favorable outcome.  相似文献   

3.
The scurfy (sf) murine mutation causes severe lymphoproliferation, which results in death of hemizygous males (sf/Y) by 22 to 26 days of age. The CD4+ T cells are crucial mediators of this disease. Recent publications have not only identified this mutation as the genetic equivalent of the human disease X-linked neonatal diabetes mellitus, enteropathy, and endocrinopathy syndrome, but also have indicated that the defective protein-scurfin-is a new forkhead/winged-helix protein with a frameshift mutation, resulting in a product without the functional forkhead. These results have lead to speculation that the scurfy gene acts by disrupting the T-cell tolerance mechanism, resulting in hyperresponsiveness and lack of down-regulation. The Rag1KO/sf/Y OVA strain, with virtually 100% of its CD4+ T cells reactive strictly to ovalbumin (OVA) peptide 323-339, is an excellent model for determination of the sf mutation's ability to disrupt tolerance. We hypothesized that Rag1KO/sf/OVA mice would not be tolerant to antigen at a dose that tolerizes control animals. We found that splenic cells from Rag1KO/sf/Y OVA mice injected with the same dose of OVA peptide that induces tolerance in cells from control mice proliferate in vitro in response to OVA peptide. These results are consistent with a defect in the pathway responsible for peripheral T-cell tolerization.  相似文献   

4.
RUNX1/AML1 point mutations have been identified in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) patients. A heterozygous germline mutation of the RUNX1 gene causes a familial platelet disorder with a predisposition to AML. RUNX1 mutations have also been detected with high frequency in minimally differentiated AML M0 subtypes and myelodysplastic/myeloproliferative neoplasms. Here we propose a new disease category of myelodysplastic neoplasms (MDN) consisting of MDS refractory anemia with excess blasts and AML with myelodysplasia-related changes, including therapy-related cases. RUNX1 mutations have been detected in about 20% of patients with "MDN". Among the MDN cases, histories of radiation exposure, therapy-related myeloid neoplasms after successful treatment for acute promyelocytic leukemia, and leukemic transformation of myeloproliferative neoplasms have been reported to have a strong association with RUNX1 mutations. The mutations occur in a normal, a receptive, or a disease-committed hematopoietic stem cell. It is suspected that the "MDN" phenotypes are defined by the RUNX1 mutations in addition to some other abnormalities.  相似文献   

5.
In this study, we examined whether ascorbic acid (AA) and dehydroascorbic acid (DHA), the oxidized form of AA, levels in tissues regulate the AA transporters, sodium-dependent vitamin C transporters (SVCT) 1 and SVCT2 and DHA transporters, glucose transporter (GLUT) 1, GLUT3, GLUT4 mRNA by using senescence marker protein-30 (SMP30)/gluconolactonase (GNL) knockout (KO) mice. These mice are incapable of synthesizing AA in vivo. AA depletion enhanced SVCT1 and SVCT2 mRNA expression in the liver and SVCT1 and GLUT4 mRNA expression in the small intestine, but not in the cerebrum or kidney. Next, we examined the actual impact of AA uptake by using primary cultured hepatocytes from SMP30/GNL KO mice. In the AA-depleted hepatocytes from SMP30/GNL KO mice, AA uptake was significantly greater than in matched cultures from wild-type mice. These results strongly affirm that intracellular AA is an important regulator of SVCT1 and SVCT2 expression in the liver.  相似文献   

