首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag.  相似文献   

2.
Recently the use of engineered viral scaffolds in biotechnology and medical applications has been increasing dramatically. T4 phage capsid derived nanoparticles (NPs) have potential advantages as sensors and in biotechnology. These applications require that the physical properties and cellular uptake of these NPs be understood. In this study we used a T4 deletion mutant to investigate the effects of removing both the Hoc and Soc proteins from the capsid surface on T4 tailless NPs. The surface charge, zeta potential, size, and cellular uptake efficiencies for both the T4 NP and T4ΔHocΔSoc NP mutant were measured and compared using dynamic light scattering and flow cytometry and significant differences were detected.  相似文献   

3.
血细胞在动物的免疫防御体系中扮演了重要的角色,尤其是对缺少适应性免疫的无脊椎动物.在这些动物中,血细胞既参与细胞免疫的吞噬、包囊、结节等作用,还参与体液免疫中许多免疫因子的生成与储存.对不同动物类群的血细胞的不同亚群进行区分,是深入了解其免疫机制与血细胞功能的基础.尽管国内外学者利用不同的方法,针对虾类血细胞的不同亚群...  相似文献   

4.
5.
The Pacific oyster Crassostrea gigas is a sessile bivalve mollusc whose homeostasis relies, at least partially, upon cells circulating in hemolymph and referred to as hemocytes. Oyster’s hemocytes have been reported to produce reactive oxygen species (ROS), even in absence of stimulation. Although ROS production in bivalve molluscs is mostly studied for its defence involvement, ROS may also be involved in cellular and tissue homeostasis. ROS sources have not yet been described in oyster hemocytes. The objective of the present work was to characterize the ROS sources in unstimulated hemocytes. We studied the effects of chemical inhibitors on the ROS production and the mitochondrial membrane potential (Δψm) of hemocytes. First, this work confirmed the specificity of JC-10 probe to measure Δψm in oyster hemocytes, without being affected by ΔpH, as reported in mammalian cells. Second, results show that ROS production in unstimulated hemocytes does not originate from cytoplasmic NADPH-oxidase, nitric oxide synthase or myeloperoxidase, but from mitochondria. In contrast to mammalian cells, incubation of hemocytes with rotenone (complex I inhibitor) had no effect on ROS production. Incubation with antimycin A (complex III inhibitor) resulted in a dose-dependent ROS production decrease while an over-production is usually reported in vertebrates. In hemocytes of C. gigas, the production of ROS seems similarly dependent on both Δψm and ΔpH. These findings point out differences between mammalian models and bivalve cells, which warrant further investigation about the fine characterization of the electron transfer chain and the respective involvement of mitochondrial complexes in ROS production in hemocytes of bivalve molluscs.  相似文献   

6.
Pharmaceuticals and Personal Care Products (PPCPs) are a class of emerging environmental pollutants with the potential of affecting various aquatic organisms through unexpected modes of action. Triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether) (TCS), is a common antibacterial agent that is found in significant amounts in the aquatic environment. In this work, the possible effects and modes of action of TCS were investigated in the marine bivalve Mytilus galloprovincialis Lam. In mussel immune cells, the hemocytes, in vitro short-term exposure to TCS in the low microM range reduced lysosomal membrane stability (LMS) and induced extracellular release of lysosomal hydrolytic enzymes. The effects on LMS were mediated by activation of ERK MAPKs (Extracellularly Regulated Mitogen Activated Protein Kinases) and PKC (protein kinase C) alpha and betaII isoforms, as demonstrated by both specific kinase inhibitors and Western blotting with specific anti-phospho-antibodies. The effects of TCS were confirmed in vivo, in the hemocytes of mussels injected with different concentrations of TCS (corresponding to 0.29, 2.9 and 29 ng/g dry weight) and sampled at 24 h post-injection. The possible in vivo effects of TCS were also evaluated on the activity of different enzymes in the digestive gland, the tissue mainly involved in accumulation and metabolism of organic contaminants in mussels. Significant increases were observed in the activity of the glycolytic enzymes PFK (phosphofructokinase) and PK (pyruvate kinase), as well as of GST (GSH transferase) and GSR (GSSG reductase), whereas a decrease in catalase activity was observed. The results demonstrate that in mussels TCS can act on kinase-mediated cell signalling, lysosomal membranes and redox balance in different systems/organs. Although further studies are needed in order to evaluate possible consequences of environmental exposure to TCS on mussel health, the results represent the first data on the possible modes of action of this widespread antibacterial in aquatic invertebrates.  相似文献   

