首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of GABA(A) receptors and the efficacy of GABAergic neurotransmission are subject to adaptive compensatory regulation as a result of changes in neuronal activity. Here, we show that activation of L-type voltage-gated Ca(2+) channels (VGCCs) leads to Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) phosphorylation of S383 within the β3 subunit of the GABA(A) receptor. Consequently, this results in rapid insertion of GABA(A) receptors at the cell surface and enhanced tonic current. Furthermore, we demonstrate that acute changes in neuronal activity leads to the rapid modulation of cell surface numbers of GABA(A) receptors and tonic current, which are critically dependent on Ca(2+) influx through L-type VGCCs and CaMKII phosphorylation of β3S383. These data provide a mechanistic link between activity-dependent changes in Ca(2+) influx through L-type channels and the rapid modulation of GABA(A) receptor cell surface numbers and tonic current, suggesting a homeostatic pathway involved in regulating neuronal intrinsic excitability in response to changes in activity.  相似文献   

2.
Membrane depolarization triggers Ca(2+) release from the sarcoplasmic reticulum (SR) in skeletal muscles via direct interaction between the voltage-gated L-type Ca(2+) channels (the dihydropyridine receptors; VGCCs) and ryanodine receptors (RyRs), while in cardiac muscles Ca(2+) entry through VGCCs triggers RyR-mediated Ca(2+) release via a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Here we demonstrate that in phasic smooth muscle of the guinea-pig small intestine, excitation evoked by muscarinic receptor activation triggers an abrupt Ca(2+) release from sub-plasmalemmal (sub-PM) SR elements enriched with inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and poor in RyRs. This was followed by a lesser rise, or oscillations in [Ca(2+)](i). The initial abrupt sub-PM [Ca(2+)](i) upstroke was all but abolished by block of VGCCs (by 5 microM nicardipine), depletion of intracellular Ca(2+) stores (with 10 microM cyclopiazonic acid) or inhibition of IP(3)Rs (by 2 microM xestospongin C or 30 microM 2-APB), but was not affected by block of RyRs (by 50-100 microM tetracaine or 100 microM ryanodine). Inhibition of either IP(3)Rs or RyRs attenuated phasic muscarinic contraction by 73%. Thus, in contrast to cardiac muscles, excitation-contraction coupling in this phasic visceral smooth muscle occurs by Ca(2+) entry through VGCCs which evokes an initial IP(3)R-mediated Ca(2+) release activated via a CICR mechanism.  相似文献   

3.
During the early development of the nervous system, γ-aminobutyric acid (GABA) type A receptor (GABA(A)R)-mediated signaling parallels the neurotrophin/tropomyosin-related kinase (Trk)-dependent signaling in controlling a number of processes from cell proliferation and migration, via dendritic and axonal outgrowth, to synapse formation and plasticity. Here we present the first evidence that these two signaling systems regulate each other through a complex positive feedback mechanism. We first demonstrate that GABA(A)R activation leads to an increase in the cell surface expression of these receptors in cultured embryonic cerebrocortical neurons, specifically at the stage when this activity causes depolarization of the plasma membrane and Ca(2+) influx through L-type voltage-gated Ca(2+) channels. We further demonstrate that GABA(A)R activity triggers release of the brain-derived neurotrophic factor (BDNF), which, in turn by activating TrkB receptors, mediates the observed increase in cell surface expression of GABA(A)Rs. This BDNF/TrkB-dependent increase in surface levels of GABA(A)Rs requires the activity of phosphoinositide 3-kinase (PI3K) and protein kinase C (PKC) and does not involve the extracellular signal-regulated kinase (ERK) 1/2 activity. The increase in GABA(A)R surface levels occurs due to an inhibition of the receptor endocytosis by BDNF, whereas the receptor reinsertion into the plasma membrane remains unaltered. Thus, GABA(A)R activity is a potent regulator of the BDNF release during neuronal development, and at the same time, it is strongly enhanced by the activity of the BDNF/TrkB/PI3K/PKC signaling pathway.  相似文献   