6.
AML1/RUNX1 point mutations have been identified in myelodysplastic syndrome (MDS) and MDS‐related acute myeloid leukemia (AML), or MDS/AML, and are distributed throughout the full length of AML1/RUNX1. Gene mutation is proposed to be one of the disease‐defining genetic abnormalities of MDS/AML. Most of the mutants lose trans‐activation potential, which leads to a loss of normal function indicating that AML1/RUNX1 dysfunction is one of the major pathogenic mechanisms of MDS/AML. However, N‐terminal in‐frame mutations (Ni‐type) and C‐terminal truncated mutations (Ct‐type) of AML1/RUNX1 show a dominant‐negative effect on the trans‐activation activity, suggesting that these types of mutants may have some oncogenic potential in addition to the loss of normal function. The patients with Ni‐type mutations have hypoplastic marrows with other genetic abnormalities, whereas the patients with Ct‐type mutations display hyperplastic marrows without other mutations. Although biological analysis using a mouse bone marrow transplantation model transduced with Ni‐type of D171N or Ct‐type of S291fsX300 mutants has partially confirmed the oncogenic ability of AML1 mutants, it could not explain the mutant specific clinical features of MDS/AML. Biological analysis using human CD34+ cells revealed that the two types exhibited distinct molecular mechanisms. Ni‐type shows differentiation block without cell growth, but additional BMI‐1‐expression resulted in increased blastic cells. In contrast, Ct‐type itself has proliferation ability. Thus, AML1/RUNX1 mutants play a central role in the pathogenesis of MDS/AML. Both AML1 mutants are initiating factors for MDS‐genesis by inhibiting differentiation of hematopoietic stem cells, and Ni‐type mutant requires acquisition of proliferation ability. J. Cell. Physiol. 220: 16–20, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Autophagy is a conserved cellular pathway responsible for the sequestration of spent organelles and protein aggregates from the cytoplasm and their delivery into lysosomes for degradation. Autophagy plays an important role in adaptation to starvation, in cell survival, immunity, development and cancer. Recent evidence in mice suggests that autophagic defects in hematopoietic stem cells (HSCs) may be implicated in leukemia. Indeed, mice lacking Atg7 in HSCs develop an atypical myeloproliferation resembling human myelodysplastic syndrome (MDS) progressing to acute myeloid leukemia (AML). Studies suggest that accumulation of damaged mitochondria and reactive oxygen species result in cell death of the majority of progenitor cells and, possibly, concomitant transformation of some surviving ones. Interestingly, bone marrow cells from MDS patients are characterized by mitochondrial abnormalities and increased cell death. A role for autophagy in the transformation to cancer has been proposed in other cancer types. This review focuses on autophagy in human MDS development and progression to AML within the context of the role of mitochondria, apoptosis and reactive oxygen species (ROS) in its pathogenesis.  相似文献   

8.
The CD33/CD3-bispecific T-cell engaging (BiTE) antibody construct, AMG 330, potently lyses CD33+ leukemic cells in vitro. Using specimens from 41 patients with acute myeloid leukemia (AML), we studied the factors that might contribute to clinical response or resistance. For this purpose, thawed aliquots of primary AML samples were immunophenotypically characterized and subjected to various doses of AMG 330 in the presence or absence of healthy donor T-cells. After 48 hours, drug-specific cytotoxicity was quantified and correlated with CD33 expression levels, amounts of T-cells present, and other disease characteristics. AMG 330 caused modest cytotoxicity that was correlated with the amount of autologous T-cells (P = 0.0001) but not CD33 expression, as AMG 330 exerted marked cytotoxic effects in several specimens with minimal CD33 expression. With healthy donor T-cells added, AMG 330 cytotoxicity depended on the drug dose and effector:target (E:T) cell ratio. High cytotoxic activity was observed even with minimal CD33 expression, and AMG 330 cytotoxicity and CD33 expression correlated only at high E:T cell ratio and high AMG 330 doses (P<0.003). AMG 330 resulted in significantly higher cytotoxicity in specimens from patients with newly diagnosed AML than those with relapsed/refractory disease despite similar levels of CD33 on myeloblasts. AMG 330 cytotoxicity also appeared greater in specimens from patients with favorable-risk disease as compared to other specimens. Together, our data demonstrate that AMG 330 is highly active in primary AML specimens across the entire disease spectrum, while suggesting the presence of yet undefined, CD33-independent, relative resistance mechanisms in specific patient subsets.  相似文献   

9.
We applied single nucleotide polymorphism arrays (SNP-A) to study karyotypic abnormalities in patients with atypical myeloproliferative syndromes (MPD), including myeloproliferative/myelodysplastic syndrome overlap both positive and negative for the JAK2 V617F mutation and secondary acute myeloid leukemia (AML). In typical MPD cases (N = 8), which served as a control group, those with a homozygous V617F mutation showed clear uniparental disomy (UPD) of 9p using SNP-A. Consistent with possible genomic instability, in 19/30 MDS/MPD-U patients, we found additional lesions not identified by metaphase cytogenetics. In addition to UPD9p, we also have detected UPD affecting other chromosomes, including 1 (2/30), 11 (4/30), 12 (1/30) and 22 (1/30). Transformation to AML was observed in 8/30 patients. In 5 V617F+ patients who progressed to AML, we show that SNP-A can allow for the detection of two modes of transformation: leukemic blasts evolving from either a wild-type jak2 precursor carrying other acquired chromosomal defects, or from a V617F+ mutant progenitor characterized by UPD9p. SNP-A-based detection of cryptic lesions in MDS/MPD-U may help explain the clinical heterogeneity of this disorder.  相似文献   