7.
Nanoparticle (NP) use in everyday applications creates the potential for NPs to enter the environment where, in aquatic systems, they are likely to settle on substrates and interact with microbial communities. Legionella pneumophila biofilms are found as part of microbial communities in both natural and man-made environments, especially in man-made cooling systems. The bacterium is the causative agent of Legionnaires' disease. Legionella requires a host cell for replication in the environment, and amoebae commonly serve as this host cell. Our previous work demonstrated significant changes in Legionella biofilm morphology after exposure to 0.7 μg/L gold NPs (AuNPs). Here, we investigate how these morphology changes alter host–bacteria interactions using Acanthamoeba polyphaga as a model. Host–bacteria–NP interactions are affected by NP characteristics. Biofilms exposed to 4- and 18-nm, citrate-capped, spherical AuNPs significantly altered the grazing ability of A. polyphaga, which was not observed in biofilms exposed to 24-nm polystyrene beads. Uptake and replication of NP-exposed planktonic L. pneumophila within A. polyphaga were not altered regardless of NP size or core chemistry. Nanomaterial effects on the interaction of benthic organisms and bacteria may be directly or, as shown here, indirectly dependent on bacterial morphology. NP contamination therefore may alter interactions in a normal ecosystem function.  相似文献   

8.
Determining the diets of marine invertebrates by gut content analysis is problematic. Many consumed organisms become unrecognizable once partly digested, while those with hard remains (e.g. diatom skeletons) may bias the analysis. Here, we adapt DNA-based methods similar to those used for microbial diversity surveys as a novel approach to study the diets of macrophagous (the deep-sea amphipods Scopelocheirus schellenbergi and Eurythenes gryllus) and microphagous (the bivalve Lucinoma aequizonata) feeders in the deep sea. Polymerase chain reaction (PCR) in conjunction with 'universal' primers amplified portions of the mitochondrial cytochrome c oxidase I (COI) gene for animals ingested by S. schellenbergi and E. gryllus and the 18S rRNA gene for lesser eukaryotes ingested by L. aequizonata. Amplified sequences were combined with sequences from GenBank to construct phylogenetic trees of ingested organisms. Our analyses indicate that S. schellenbergi, E. gryllus and L. aequizonata diets are considerably more diverse than previously thought, casting new light on the foraging strategies of these species. Finally, we discuss the strengths and weaknesses of this technique and its potential applicability to diet analyses of other invertebrates.  相似文献   

9.
In aquatic environments, biofouling is a natural process of colonization of submerged surfaces, either living or artificial, involving a wide range of organisms from bacteria to invertebrates. Antifouling can be defined as preventing the attachment of organisms onto surfaces. This article reviews the laboratory bioassays that have been developed for studying the control of algae and invertebrates by epibiosis (chemical ecology) and the screening of new active compounds (natural products and biocides) to inhibit settlement or adhesion, ie fouling-release coatings. The assays utilize a range of organisms (mainly marine bacteria, diatoms, algae, barnacles). The main attributes of assays for micro- and macroorganisms are described in terms of their main characteristics and depending on the biological process assessed (growth, adhesion, toxicity, behavior). The validation of bioassays is also discussed.  相似文献   

10.
Technological improvements have accelerated natural product (NP) discovery and engineering to the point that systematic genome mining for new molecules is on the horizon. NP biosynthetic potential is not equally distributed across organisms, environments, or microbial life histories, but instead is enriched in a number of prolific clades. Also, NPs are not equally abundant in nature; some are quite common and others markedly rare. Armed with this knowledge, random ‘fishing expeditions’ for new NPs are increasingly harder to justify. Understanding the ecological and evolutionary pressures that drive the non-uniform distribution of NP biosynthesis provides a rational framework for the targeted isolation of strains enriched in new NP potential. Additionally, ecological theory leads to testable hypotheses regarding the roles of NPs in shaping ecosystems. Here we review several recent strain prioritization practices and discuss the ecological and evolutionary underpinnings for each. Finally, we offer perspectives on leveraging microbial ecology and evolutionary biology for future NP discovery.  相似文献   

