首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
For lake microbes, water column mixing acts as a disturbance because it homogenizes thermal and chemical gradients known to define the distributions of microbial taxa. Our first objective was to isolate hypothesized drivers of lake bacterial response to water column mixing. To accomplish this, we designed an enclosure experiment with three treatments to independently test key biogeochemical changes induced by mixing: oxygen addition to the hypolimnion, nutrient addition to the epilimnion, and full water column mixing. We used molecular fingerprinting to observe bacterial community dynamics in the treatment and control enclosures, and in ambient lake water. We found that oxygen and nutrient amendments simulated the physical-chemical water column environment following mixing and resulted in similar bacterial communities to the mixing treatment, affirming that these were important drivers of community change. These results demonstrate that specific environmental changes can replicate broad disturbance effects on microbial communities. Our second objective was to characterize bacterial community stability by quantifying community resistance, recovery and resilience to an episodic disturbance. The communities in the nutrient and oxygen amendments changed quickly (had low resistance), but generally matched the control composition by the 10th day after treatment, exhibiting resilience. These results imply that aquatic bacterial assemblages are generally stable in the face of disturbance.  相似文献   

2.
In experimental metacommunities with marine benthic microalgae, we tested whether heat stress changes effects of connectivity and habitat heterogeneity on metacommunity structure and functioning, by manipulating a simulated heat wave, dispersal frequency and a light intensity gradient. We found that all measures of mean local and regional diversity and community biomass significantly declined after the heat wave and showed no sign of recovery. Additionally, dispersal decreased diversity and increased dominance in both the heat stressed and control communities. Together the heat wave and high dispersal frequency induced a dominance shift by spreading a temperature tolerant but low yielding species from its source patches with low light intensity across the metacommunity, an effect that increased with time. Although different species became dominant at high dispersal frequency with and without the heat wave, the shift towards a temperature tolerant species was not sufficient to maintain total community biomass. Thus, short‐term disturbance may cause longer‐term loss of ecosystem function due to dominance shifts in the composition of communities. This study illustrates the importance of employing multispecies approaches when attempting to predict responses of communities to environmental changes.  相似文献   

3.
Microbial communities will experience novel climates in the future. Dispersal is now recognized as a driver of microbial diversity and function, but our understanding of how dispersal influences responses to novel climates is limited. We experimentally tested how the exclusion of aerially dispersed fungi and bacteria altered the compositional and functional response of soil microbial communities to drought. We manipulated dispersal and drought by collecting aerially deposited microbes after precipitation events and subjecting soil mesocosms to either filter-sterilized rain (no dispersal) or unfiltered rain (dispersal) and to either drought (25% ambient) or ambient rainfall for 6 months. We characterized community composition by sequencing 16S and ITS rRNA regions and function using community-level physiological profiles. Treatments without dispersal had lower soil microbial biomass and metabolic diversity but higher bacterial and fungal species richness. Dispersal also altered soil community response to drought; drought had a stronger effect on bacterial (but not fungal) community composition, and induced greater functional loss, when dispersal was present. Surprisingly, neither immigrants nor drought-tolerant taxa had higher abundance in dispersal treatments. We show experimentally that natural aerial dispersal rate alters soil microbial responses to disturbance. Changes in dispersal rates should be considered when predicting microbial responses to climate change.  相似文献   

4.
Previous studies have shown variable relationships between dispersal rate and ecosystem functioning, but the reasons for and mechanisms behind variable dispersal rate – functioning patterns are currently unknown. In this study we used six bacterial lake water communities in a laboratory experiment in order to investigate how dispersal among communities influences community productivity by evaluating three different mechanisms: 1) changes in taxonomic diversity, 2) changes in phylogenetic diversity or 3) changes in the composition of functional traits. The experiment was conducted in two phases; (A) a dialysis bag experiment where the dispersal rate among six communities was manipulated and the subsequent change in bacterial diversity and growth rate was recorded, and (B) a regrowth experiment where we manipulated available resources to study how well a taxon grows on certain organic carbon resources, i.e. their functional traits. From experiment (B) we could thus estimate changes in functional traits in communities in experiment (A). Bacterial production was affected by dispersal, but not consistently among lakes. Neither change in taxonomic or phylogenetic diversity with dispersal could explain the observed dispersal – productivity relationships. Instead, changes in trait composition with dispersal, especially the communities’ ability to use p-coumaric acid, an aromatic compound, could explain the observed dispersal – productivity relationships. Changes in this trait caused by dispersal seemed especially important for bacterial productivity in waters with a high aromaticity of the organic matter pool. We conclude that the effect of dispersal on bacterial communities can affect ecosystem functioning in different ways, through changes in functional key-traits which are important for the local environment.  相似文献   