10.
Human mismatch repair, drug-induced DNA damage, and secondary cancer   总被引:3,自引:0,他引:3  
Karran P  Offman J  Bignami M 《Biochimie》2003,85(11):1149-1160
DNA mismatch repair (MMR) is an important replication error avoidance mechanism that prevents mutation. The association of defective MMR with familial and sporadic gastrointestinal and endometrial cancer has been acknowledged for some years. More recently, it has become apparent that MMR defects are common in acute myeloid leukaemia/myelodysplastic syndrome (AML/MDS) that follows successful chemotherapy for a primary malignancy. Therapy-related haematological malignancies are often associated with treatment with alkylating agents. Their frequency is increasing and they now account for at least 10% of all AML cases. There is also evidence for an association between MMR deficient AML/MDS and immunosuppressive treatment with thiopurine drugs. Here we review how MMR interacts with alkylating agent and thiopurine-induced DNA damage and suggest possible ways in which MMR defects may arise in therapy-related AML/MDS.  相似文献   

11.
Autophagy is a conserved cellular pathway responsible for the sequestration of spent organelles and protein aggregates from the cytoplasm and their delivery into lysosomes for degradation. Autophagy plays an important role in adaptation to starvation, in cell survival, immunity, development and cancer. Recent evidence in mice suggests that autophagic defects in hematopoietic stem cells (HSCs) may be implicated in leukemia. Indeed, mice lacking Atg7 in HSCs develop an atypical myeloproliferation resembling human myelodysplastic syndrome (MDS) progressing to acute myeloid leukemia (AML). Our studies suggest that accumulation of damaged mitochondria and reactive oxygen species result in cell death of the majority of progenitor cells and, possibly, concomitant transformation of some surviving ones. Interestingly, bone marrow cells from MDS patients are characterized by mitochondrial abnormalities and increased cell death. A role for autophagy in the transformation to cancer has been proposed in other cancer types. This review focuses on autophagy in human MDS development and progression to AML within the context of the role of mitochondria, apoptosis and reactive oxygen species (ROS) in its pathogenesis.Key words: autophagy, mitophagy, Atg7, hematopoiesis, HSCs, myelodysplastic syndrome, acute myeloid leukemia  相似文献   

12.
The aim of this study was to investigate the progression of myelodysplastic syndrome (MDS) to acute myeloid leukemia (AML) and to provide additional data regarding the proteomic analysis of AML. The protein profiles obtained were correlated to cytogenetic and molecular analyses. Bone marrow (BM) and peripheral blood (PB) samples were obtained during MDS diagnosis, at MDS transformation to AML, at de novo AML diagnosis and 3 months following treatment. As controls, non-leukemic pediatric patients were studied. Cytogenetic and molecular analyses were carried out by G banding and polymerase chain reaction followed by sequencing, respectively. Differential proteomic analysis was performed by two-dimensional gel electrophoresis and protein identification by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. No significant correlations were noted between protein patterns and cytogenetic or molecular analyses. Certain suppressor genes, metabolic enzymes, immunoglobulins and actin-binding proteins were differentially expressed by BM or PB plasma and cell lysates compared to controls. The obtained data showed that vitamin D and gelsolin played contradicting roles in contributing and restraining leukemogenesis, while MOES, EZRI and AIFM1 could be considered as biomarkers for AML.  相似文献   