11.
Nonylphenol (NP) is commonly found in surface waters nearby municipal wastewater treatment plants and was shown to have endocrine disrupting effects in aquatic organisms. The purpose of this study was to investigate the toxicity and potential endocrine disrupting effects of NP on the freshwater zebra mussel (Dreissena polymorpha). Toxicity assessment yielded LC(50) values of 3.68, 2.19 and 1.62 mg L(-1) after 15, 35 and 50 days of exposure, respectively. LC(10) values of 1.6, 1.11 and 0.68 mg L(-1) were respectively obtained for similar exposure periods. At concentrations >5 mg L(-1), mortality effects were significant, as were those relating to attachment and siphon extension (indicating filtration), both general indicators of health. Endocrine disruption effects were investigated after a prolonged exposure (112 d) to 5 and 500 microg L(-1) NP by measuring Vitellin (Vn)-like protein levels using the alkali-labile phosphate (ALP) assay and gel electrophoresis (GE). An increase in ALP levels was observed in both male and female mussels, although only marginal owing to a significant decrease in the mussels' health indicated by its condition, during the experiment. These levels, however, increased proportionally with NP concentration. Using solid phase thin-layer chromatography, we confirmed increased levels of the steroid cholesterol and evidence of NP uptake. Cholesterol levels in gonad tissue proved to be a more responsive biomarker of exposure to NP than levels of ALP. Further implications relating to the occurrence of endocrine disruption in the zebra mussel are discussed.  相似文献   

12.
In the following article an electron/ion microscopy study will be presented which investigates the uptake of silver nanoparticles (AgNPs) by the marine diatom Thalassiosira pseudonana, a primary producer aquatic species. This organism has a characteristic silica exoskeleton that may represent a barrier for the uptake of some chemical pollutants, including nanoparticles (NPs), but that presents a technical challenge when attempting to use electron-microscopy (EM) methods to study NP uptake. Here we present a convenient method to detect the NPs interacting with the diatom cell. It is based on a fixation procedure involving critical point drying which, without prior slicing of the cell, allows its inspection using transmission electron microscopy. Employing a combination of electron and ion microscopy techniques to selectively cut the cell where the NPs were detected, we are able to demonstrate and visualize for the first time the presence of AgNPs inside the cell membrane.  相似文献   

13.
Antibiotics are widely used to improve human and animal health and treat infections. Antibiotics are often used in livestock farms and fisheries to prevent diseases and promote growth. Recently, there has been increasing interest in the presence of antibiotics in aquatic environments. Low levels of antibiotic components are frequently detected in surface water, seawater, groundwater, and even drinking water. Antibiotics are consistently and continually discharged into the natural environment as parent molecules or metabolites, which are usually soluble and bioactive, and this results in a pseudo and persistent pollution. The effects of environmental antibiotic toxicity on non-target organisms, especially aquatic organisms, have become an increasing concern. Although antibiotics have been detected worldwide, their ecological and developmental effects have been poorly investigated, particularly in non-target organisms. This review describes the toxicity and underlying mechanism of antibiotic contamination in aquatic organisms, including the effects on vertebrate development. A considerable number of antibiotic effects on aquatic organisms have been investigated using acute toxicity assays, but only very little is known about the long-term effects. Aquatic photosynthetic autotrophs, such as Pseudokirchneriella subcapitata, Anabaena flos-aquae, and Lemna minor, were previously used for antibiotic toxicity tests because of low cost, simple operation, and high sensitivity. Certain antibiotics show a different degree of potency in algal toxicity tests on the basis of different test algae. Antibiotics inhibit protein synthesis, chloroplast development, and photosynthesis, ultimately leading to growth inhibition; some organisms exhibit growth stimulation at certain antibiotic concentrations. Daphnia magna and other aquatic invertebrates have also been used for checking the toxicity priority of antibiotics. When investigating the acute effect of antibiotics (e.g., growth inhibition), concentrations in standard laboratory organisms are usually about two or three orders of magnitude higher than the maximal concentrations in the aquatic environment, resulting in the underestimation of antibiotic hazards. Vertebrate organisms show a promising potential for chronic toxicity and potentially subtle effects of antibiotics, particularly on biochemical processes and molecular targets. The adverse developmental effects of macrolides, tetracyclines, sulfonamides, quinolones, and other antibiotic groups have been evaluated in aquatic vertebrates such as Danio rerio and Xenopus tropicalis. In acute toxicity tests, low levels of antibiotics have systematic teratogenic effects on fish. The effects of antibiotics on oxidative stress enzymes and cytochrome P450 have been investigated. Cytotoxicity, neurotoxicity, and genotoxicity have been observed for certain antibiotic amounts. However, there are no firm conclusions regarding the chronic toxicity of antibiotics at environmentally relevant levels because of the lack of long-term exposure studies. Herein, future perspectives and challenges of antibiotic toxicology were discussed. Researchers should pay more attention to the following points: chronic toxicity and potentially subtle effects of environmentally relevant antibiotics on vertebrates; effects of toxicity on biochemical processes and mode of action; combined toxicity of antibiotics and other antibiotics, metabolites, and heavy metals; and environmental factors such as temperature and pH.  相似文献   