5.
Our understanding of the effects of tropical cyclones on species composition and dynamics of forest communities is mainly derived from studies that have considered single cyclonic events. Here we examined changes in the tree species and functional trait composition in an 8-ha Dipterocarp forest at Palanan in the northeastern Philippines that is subject to a high frequency of cyclonic disturbance (1–4 cyclones annually). The plot has been censused four times over a 16-year interval allowing us to consider the medium-term forest dynamics in response to repeated cyclones. We hypothesized that as the forest community in Palanan has been selected under frequent disturbance by cyclones, it should show little functional change across the census intervals. We analyzed changes in demography, species composition, and community-weighted functional traits (specific leaf area, leaf area, wood density, and specific growth rate) across the censuses and compared these against cyclone intensities during the census intervals. Demographic changes across census years suggest that the community responded to cyclonic disturbances through substantial turnover in the small- and medium-size individuals, and that there has been an increase in plot-level stem density and basal area across the measured period. Trait compositional changes from 1994 to 2010 were mostly small, but indicate a shift towards species with larger leaves and faster growth rates—traits that are associated with fast recovery after disturbance. These changes all coincide with a large intense cyclone between the second and third censuses, suggesting that cyclone strength, more than cyclone frequency, affects this forest.  相似文献   

6.
Anthropogenic changes are altering the environmental conditions and the biota of ecosystems worldwide. In many temperate grasslands, such as North American tallgrass prairie, these changes include alteration in historically important disturbance regimes (e.g., frequency of fires) and enhanced availability of potentially limiting nutrients, particularly nitrogen. Such anthropogenically-driven changes in the environment are known to elicit substantial changes in plant and consumer communities aboveground, but much less is known about their effects on soil microbial communities. Due to the high diversity of soil microbes and methodological challenges associated with assessing microbial community composition, relatively few studies have addressed specific taxonomic changes underlying microbial community-level responses to different fire regimes or nutrient amendments in tallgrass prairie. We used deep sequencing of the V3 region of the 16S rRNA gene to explore the effects of contrasting fire regimes and nutrient enrichment on soil bacterial communities in a long-term (20 yrs) experiment in native tallgrass prairie in the eastern Central Plains. We focused on responses to nutrient amendments coupled with two extreme fire regimes (annual prescribed spring burning and complete fire exclusion). The dominant bacterial phyla identified were Proteobacteria, Verrucomicrobia, Bacteriodetes, Acidobacteria, Firmicutes, and Actinobacteria and made up 80% of all taxa quantified. Chronic nitrogen enrichment significantly impacted bacterial community diversity and community structure varied according to nitrogen treatment, but not phosphorus enrichment or fire regime. We also found significant responses of individual bacterial groups including Nitrospira and Gammaproteobacteria to long-term nitrogen enrichment. Our results show that soil nitrogen enrichment can significantly alter bacterial community diversity, structure, and individual taxa abundance, which have important implications for both managed and natural grassland ecosystems.  相似文献   