13.
The influence of the P-815 mastocytoma cells and their humoral factors, contained in culture supernatant and ascitic fluids on the generation of allospecific cytotoxic T-cells (alloCTL) in mixed culture of lymphocytes was studied. Both tumor cells and humoral factors were shown to inhibit generation of allospecific killers. Normal spleen cells and peptonic ascites of DBA/2 mice did not indicate immunosuppressive activity. Immunosuppressive factors did not affect CTL effector function (lysis of target cells). Both tumor cells and immunosuppressive factors did not exert toxic effect on mouse splenocyte. The suppressive effect of tumor cells and humoral factors was not associated with their cytotoxic action on lymphocytes.  相似文献   

14.
The role of CD4(+) vs CD8(+) T cells in contact hypersensitivity (CHS) remains controversial. In this study, we used gene knockout (KO) mice deficient in CD4(+) or CD8(+) T cells to directly address this issue. Mice lacking either CD4(+) or CD8(+) T cells demonstrated depressed CHS responses to dinitrofluorobenzene and oxazolone compared with wild-type C57BL/6 mice. The depression of CHS was more significant in CD8 KO mice than in CD4 KO mice. Furthermore, in vivo depletion of either CD8(+) T cells from CD4 KO mice or CD4(+) T cells from CD8 KO mice virtually abolished CHS responses. Lymph node cells (LNCs) from hapten-sensitized CD4 and CD8 KO mice showed a decreased capacity for transferring CHS. In vitro depletion of either CD4(+) T cells from CD8 KO LNCs or CD8(+) T cells from CD4 KO LNCs resulted in a complete loss of CHS transfer. LNCs from CD4 and CD8 KO mice produced significant amounts of IFN-gamma, indicating that both CD4(+) and CD8(+) T cells are able to secrete IFN-gamma. LNCs from CD8, but not CD4, KO mice were able to produce IL-4 and IL-10, suggesting that IL-4 and IL-10 are mainly derived from CD4(+) T cells. Intracellular cytokine staining of LNCs confirmed that IFN-gamma-positive cells consisted of CD4(+) (Th1) and CD8(+) (type 1 cytotoxic T) T cells, whereas IL-10-positive cells were exclusively CD4(+) (Th2) T cells. Collectively, these results suggest that both CD4(+) Th1 and CD8(+) type 1 cytotoxic T cells are crucial effector cells in CHS responses to dinitrofluorobenzene and oxazolone in C57BL/6 mice.  相似文献   

15.
Functional dendritic cells (DC) are professional antigen presenting cells (APC) and can be generated in vitro from leukemic cells from acute myeloid leukemia AML patients, giving rise to APC of leukemic origin presenting leukemic antigens (DCleu). We have already shown that DC can be successfully generated from AML and myeloplastic syndromes (MDS) cells in serum-free standard medium (X-vivo + GM-CSF + IL-4 +TNF + FL) in 10–14 days. In this study, we present that DC counts generated from mononuclear cells (MNC) varied between 20% (from 55 MDS samples), 34% (from 100 AML samples) and 25% (from 38 healthy MNC samples) medium. Between 53% and 58% of DC are mature CD83+ DC. DC harvests were highest in monocytoid FAB types (AML-M4/M5, MDS-CMML) and independent from cytogenetic risk groups, demonstrating that DC-based strategies can be applied for patients with all cytogenetic risk groups. Proof of the clonal derivation of DC generated was obtained in five AML and four MDS cases with a combined FISH/immunophenotype analysis (FISH-IPA): The clonal numerical chromosome aberrations of the diseases were regularly codetectable with DC markers; however, not with all clonal cells being convertible to leukemia-derived DCleu (on average, 53% of blasts in AML or MDS). To the contrary, not all DC generated carried the clonal aberration (on average, 51% of DC). In 41 AML and 13 MDS cases with a suitable antigen expression, we could confirm FISH-IPA data by Flow cytometry: although DCleu are regularly detectable, on average only 57% of blasts in AML and 64% of blasts in MDS were converted to DCleu. After coculture with DC in mixed lymphocyte reactions (MLR), autologous T cells from AML and MDS patients proliferate and upregulate costimulatory receptors. The specific lysis of leukemic cells by autologous T cells could be demonstrated in three cases with AML in a Fluorolysis assay. In six cases with only few DCleu or few vital T cells available after the DC/MLR procedure, no lysis of allogeneic or autologous leukemic cells was seen, pointing to the crucial role of both partners in the lysis process. We conclude: (1) the generation of DC is regularly possible in AML and also in MDS under serum-free conditions. (2) Clonal/leukemia-derived DCleu can be regularly generated from MDS and AML-MNC; however, not with all blasts being converted to DCleu and not all DC generated carrying leukemic markers. We recommend to select DCleu for vaccinations or ex vivo T-cell activations to avoid contaminations with non-converted blasts and non-leukemia-derived DC and to improve the harvest of specific, anti-leukemic T cells. DC and DC-primed T cells could provide a practical strategy for the immunotherapy of AML and MDS.  相似文献   