4.
γ-Aminobutyric acid type A receptors (GABAARs) are the major sites of fast inhibitory neurotransmission in the brain, and the numbers of these receptors at the cell surface can determine the strength of GABAergic neurotransmission. Chronic changes in neuronal activity lead to an adaptive modulation in the efficacy of GABAergic synaptic inhibition, brought about in part by changes in the number of synaptic GABAARs, a mechanism known as homeostatic synaptic plasticity. Reduction in the number of GABAARs in response to prolonged neuronal activity blockade is dependent on the ubiquitin-proteasome system. The underlying biochemical pathways linking chronic activity blockade to proteasome-dependent degradation of GABAARs are unknown. Here, we show that chronic blockade of L-type voltage-gated calcium channels (VGCCs) with nifedipine decreases the number of GABAARs at synaptic sites but not the overall number of inhibitory synapses. In parallel, blockade of L-type VGCCs decreases the amplitude but not the frequency of miniature inhibitory postsynaptic currents or expression of the glutamic acid decarboxylase GAD65. We further reveal that the activation of L-type VGCCs regulates the turnover of newly translated GABAAR subunits in a mechanism dependent upon the activity of the proteasome and thus regulates GABAAR insertion into the plasma membrane. Together, these observations suggest that activation of L-type VGCCs can regulate the abundance of synaptic GABAARs and the efficacy of synaptic inhibition, revealing a potential mechanism underlying the homeostatic adaptation of fast GABAergic inhibition to prolonged changes in activity.  相似文献   

5.
Accurate calcium signaling requires spatial and temporal coordination of voltage-gated calcium channels (VGCCs) and a variety of signal transduction proteins. Accordingly, regulation of L-type VGCCs involves the assembly of complexes that include the channel subunits, protein kinase A (PKA), protein kinase A anchoring proteins (AKAPs), and beta2-adrenergic receptors, although the molecular details underlying these interactions remain enigmatic. We show here, by combining extracellular epitope splicing into the channel pore-forming subunit and immunoassays with whole cell and single channel electrophysiological recordings, that AKAP79 directly regulates cell surface expression of L-type calcium channels independently of PKA. This regulation involves a short polyproline sequence contained specifically within the II-III cytoplasmic loop of the channel. Thus we propose a novel mechanism whereby AKAP79 and L-type VGCCs function as components of a biosynthetic mechanism that favors membrane incorporation of organized molecular complexes in a manner that is independent of PKA phosphorylation events.  相似文献   

6.
7.
Calcium entry through Ca(2+)-permeable AMPA/kainate receptors may activate signaling cascades controlling neuronal development. Using the fluorescent Ca(2+)-indicator Calcium Green 1-AM we showed that the application of kainate or AMPA produced an increase of intracellular [Ca(2+)] in embryonic chick retina from day 6 (E6) onwards. This Ca(2+) increase is due to entry through AMPA-preferring receptors, because it was blocked by the AMPA receptor antagonist GYKI 52466 but not by the N-methyl-D-aspartic acid (NMDA) receptor antagonist AP5, the voltage-gated Ca(2+) channel blockers diltiazem or nifedipine, or by the substitution of Na+ for choline in the extracellular solution to prevent the depolarizing action of kainate and AMPA. In dissociated E8 retinal cultures, application of glutamate, kainate, or AMPA reduced the number of neurites arising from these cells. The effect of kainate was prevented by the AMPA/kainate receptor antagonist CNQX and by GYKI 52466 but not by AP5, indicating that the reduction in neurite outgrowth resulted from the activation of AMPA receptors. Blocking Ca(2+) influx through L-type voltage-gated Ca(2+) channels with diltiazem and nifedipine prevented the effect of 10-100 microM kainate but not that of 500 microM kainate. In addition, joro spider toxin-3, a blocker of Ca(2+)-conducting AMPA receptors, prevented the effect of all doses of kainate. Neither GABA, which is depolarizing at this age in the retina, nor the activation of metabotropic glutamate receptors with tACPD mimicked the effects of AMPA receptor activation. Calcium entry via AMPA receptor channels themselves may therefore be important in the regulation of neurite outgrowth in developing chick retinal cells.  相似文献   