7.
The use of the artificial defaunation of sediments is widespread among studies examining the disturbance and recovery of benthic macrofaunal communities. Standard methods of defaunation include driving the sediment to anoxia, freezing and sieving. In this study we performed a field experiment to test the assumption that the bacterial assemblages are unaffected by these methods of defaunation. Same-sized patches of sediment were defaunated by covering sediment with plastic sheeting (weighted by concrete blocks), freezing or sieving (1-mm mesh). Macrofaunal counts of sediment cores, taken to determine the effectiveness of each defaunation method, indicated that although none of the treatments removed 100% of macrofauna, all resulted in reduced macrofaunal presence, with the sieved treatment being the most effective. Bacterial samples were taken over the course of a month to determine both the initial and long-term effects of defaunation on bacterial community structure. Numerical effects were determined via epifluorescence microscopy, whereas differences in community composition were followed using PCR and denaturing gradient gel electrophoresis (DGGE). The anoxic treatments resulted in significant numerical changes in both active and total cell counts over time, while the frozen and sieved treatments caused less apparent changes. All of the treatments initially changed the composition of the community; however, anoxic and sieved treatments resulted in subtle changes while the frozen treatment produced more notable and variable changes within the community. The composition of the bacterial community in all of the treatment plots trended towards recovery, or convergence towards that of ambient sediments, by the t = 25-day sampling period.  相似文献   

8.
Soil microorganisms are key players in biogeochemical cycles. Yet, there is no consistent view on the significance of microbial biodiversity for soil ecosystem functioning. According to the insurance hypothesis, declines in ecosystem functioning due to reduced biodiversity are more likely to occur under fluctuating, extreme or rapidly changing environmental conditions. Here, we compare the functional operating range, a new concept defined as the complete range of environmental conditions under which soil microbial communities are able to maintain their functions, between four naturally assembled soil communities from a long-term fertilization experiment. A functional trait approach was adopted with denitrifiers involved in nitrogen cycling as our model soil community. Using short-term temperature and salt gradients, we show that the functional operating range was broader and process rates were higher when the soil community was phylogenetically more diverse. However, key bacterial genotypes played an important role for maintaining denitrification as an ecosystem functioning under certain conditions.  相似文献   

9.
Disturbance is one of the mechanisms which counteract competitive exclusion of populations in resource-limited communities, thereby facilitating coexistence and maintaining community species diversity. The intermediate disturbance hypothesis predicts maximum diversity at intermediate disturbance intensities and frequencies. This paper reports results of an experimental test of this hypothesis using a coastal benthic community of rhizopods (Protozoa: Rhizopoda), and experimental sediment resuspension as a simulated natural disturbance. We carried out two experiments of 5 d duration which focussed on the effects of resuspension intensity and frequency, respectively, on the abundance, species richness and on the Shannon-Weaver diversity index of rhizopod communities in surface sediments of natural sediment cores from the coastal southern Baltic. Care was taken to adjust the experimental treatments to the natural disturbance regime in this area.
Twenty-four and 28 rhizopod species were present during the intensity and frequency experiment, respectively. Small bacterivorous rhizopods of the Vannellidae, Cochliopodidae, Paramoebidae and Rhizopoda incertae sedis dominated the communities during both experiments. Rhizopod abundance, species richness and diversity increased towards the end of the intensity experiment, but they did not show effects of disturbance intensity. Similarly, no effects of disturbance frequency were found during the frequency experiment. Our results indicate that coexistence and community diversity maintenance in benthic rhizopod communities, and probably in benthic heterotrophic protistan communities in general, may rely on different mechanisms than intermediate disturbance, such as trophic niche separation and high rates of dispersal and colonisation.  相似文献   

10.
Forest vernal pools experience strong environmental fluctuations, such as changes in water chemistry, which are often correlated with changes in microbial community structure. However, very little is known about the extent to which these community changes influence ecosystem processes in vernal pools. This study utilized experimental vernal pool microcosms to simulate persistent pH alteration and a pulse input of nitrate (NO3 -), which are common perturbations to temperate vernal pool ecosystems. pH was manipulated at the onset and microbial respiration was monitored throughout the study (122?days). On day 29, NO3 - was added and denitrification rate was measured and bacterial, fungal, and denitrifier communities were profiled on day 30 and day 31. Microbial respiration and both bacterial and fungal community structure were altered by the pH treatment, demonstrating both structural and functional microbial responses. The NO3 - pulse increased denitrification rate without associated changes in community structure, suggesting that microbial communities responded functionally without structural shifts. The functioning of natural vernal pools, which experience both persistent and short-term environmental change, may thus depend on the type and duration of the change or disturbance.  相似文献   