16.
Pannexin1 (Panx1) is a plasma membrane channel permeable to relatively large molecules, such as ATP. In the central nervous system (CNS) Panx1 is found in neurons and glia and in the immune system in macrophages and T-cells. We tested the hypothesis that Panx1-mediated ATP release contributes to expression of Experimental Autoimmune Encephalomyelitis (EAE), an animal model for multiple sclerosis, using wild-type (WT) and Panx1 knockout (KO) mice. Panx1 KO mice displayed a delayed onset of clinical signs of EAE and decreased mortality compared to WT mice, but developed as severe symptoms as the surviving WT mice. Spinal cord inflammatory lesions were also reduced in Panx1 KO EAE mice during acute disease. Additionally, pharmacologic inhibition of Panx1 channels with mefloquine (MFQ) reduced severity of acute and chronic EAE when administered before or after onset of clinical signs. ATP release and YoPro uptake were significantly increased in WT mice with EAE as compared to WT non-EAE and reduced in tissues of EAE Panx1 KO mice. Interestingly, we found that the P2X7 receptor was upregulated in the chronic phase of EAE in both WT and Panx1 KO spinal cords. Such increase in receptor expression is likely to counterbalance the decrease in ATP release recorded from Panx1 KO mice and thus contribute to the development of EAE symptoms in these mice. The present study shows that a Panx1 dependent mechanism (ATP release and/or inflammasome activation) contributes to disease progression, and that inhibition of Panx1 using pharmacology or gene disruption delays and attenuates clinical signs of EAE.  相似文献   

17.
IL-25 (IL-17E) is a unique IL-17 family ligand that promotes Th2-skewed inflammatory responses. Intranasal administration of IL-25 into naive mice induces pulmonary inflammation similar to that seen in patients with allergic asthma, including increases in bronchoalveolar lavage fluid eosinophils, bronchoalveolar lavage fluid IL-5 and IL-13 concentrations, goblet cell hyperplasia, and increased airway hyperresponsiveness. IL-25 has been reported to bind and signal through IL-17RB (IL-17BR, IL-17Rh1). It has been demonstrated recently that IL-17A signals through a heteromeric receptor composed of IL-17RA and IL-17RC. We sought to determine whether other IL-17 family ligands also utilize heteromeric receptor complexes. The required receptor subunits for IL-25 biological activities were investigated in vitro and in vivo using a combination of knockout (KO) mice and antagonistic Abs. Unlike wild-type mice, cultured splenocytes from either IL-17RB KO or IL-17RA KO mice did not produce IL-5 or IL-13 in response to IL-25 stimulation, and both IL-17RB KO and IL-17RA KO mice did not respond to intranasal administration of IL-25. Furthermore, treatment with antagonistic mAbs to either IL-17RB or IL-17RA completely blocked IL-25-induced pulmonary inflammation and airway hyperresponsiveness in naive BALB/c mice, similar to the effects of an antagonistic Ab to IL-25. Finally, a blocking Ab to human IL-17RA prevented IL-25 activity in a primary human cell-based assay. These data demonstrate for the first time that IL-25-mediated activities require both IL-17RB and IL-17RA and provide another example of an IL-17 family ligand that utilizes a heteromeric receptor complex.  相似文献   