14.
The paramyxovirus nucleoproteins (NPs) encapsidate the genomic RNA into nucleocapsids, which are then incorporated into virus particles. We determined the protein-protein interaction between NP molecules and the molecular mechanism required for incorporating nucleocapsids into virions in two closely related viruses, human parainfluenza virus type 1 (hPIV1) and Sendai virus (SV). Expression of NP from cDNA resulted in in vivo nucleocapsid formation. Electron micrographs showed no significant difference in the morphological appearance of viral nucleocapsids obtained from lysates of transfected cells expressing SV or hPIVI NP cDNA. Coexpression of NP cDNAs from both viruses resulted in the formation of nucleocapsid composed of a mixture of NP molecules; thus, the NPs of both viruses contained regions that allowed the formation of mixed nucleocapsid. Mixed nucleocapsids were also detected in cells infected with SV and transfected with hPIV1 NP cDNA. However, when NP of SV was donated by infected virus and hPIV1 NP was from transfected cDNA, nucleocapsids composed of NPs solely from SV or solely from hPIVI were also detected. Although almost equal amounts of NP of the two viruses were found in the cytoplasm of cells infected with SV and transfected with hPIV1 NP cDNA, 90% of the NPs in the nucleocapsids of the progeny SV virions were from SV. Thus, nucleocapsids containing heterologous hPIV1 NPs were excluded during the assembly of progeny SV virions. Coexpression of hPIV1 NP and hPIV1 matrix protein (M) in SV-infected cells increased the uptake of nucleocapsids containing hPIV1 NP; thus, M appears to be responsible for the specific incorporation of the nucleocapsid into virions. Using SV-hPIV1 chimera NP cDNAs, we found that the C-terminal domain of the NP protein (amino acids 420 to 466) is responsible for the interaction with M.  相似文献   

15.
Nanotechnology is expected to play a vital role in the rapidly developing field of nanomedicine, creating innovative solutions and therapies for currently untreatable diseases, and providing new tools for various biomedical applications, such as drug delivery and gene therapy. In order to optimize the efficacy of nanoparticle (NP) delivery to cells, it is necessary to understand the mechanisms by which NPs are internalized by cells, as this will likely determine their ultimate sub-cellular fate and localisation. Here we have used pharmacological inhibitors of some of the major endocytic pathways to investigate nanoparticle uptake mechanisms in a range of representative human cell lines, including HeLa (cervical cancer), A549 (lung carcinoma) and 1321N1 (brain astrocytoma). Chlorpromazine and genistein were used to inhibit clathrin and caveolin mediated endocytosis, respectively. Cytochalasin A and nocodazole were used to inhibit, respectively, the polymerisation of actin and microtubule cytoskeleton. Uptake experiments were performed systematically across the different cell lines, using carboxylated polystyrene NPs of 40 nm and 200 nm diameters, as model NPs of sizes comparable to typical endocytic cargoes. The results clearly indicated that, in all cases and cell types, NPs entered cells via active energy dependent processes. NP uptake in HeLa and 1321N1 cells was strongly affected by actin depolymerisation, while A549 cells showed a stronger inhibition of NP uptake (in comparison to the other cell types) after microtubule disruption and treatment with genistein. A strong reduction of NP uptake was observed after chlorpromazine treatment only in the case of 1321N1 cells. These outcomes suggested that the same NP might exploit different uptake mechanisms to enter different cell types.  相似文献   