11.
The neutral theory of biodiversity has emerged as a major null hypothesis in community ecology. The neutral theory may sufficiently well explain the structuring of microbial communities as the extremely high microbial diversity has led to an expectation of high ecological equivalence among species. To address this possibility, we worked with microcosms of two soils; the microcosms were either exposed, or not, to a dilution disturbance which reduces community sizes and removes some very rare species. After incubation for recovery, changes in bacterial species composition in microcosms compared with the source soils were assessed by pyrosequencing of bacterial 16S rRNA genes. Our assays could detect species with a proportional abundance ≥ 0.0001 in each community, and changes in the abundances of these species should have occurred during the recovery growth, but not be caused by the disturbance per se. The undisturbed microcosms showed slight changes in bacterial species diversity and composition, with a small number of initially low-abundance species going extinct. In microcosms recovering from the disturbance, however, species diversity decreased dramatically (by > 50%); and in most cases there was not a positive relationship between species initial abundance and their chance of persistence. Furthermore, a positive relationship between species richness and community biomass was observed in microcosms of one soil, but not in those of the other soil. The results are not consistent with a neutral hypothesis that predicts a positive abundance-persistence relationship and a null effect of diversity on ecosystem functioning. Adaptation mechanisms, in particular those associated with species interactions including facilitation and predation, may provide better explanations.  相似文献   

12.
Disturbance and recovery influence microbial community structure and ecosystem functions in most natural environments. This study from a hypersaline Bahamian lagoon details the response of a benthic cyanobacterial mat to disturbance by Hurricane Frances, a category-4 storm. Clone libraries of cyanobacterial small subunit r-RNA genes and nitrogenase genes revealed significant shifts in cyanobacterial and diazotroph community composition following the hurricane. Post-hurricane clone libraries were dominated by sequences that had been rare in pre-hurricane communities. In spite of this dominance shift, re-colonizing mat communities performed nitrogen fixation and photosynthesis at rates within the normal range of variation measured in the mat at similar salinities. There was a tendency for nitrogen fixation rates from mats re-colonizing sites with hurricane-related sand deposition to be higher than those from mats re-colonizing sites without significant sand deposition. This suggests that the altered communities responded to a carbon : nitrogen imbalance that was particularly pronounced in areas subjected to disturbance by sand burial. The post-hurricane dominance of organisms that had been previously rare suggests that pre-hurricane diversity and functional redundancy contributed to the rapid recovery of ecosystem function in the post-disturbance environment.  相似文献   

13.
Summary The responses of different successional stages of a temperate intertidal algal community to disturbance were investigated with a field experiment. The experiment was conducted in a low intertidal boulder field in southern California. In this habitat, the top surfaces of boulders are covered with algae. The composition of the assemblage on any particular boulder depends on the length of time since it was last overturned by wave action. When a boulder is overturned, the algae on what was formerly the top surface, are killed in whole or part by a combination of sea urchin grazing, anoxia, light levels below compensation intensity, and mechanical damage caused by crushing or abrasion. The length of time that a boulder remains overturned and the local abundance of sea urchins determines the intensity of the disturbance. When the boulder is righted, recolonization begins either by vegetative regrowth of survivors and/or by spores from outside.Using a three-factorial design, this natural form of disturbance was experimentally mimicked and the responses of three different successional stages of the algal community monitored. Boulders in each successional category were overturned for periods of 17, 27 and 54 days in areas with and without sea urchins, then righted. Two aspects of community response to perturbation were evaluated. These were (1) the assemblage's ability to resist change and (2) its ability, if altered, to adjust to some semblance of its original state. The resistance of each assemblage and of its component species to change was measured by the percent decrease in algal cover and by the decline in percent similarity of the community to its original composition. The recovery rate of each assemblage and of the cover lost by each species during the first 35 days following a disturbance was measured by the rate of increase in percent similarity to the original composition and the percent reestablishment of lost cover.The experimental evidence demonstrates that the successional stages of the producer level of an intertidal algal community differ significantly in their responses to disturbance. Early successional communities suffer more damage from a given level of perturbation but recover more quickly than either middle or late successional communities. Damage to any particular assemblage of algae, irrespective of successional age, is more extensive and recovery slower, the longer the boulder is overturned and/or sea urchins are present. Several thresholds in these responses were also identified.Differences in community responses and non-linearities in these responses were attributable to the life history characteristics of the component species rather than emergent properties of the assemblage. These characteristics have evolved in response to a variety of recurrent natural disturbances. This interpretation is in agreement with recent critical reevaluations of the trends and mechanisms of successional change in natural communities.  相似文献   