8.
Wnt2b controls retinal cell differentiation at the ciliary marginal zone   总被引:5,自引:0,他引:5  
The ciliary marginal zone of the vertebrate retina contains undifferentiated progenitor cells that continue to proliferate and add new neurons and glia peripherally during the embryonic stages - even after the formation of a functional retina. To understand the molecular mechanism that controls the prolonged progenitor cell proliferation in the ciliary marginal zone, we employed a candidate molecule approach, focusing on Wnt2b (formerly know as Wnt13), which is expressed in the marginal most tip of the retina. Frizzled 4 and 5, seven-pass transmembrane Wnt receptors, were expressed in the peripheral and central part of the retina, respectively. LEF1, a downstream Wnt signaling component, was expressed at high levels in the ciliary marginal zone with expression gradually decreasing towards the central retina. The LEF1-expressing region, which is where Wnt signaling is supposedly activated, expressed a set of molecular markers that are characteristic of the progenitor cells in the ciliary marginal zone. Overexpression of Wnt2b by use of in ovo electroporation in the central retina inhibited neuronal differentiation and induced the progenitor cell markers. Blocking of the Wnt downstream signaling pathway by a dominant-negative LEF1 inhibited proliferation of the cells in the marginal area, which resulted in their premature neuronal differentiation. The progenitor cells in the ciliary marginal zone differentiated into all the neuronal and glial cell types when cultured in vitro, and they proliferated for a longer period than did centrally located progenitor cells that underwent a limited number of cell divisions. In addition, the proliferation of these progenitor cells was promoted in the presence of Wnt2b. These results suggest that Wnt2b functions to maintain undifferentiated progenitor cells in the ciliary marginal zone, and thus serves as a putative stem cell factor in the retina.  相似文献   

9.
10.
Recent studies have shown that GABA(B) receptors play more than a classical inhibitory role and can function as an important synaptic maturation signal early in life. In a previous study, we reported that GABA(B) receptor activation triggers secretion of brain-derived neurotrophic factor (BDNF) and promotes the functional maturation of GABAergic synapses in the developing rat hippocampus. To identify the signalling pathway linking GABA(B) receptor activation to BDNF secretion in these cells, we have now used the phosphorylated form of the cAMP response element-binding protein as a biological sensor for endogenous BDNF release. In the present study, we show that GABA(B) receptor-induced secretion of BDNF relies on the activation of phospholipase C, followed by the formation of diacylglycerol, activation of protein kinase C, and the opening of L-type voltage-dependent Ca(2+) channels. We further show that once released by GABA(B) receptor activation, BDNF increases the membrane expression of β(2/3) -containing GABA(A) receptors in neuronal cultures. These results reveal a novel function of GABA(B) receptors in regulating the expression of GABA(A) receptor through BDNF-tropomyosin-related kinase B receptor dependent signalling pathway.  相似文献   

11.
GABA(A) receptor (GABA(A)R) expression level is inversely correlated with the proliferation rate of astrocytes after stroke or during malignancy of astrocytoma, leading to the hypothesis that GABA(A)R expression/activation may work as a cell proliferation repressor. A number of vasoactive peptides exhibit the potential to modulate astrocyte proliferation, and the question whether these mechanisms may imply alteration in GABA(A)R-mediated functions and/or plasma membrane densities is open. The peptide urotensin II (UII) activates a G protein-coupled receptor named UT, and mediates potent vasoconstriction or vasodilation in mammalian vasculature. We have previously demonstrated that UII activates a PLC/PIPs/Ca(2+) transduction pathway, via both G(q) and G(i/o) proteins and stimulates astrocyte proliferation in culture. It was also shown that UT/G(q)/IP(3) coupling is regulated by the GABA(A)R in rat cultured astrocytes. Here we report that UT and GABA(A)R are co-expressed in cerebellar glial cells from rat brain slices, in human native astrocytes and in glioma cell line, and that UII inhibited the GABAergic activity in rat cultured astrocytes. In CHO cell line co-expressing human UT and combinations of GABA(A)R subunits, UII markedly depressed the GABA current (β(3)γ(2)>α(2)β(3)γ(2)>α(2)β(1)γ(2)). This effect, characterized by a fast short-term inhibition followed by drastic and irreversible run-down, is not relayed by G proteins. The run-down partially involves Ca(2+) and phosphorylation processes, requires dynamin, and results from GABA(A)R internalization. Thus, activation of the vasoactive G protein-coupled receptor UT triggers functional inhibition and endocytosis of GABA(A)R in CHO and human astrocytes, via its receptor C-terminus. This UII-induced disappearance of the repressor activity of GABA(A)R, may play a key role in the initiation of astrocyte proliferation.  相似文献   

12.
GABA(A) receptor function is involved in regulating proliferation, migration, and differentiation of rodent neural progenitor cells (NPCs). However, little is known about the molecular composition and functional relevance of GABA(A) receptors in human neural progenitors. Here, we investigated human fetal midbrain-derived NPCs in respect to their GABA(A) receptor function and subunit expression using electrophysiology, calcium imaging, and quantitative real-time PCR. Whole-cell recordings of ligand- and voltage-gated ion channels demonstrate the ability of NPCs to generate action potentials and to express functional GABA(A) receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular characterizations indicate a predominance of GABA(A) receptor heteromers containing subunits alpha2, beta1, and/or beta3, and gamma. Intracellular Ca(2+) measurements and the expression profile of the Na(+)-K(+)-Cl(-) co-transporter 1 and the K(+)-Cl(-) co-transporter 2 in differentiated NPCs suggest that GABA evokes depolarizations mediated by GABA(A) receptors. These data indicate that NPCs derived from human fetal midbrain tissue acquire essential GABA(A) receptor properties during neuronal maturation in vitro.  相似文献   