18.
Myeloid derived suppressor cells (MDSCs) from tumor-bearing mice are important negative regulators of anti-cancer immune responses, but the role for immature myeloid cells (IMCs) in non-tumor-bearing mice in the regulation of immune responses are poorly described. We studied the immune-suppressive activity of IMCs from the bone marrow (BM) of C57Bl/6 mice and the mechanism(s) by which they inhibit T–cell activation and proliferation. IMCs, isolated from BM by high-speed FACS, inhibited mitogen-induced proliferation of CD4+ and CD8+ T-cells in vitro. Cell-to-cell contact of T-cells with viable IMCs was required for suppression. Neither neutralizing antibodies to TGFβ1, nor genetic disruption of indolamine 2,3-dioxygenase, abrogated IMC-mediated suppressive activity. In contrast, suppression of T-cell proliferation was absent in cultures containing IMCs from interferon-γ (IFN-γ) receptor KO mice or T-cells from IFN-γ KO mice (on the C57Bl/6 background). The addition of NO inhibitors to co-cultures of T-cells and IMC significantly reduced the suppressive activity of IMCs. IFN-γ signaling between T-cells and IMCs induced paracrine Nitric Oxide (NO) release in culture, and the degree of inhibition of T-cell proliferation was proportional to NO levels. The suppressive activity of IMCs from the bone marrow of tumor-free mice was comparable with MDSCs from BALB/c bearing mice 4T1 mammary tumors. These results indicate that IMCs have a role in regulating T-cell activation and proliferation in the BM microenvironment.  相似文献   

19.
Adverse events upon smallpox vaccination with fully-replicative strains of Vaccinia virus (VACV) comprise an array of clinical manifestations that occur primarily in immunocompromised patients leading to significant host morbidity/mortality. The expansion of immune-suppressed populations and the possible release of Variola virus as a bioterrorist act have given rise to concerns over vaccination complications should more widespread vaccination be reinitiated. Our goal was to evaluate the components of the host immune system that are sufficient to prevent morbidity/mortality in a murine model of tail scarification, which mimics immunological and clinical features of smallpox vaccination in humans. Infection of C57BL/6 wild-type mice led to a strictly localized infection, with complete viral clearance by day 28 p.i. On the other hand, infection of T and B-cell deficient mice (Rag1(-/-)) produced a severe disease, with uncontrolled viral replication at the inoculation site and dissemination to internal organs. Infection of B-cell deficient animals (μMT) produced no mortality. However, viral clearance in μMT animals was delayed compared to WT animals, with detectable viral titers in tail and internal organs late in infection. Treatment of Rag1(-/-) with rabbit hyperimmune anti-vaccinia serum had a subtle effect on the morbidity/mortality of this strain, but it was effective in reduce viral titers in ovaries. Finally, NUDE athymic mice showed a similar outcome of infection as Rag1(-/-), and passive transfer of WT T cells to Rag1(-/-) animals proved fully effective in preventing morbidity/mortality. These results strongly suggest that both T and B cells are important in the immune response to primary VACV infection in mice, and that T-cells are required to control the infection at the inoculation site and providing help for B-cells to produce antibodies, which help to prevent viral dissemination. These insights might prove helpful to better identify individuals with higher risk of complications after infection with poxvirus.  相似文献   

20.
Myelodysplastic syndromes (MDS) are clonal stem cell disorders which frequently show a hypercellular dysplastic bone marrow (BM) associated with inefficient hematopoiesis and peripheral cytopenias due to increased apoptosis and maturation blockades. Currently, little is known about the role of cell proliferation in compensating for the BM failure syndrome and in determining patient outcome. Here, we analyzed the proliferation index (PI) of different compartments of BM hematopoietic cells in 106 MDS patients compared to both normal/reactive BM (n = 94) and acute myeloid leukemia (AML; n = 30 cases) using multiparameter flow cytometry. Our results show abnormally increased overall BM proliferation profiles in MDS which significantly differ between early/low-risk and advanced/high-risk cases. Early/low-risk patients showed increased proliferation of non-lymphoid CD34+ precursors, maturing neutrophils and nucleated red blood cells (NRBC), while the PI of these compartments of BM precursors progressively fell below normal values towards AML levels in advanced/high-risk MDS. Decreased proliferation of non-lymphoid CD34+ and NRBC precursors was significantly associated with adverse disease features, shorter overall survival (OS) and transformation to AML, both in the whole series and when low- and high-risk MDS patients were separately considered, the PI of NRBC emerging as the most powerful independent predictor for OS and progression to AML. In conclusion, assessment of the PI of NRBC, and potentially also of other compartments of BM precursors (e.g.: myeloid CD34+ HPC), could significantly contribute to a better management of MDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号