14.
15.
Saprotrophic fungal community composition, determined by the outcomes of competitive mycelial interactions, represents a key determinant of woodland carbon and nutrient cycling. Atmospheric warming is predicted to drive changes in fungal community composition. Grazing by invertebrates can also exert selective pressures on fungal communities and alter the outcome of competitive fungal interactions; their potential to do so is determined by grazing intensity. Temperature regulates the abundance of soil collembola, but it remains unclear whether this will alter the top-down determination of fungal community composition. We use soil microcosms to explore the direct (via effects on interacting fungi) and indirect (by influencing top-down grazing pressures) effects of a 3 °C temperature increase on the outcomes of competitive interactions between cord-forming basidiomycete fungi. By differentially affecting the fungal growth rates, warming reversed the outcomes of specific competitive interactions. Collembola populations also increased at elevated temperature, and these larger, more active, populations exerted stronger grazing pressures. Consequently, grazing mitigated the effects of temperature on these interactions, restoring fungal communities to those recorded at ambient temperature. The interactive effects of biotic and abiotic factors are a key in determining the functional and ecological responses of microbial communities to climate change.  相似文献   

16.
The fungal, bacterial, and viral microbial communities embedded as endosymbionts within all free-living organisms are extremely diverse and encode the vast majority of genes in the biosphere. Microbes in a human, for example, account for 100 times more genes than their host; similar results are emerging for virtually all free-living organisms. Disease is the best studied host–microbe interaction, but endosymbiotic microbial populations and communities also are responsible for critical functions in their hosts including nutrient uptake (plants), reduction in inflammatory responses (animals), digestion (animals), anti-herbivore defenses (plants), and pathogen resistance. In spite of the tremendous diversity and functional importance of the microbial biome to free-living organisms, we have little predictive understanding of the biotic and abiotic factors controlling within-host microbial community composition or the spatial scales at which anthropogenic changes affect host and microbial community interactions and functions. Current research suggests that anthropogenic changes to nutrient supply and food web composition can affect biological systems at scales ranging from individuals to continents. However, while current studies are clarifying the effects of some of these drivers on the structure and functioning of ecosystems, we have far less knowledge of their effects on microbial communities residing within hosts. Given the accelerating progress in metagenome studies, we are poised to make rapid advances in understanding the determinants and effects of within-host microbial communities.  相似文献   

17.
Understanding the response of bacterial communities to environmental change is extremely important in predicting the effect of biogeochemical modifications in ecosystem functioning. The Cuatro Cienegas Basin is an ancient oasis in the Mexican Chihuahuan desert that hosts a wide diversity of microbial mats and stromatolites that have survived in extremely oligotrophic pools with nearly constant conditions. However, thus far, the response of these unique microbial communities to long-term environmental disturbances remains unexplored. We therefore studied the compositional stability of these bacterial mat communities by using a replicated (3x) mesocosm experiment: a) Control; b) Fluct: fluctuating temperature; c) 40C: increase to 40 ºC; d) UVplus: artificial increase in UV radiation; and f) UVmin: UV radiation protection. In order to observe the changes in biodiversity, we obtained 16S rRNA gene clone libraries from microbial mats at the end of the experiment (eight months) and analyzed them using multivariate and phylogenetic tools. Sequences were assigned to 13 major lineages, among which Cyanobacteria (38.8%) and Alphaproteobacteria (25.5%) were the most abundant. The less extreme treatments (Control and UVmin) had a more similar composition and distribution of the phylogenetic groups with the natural pools than the most extreme treatments (Fluct, 40C, and UVplus), which showed drastic changes in the community composition and structure, indicating a different community response to each environmental disturbance. An increase in bacterial diversity was found in the UVmin treatment, suggesting that protected environments promote the establishment of complex bacterial communities, while stressful environments reduce diversity and increase the dominance of a few Cyanobacterial OTUs (mainly Leptolyngbya sp) through environmental filtering. Mesocosm experiments using complex bacterial communities, along with multivariate and phylogenetic analyses of molecular data, can assist in addressing questions about bacterial responses to long-term environmental stress.  相似文献   