13.
This study used whole cell patch clamp recordings in rat hypothalamic slice preparations to evaluate the effects of GABA(B) receptor activation on GABA(A)-mediated inhibitory postsynaptic currents (IPSCs) in paraventricular nucleus magnocellular neurons evoked by electrical stimulation in the suprachiasmatic nucleus (SCN). Baclofen induced a dose-dependent (1-10 microM) and reversible reduction in SCN-evoked IPSC amplitude (11/11 cells), blockable with 2-hydroxysaclofen (300 microM; 3/3 cells). IPSCs displayed paired-pulse depression (PPD), attenuated by both baclofen and 2-hydroxysaclofen, but neither altered resting membrane conductances or IPSC time constants of decay. Baclofen induced a significant dose-dependent (1-100 microM) reduction in frequency, but not amplitude, of spontaneous IPSCs and miniature IPSCs, reversible with 2-hydroxysaclofen pretreatment. Baclofen effects and PPD persisted in slices pretreated with pertussis toxin (PTX) and N-ethylmaleimide, implying that these GABA(B) receptors are coupled to PTX-insensitive G proteins. Responses were unaltered by barium (2 mM) or nimodipine, ruling out involvement of K(+) channels and L-type Ca(2+) channels. Thus pre- and postsynaptic GABA(B) and GABA(A) receptors participate in SCN entrainment of paraventricular neurosecretory neurons.  相似文献   

14.
15.
The distribution of mRNA for the rho2 subunit of the GABA(C) receptor is much broader in organotypic SC cultures than in vivo, suggesting that GABA(C) receptor expression is regulated by environmental factors. Electrophysiological recordings indicate that neurons in SC cultures have functional GABA(C) receptors, although these receptors exhibited smaller conductance than in vivo, probably due to increased rho2 subunit expression. Adding cortical input, treatment with various neuromodulators, and blocking neuronal activity with TTX failed to affect the expression of rho2 subunits. Electrophysiological recordings revealed the presence of spontaneous Ca(2+) currents in SC cultures and preventing these, by treatment with blockers of L-type Ca(2+) channels, caused rho2 mRNA expression to decline to in vivo levels. In contrast, rho1 subunit mRNA levels remained unchanged, indicating that the two subunits are independently regulated. Surprisingly, both tonic activation and blockade of GABA(C) receptors upregulated rho1/rho2 mRNA expression. Further, NGF and BDNF promoted such expression during an early postnatal time window. In vivo, expression of the rho2 mRNA in the SC, and the rho2/rho3 mRNA in the retina increased with age. Expression of the rho2 mRNA in the visual cortex, and the rho1 mRNA in the retina and SC was constant. Subunit mRNA expression was similar in dark-reared animals, indicating that visual experience has no influence. These experiments suggest that GABA(C) receptor expression in the SC is regulated during postnatal development. While visual experience seems to have no influence on GABA(C) receptor subunits, spontaneous calcium currents selectively promote rho2 expression and both rho1 and rho2 are autoregulated both by GABA(C) receptor activity and by neurotrophic factors.  相似文献   

16.
The expression of the natriuretic peptide system in the human ocular ciliary epithelium (CE) and in cultured nonpigmented (NPE) ciliary epithelial cells was examined. By RT-PCR and DNA sequencing, we demonstrated that the CE and NPE cells express mRNA for (i) ANP; (ii) BNP; (iii) NPR-A, NPR-B, and NPR-C receptors; and (iv) the neutral endopeptidase 24.11. Radioimmunoassay results indicate that BNP is secreted by cultured NPE cells at much higher levels than ANP. NPR-A and NPR-B receptors elicited a cGMP response to ANP, BNP, and CNP, in a rank order of potency (CNP > ANP >/= BNP), indicative that the NPR-B receptor is predominant in NPE cells. A71915, an inhibitor of NPR-A activity, attenuated (65-75%) cGMP response to ANP and BNP, but not to CNP. C-ANP4-23 elicited an inhibitory effect (30-37%) on basal levels of cAMP in NPE cells and on forskolin NPE-treated cells, indicative that the NPR-C receptor is functional in these cells. PMA induced, in NPE cells, a long-term downregulation (75-85%) of NPR-C receptor mRNA, but not of NPR-A or NPR-B receptor mRNA, suggesting a differential regulation of NPR-C receptor mRNA via activation of PKC. Collectively, our data provide molecular evidence that all the components of the natriuretic peptide system with the exception of CNP are coexpressed in the ocular NPE ciliary epithelial cells, where they may function as local autocrine/paracrine modulators to influence eye pressure.  相似文献   