16.
17.
Intestinal epithelial cells (IECs) overlying the villi play a prominent role in absorption of digested nutrients and establish a barrier that separates the internal milieu from potentially harmful microbial antigens. Several mechanisms by which antigens of dietary and microbial origin enter the body have been identified; however whether IECs play a role in antigen uptake is not known. Using in vivo imaging of the mouse small intestine, we investigated whether epithelial cells (enterocytes) play an active role in the uptake (sampling) of lumen antigens. We found that small molecular weight antigens such as chicken ovalbumin, dextran, and bacterial LPS enter the lamina propria, the loose connective tissue which lies beneath the epithelium via goblet cell associated passageways. However, epithelial cells overlying the villi can internalize particulate antigens such as bacterial cell debris and inert nanoparticles (NPs), which are then found co-localizing with the CD11c+ dendritic cells in the lamina propria. The extent of NP uptake by IECs depends on their size: 20–40 nm NPs are taken up readily, while NPs larger than 100 nm are taken up mainly by the epithelial cells overlying Peyer''s patches. Blocking NPs with small proteins or conjugating them with ovalbumin does not inhibit their uptake. However, the uptake of 40 nm NPs can be inhibited when they are administered with an endocytosis inhibitor (chlorpromazine). Delineating the mechanisms of antigen uptake in the gut is essential for understanding how tolerance and immunity to lumen antigens are generated, and for the development of mucosal vaccines and therapies.  相似文献   

18.
The nature of macrophage allows the possibility that this cell type could be used as drug delivery system to track therapeutic drug nanoparticles (NPs) in cancer. However, there is no existing research on the regulation between effective loading of NPs and targeted delivery of macrophages. Here, we investigated the important parameters of intracellular NP quantity and the vector migration rate. Macrophage loading capacity was obtained by comparing the uptake quantity of varisized NPs, and the delivery ability of loaded cells was determined by measuring vector migration rates. We observed a positive correlation between the size of NPs and directed macrophage migration. Our findings suggest that the molecular mechanism of migration vector rate regulation involved increased expression levels of colony-stimulating factor-1 (CSF-1) receptor and integrin induced by 100-nm and 500-nm particles. The ability of macrophages uptake to varisized NPs showed the opposite trend, with the increased vector rate of cell migration influenced by NPs. We are able to demonstrate the important balance between effective macrophage loading and targeted delivery. By adjusting the balance parameters, it will be possible to utilize NPs in macrophage-mediated disease diagnosis and therapy.  相似文献   

19.
Mammalian cells have been shown to internalize oligonucleotide-functionalized gold nanoparticles (DNA-Au NPs or siRNA-Au NPs) without the aid of auxiliary transfection agents and use them to initiate an antisense or RNAi response. Previous studies have shown that the dense monolayer of oligonucleotides on the nanoparticle leads to the adsorption of serum proteins and facilitates cellular uptake. Here, we show that serum proteins generally act to inhibit cellular uptake of DNA-Au NPs. We identify the pathway for DNA-Au NP entry in HeLa cells. Biochemical analyses indicate that DNA-Au NPs are taken up by a process involving receptor-mediated endocytosis. Evidence shows that DNA-Au NP entry is primarily mediated by scavenger receptors, a class of pattern-recognition receptors. This uptake mechanism appears to be conserved across species, as blocking the same receptors in mouse cells also disrupted DNA-Au NP entry. Polyvalent nanoparticles functionalized with siRNA are shown to enter through the same pathway. Thus, scavenger receptors are required for cellular uptake of polyvalent oligonucleotide functionalized nanoparticles.  相似文献   

20.
Recent advances in comparative immunology have established that invertebrates produce hypervariable molecules probably related to immunity, suggesting the possibility of raising a specific immune response. “Priming” and “tailoring” are terms now often associated with the invertebrate innate immunity. Comparative immunologists contributed to eliminate the idea of a static immune system in invertebrates, making necessary to re-consider the evolutive meaning of immunological memory of vertebrates. If the anticipatory immune system represents a maximally efficient immune system, why can it be observed only in vertebrates, especially in consideration that molecular hypervariability exists also in invertebrates? Using well-established theories concerning the evolution of the vertebrate immunity as theoretical basis we analyze from an Eco-immunology-based perspective why a memory-based immune system may have represented an evolutive advantage for jawed vertebrates. We hypothesize that for cold-blooded vertebrates memory represents a complimentary component that flanks the robust and fundamental innate immunity. Conversely, immunological memory has become indispensable and fully exploited in warm-blooded vertebrates, due to their stable inner environment and high metabolic rate, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号