18.
Saprotrophic fungi are key regulators of nutrient cycling in terrestrial ecosystems. They are the primary agents of plant litter decomposition and their hyphal networks, which grow throughout the soil–litter interface, represent highly dynamic channels through which nutrients are readily distributed. By ingesting hyphae and dispersing spores, soil invertebrates, including Arthropoda, Oligochaetae and Nematoda, influence fungal-mediated nutrient distribution within soil. Fungal physiological responses to grazing include changes to hydrolytic enzyme production and respiration rates. These directly affect nutrient mineralisation and the flux of CO2 between terrestrial and atmospheric pools. Preferential grazing may also exert selective pressures on saprotrophic communities, driving shifts in fungal succession and community composition. These functional and ecological consequences of grazing are intrinsically linked, and influenced by invertebrate grazing intensity. High-intensity grazing often reduces fungal growth and activity, whereas low-intensity grazing can have stimulatory effects. Grazing intensity is directly related to invertebrate abundance, and varies dramatically between species and functional groups. Invertebrate diversity and community composition, therefore, represent key factors determining the functioning of saprotrophic fungal communities and the services they provide.  相似文献   

19.
Climate warming and shifting precipitation regimes are affecting biodiversity and ecosystem functioning. Most studies have focused on the influence of warming and altered precipitation on macro-organisms, whereas the responses of soil microbial communities have been neglected. We studied the changes in the abundance, richness, and composition of the entire bacterial kingdom and 16 dominant bacterial phyla/classes in response to increased precipitation, warming, and their combination, by conducting a 5-year experiment in a steppe ecosystem in Inner Mongolia, China. Watering had a greater effect than warming on almost all the bacterial groups as indicated by changes in all the three attributes (abundance, richness, and composition). The 16 phyla/classes responded differentially to the experimental treatments, with Acidobacteria and Gamma-proteobacteria being the most sensitive. Stepwise regression analyses further revealed that climate changes altered the abundance and richness of bacterial groups primarily through direct routes (e.g., increasing soil water content), and changed the community composition through both direct and indirect routes (e.g., reducing soil total nitrogen content and increasing soil pH). The diverse responses of various bacterial groups could imply some potential shift in their ecosystem functions under climate changes; meanwhile, the indirect routes that are important in altering bacterial composition suggest that specific strategies (e.g., adding NH4NO3 to maintain soil nitrogen content and pH) could be adopted to maintain soil microbial composition under climate changes.  相似文献   

20.
In forest systems, drought acts as a disturbance that can generate impacts on community structure and composition at multiple scales. This study focused on a 2-month drought event within an early successional forest system to determine the mechanism(s) of community response to, and recovery from, drought. Drought induced a 28% decline in neighborhood species richness and cover as a result of decreased colonization and increased extinction rates. Following drought, neighborhood richness quickly recovered via increased colonization rates while extinction rates were unaltered. Drought had little long-term effect on neighborhood structure (species richness and cover) and generated only subtle changes in neighborhood composition. Ruderal (annual and biennial) species were more likely to change (increase or decrease) in cover and frequency than the more stress tolerant perennial and woody species. However, population dynamics appeared to be generally driven by stochastic species turnover among fields and not by uniform shifts in species performance across the site. Although drought impacts and recovery appeared predictable at the neighborhood scale, population responses to drought within the site were rather unpredictable. Our findings suggest that stochastic fine-scale processes can generate predictable course-scale dynamics within a disturbed system. The scale-specific mechanisms of community change presented here should be explored in other systems to determine the extent of their generality in driving disturbance impacts on communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号