17.
Ionotropic gamma-aminobutyric acid (GABA(A) and GABA(C)) receptors mediate fast synaptic inhibition in the central nervous system. GABA(C) receptors are expressed predominantly in the retina on bipolar cell axon terminals, and are thought to mediate feedback inhibition from GABAergic amacrine cells. Utilizing the yeast two-hybrid system, we previously identified MAP1B as a binding partner of the GABA(C) receptor rho1 subunit. Here we describe the isolation of an additional rho1 interacting protein: a novel C-terminal variant of the glycine transporter GLYT-1. We show that GLYT-1 exists as four alternatively spliced mRNAs which encode proteins expressing one of two possible intracellullar N- and C-terminal domains. Variants containing the novel C terminus efficiently transport glycine when expressed in COS cells, but with unusual kinetics. We have confirmed the interaction between the novel C terminus and rho1 subunit and demonstrated binding in heterologous cells. This interaction may be crucial for the integration of GABAergic and glycinergic neurotransmission in the retina.  相似文献   

18.
Lysophosphatidic acid (LPA) plays various roles in the regulation of cell growth as a lipid mediator. We studied the effect of LPA on intracellular Ca(2+) concentration ([Ca2+]i) with Fura-2 in the neural retina of chick embryo during neurogenesis. Bath application of LPA (1-100 microM) to the embryonic day 3 (E3) chick retina caused an increase in [Ca2+](i) in a dose-dependent manner, with an EC(50) value of 9.2 microM. The Ca(2+) rise was also evoked in a Ca(2+)-free medium, suggesting that release of Ca(2+) from intracellular Ca(2+) stores (Ca(2+) mobilization) was induced by LPA. U-73122, a blocker of phospholipase C (PLC), inhibited the Ca(2+) rise to LPA. Pertussis toxin partially inhibited the Ca(2+) rise to LPA, indicating that G(i)/G(o) protein was at least partially involved in the LPA response. The developmental profile of the LPA response was studied from E3 to E13. The Ca(2+) rise to LPA declined drastically from E3 to E7, in parallel with decrease in mitotic activity of retinal progenitor cells. The signal transduction pathway and developmental profile of the Ca(2+) response to LPA were the same as those of the Ca(2+) response to adenosine triphosphate (ATP), which enhances the proliferation of retinal progenitor cells. The coapplication of LPA with ATP resulted in enhancement of Ca(2+) rise in the E3 chick retina. Our results show that LPA induces Ca(2+) mobilization in the embryonic chick retina during neurogenesis.  相似文献   

19.
20.
Gamma-aminobutyric acid receptors (GABA(A)R) are the major sites of fast inhibitory neurotransmission in the brain, and a critical determinant for the efficacy of neuronal inhibition is the number of these receptors that are expressed on the neuronal cell surface. GABA(A)Rs are heteropentamers that can be constructed from seven subunit classes with multiple members; alpha, beta, gamma(1-3), delta, epsilon(1-3), theta, and pi. Receptor assembly occurs within the endoplasmic reticulum, and it is evident that transport-competent combinations exiting this organelle can access the cell surface, whereas unassembled subunits are ubiquitinated and subject to proteasomal degradation. In a previous report the ubiquitin-like protein Plic-1 was shown to directly interact with GABA(A)Rs and promote their accumulation at the cell surface. In this study we explore the mechanisms by which Plic-1 regulates the membrane trafficking of GABA(A)Rs. Using both recombinant and neuronal preparations it was apparent that Plic-1 increased the stability of endoplasmic reticulum resident GABA(A)Rs together with an increase in the abundance of poly-ubiquitinated receptor subunits. Furthermore, Plic-1 elevated cell surface expression levels by selectively increasing their rates of membrane insertion. Thus, Plic-1 may play a significant role in regulating the strength of synaptic inhibition by increasing the stability of GABA(A)Rs within the secretory pathway and thereby promoting their insertion into the neuronal plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号