首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Previous studies have proposed that caffeine-induced activation of glucose transport in skeletal muscle is independent of AMP-activated protein kinase (AMPK) because alpha-AMPK Thr172 phosphorylation was not increased by caffeine. However, our previous studies, as well as the present, show that AMPK phosphorylation measured in whole muscle lysate is not a good indicator of AMPK activation in rodent skeletal muscle. In lysates from incubated rat soleus muscle, a predominant model in previous caffeine-studies, both acetyl-CoA carboxylase-beta (ACCbeta) Ser221 and immunoprecipitated alpha(1)-AMPK activity increased with caffeine incubation, without changes in AMPK phosphorylation or immunoprecipitated alpha(2)-AMPK activity. This pattern was also observed in mouse soleus muscle, where only ACCbeta and alpha(1)-AMPK phosphorylation were increased following caffeine treatment. Preincubation with the selective CaMKK inhibitor STO-609 (5 microM), the CaM-competitive inhibitor KN-93 (10 microM), or the SR Ca(2+) release blocking agent dantrolene (10 microM) all inhibited ACCbeta phosphorylation and alpha(1)-AMPK phosphorylation, suggesting that SR Ca(2+) release may work through a CaMKK-AMPK pathway. Caffeine-stimulated 2-deoxyglucose (2DG) uptake reflected the AMPK activation pattern, being increased with caffeine and inhibited by STO-609, KN-93, or dantrolene. The inhibition of 2DG uptake is likely causally linked to AMPK activation, since muscle-specific expression of a kinase-dead AMPK construct greatly reduced caffeine-stimulated 2DG uptake in mouse soleus. We conclude that a SR Ca(2+)-activated CaMKK may control alpha(1)-AMPK activation and be necessary for caffeine-stimulated glucose uptake in mouse soleus muscle.  相似文献   

2.
AMP-activated protein kinase plays a role in the control of food intake   总被引:32,自引:0,他引:32  
AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that acts as an intracellular energy sensor maintaining the energy balance within the cell. The finding that leptin and adiponectin activate AMPK to alter metabolic pathways in muscle and liver provides direct evidence for this role in peripheral tissues. The hypothalamus is a key regulator of food intake and energy balance, coordinating body adiposity and nutritional state in response to peripheral hormones, such as leptin, peptide YY-(3-36), and ghrelin. To date the hormonal regulation of AMPK in the hypothalamus, or its potential role in the control of food intake, have not been reported. Here we demonstrate that counter-regulatory hormones involved in appetite control regulate AMPK activity and that pharmacological activation of AMPK in the hypothalamus increases food intake. In vivo administration of leptin, which leads to a reduction in food intake, decreases hypothalamic AMPK activity. By contrast, injection of ghrelin in vivo, which increases food intake, stimulates AMPK activity in the hypothalamus. Consistent with the effect of ghrelin, injection of 5-amino-4-imidazole carboxamide riboside, a pharmacological activator of AMPK, into either the third cerebral ventricle or directly into the paraventricular nucleus of the hypothalamus significantly increased food intake. These results suggest that AMPK is regulated in the hypothalamus by hormones which regulate food intake. Furthermore, direct pharmacological activation of AMPK in the hypothalamus is sufficient to increase food intake. These findings demonstrate that AMPK plays a role in the regulation of feeding and identify AMPK as a novel target for anti-obesity drugs.  相似文献   

3.
AMP-activated protein kinase (AMPK) is a key regulator of cellular energy balance and of the effects of leptin on food intake and fatty acid oxidation. Obesity is usually associated with resistance to the effects of leptin on food intake and body weight. To determine whether diet-induced obesity (DIO) impairs the AMPK response to leptin in muscle and/or hypothalamus, we fed FVB mice a high fat (55%) diet for 10-12 weeks. Leptin acutely decreased food intake by approximately 30% in chow-fed mice. DIO mice tended to eat less, and leptin had no effect on food intake. Leptin decreased respiratory exchange ratio in chow-fed mice indicating increased fatty acid oxidation. Respiratory exchange ratio was low basally in high fat-fed mice, and leptin had no further effect. Leptin (3 mg/kg intraperitoneally) increased alpha2-AMPK activity 2-fold in muscle in chow-fed mice but not in DIO mice. Leptin decreased acetyl-CoA carboxylase activity 40% in muscle from chow-fed mice. In muscle from DIO mice, acetyl-CoA carboxylase activity was basally low, and leptin had no further effect. In paraventricular, arcuate, and medial hypothalamus of chow-fed mice, leptin inhibited alpha2-AMPK activity but not in DIO mice. In addition, leptin increased STAT3 phosphorylation 2-fold in arcuate of chow-fed mice, but this effect was attenuated because of elevated basal STAT3 phosphorylation in DIO mice. Thus, DIO in FVB mice alters alpha2-AMPK in muscle and hypothalamus and STAT3 in hypothalamus and impairs further effects of leptin on these signaling pathways. Defective responses of AMPK to leptin may contribute to resistance to leptin action on food intake and energy expenditure in obese states.  相似文献   

4.
alpha-Lipoic acid (ALA) widely exists in foods and is an antidiabetic agent. ALA stimulates glucose uptake and increases insulin sensitivity by the activation of AMP-activated protein kinase (AMPK) in skeletal muscle, but the underlying mechanism for AMPK activation is unknown. Here, we investigated the mechanism through which ALA activates AMPK in C2C12 myotubes. Incubation of C2C12 myotubes with 200 and 500 microM ALA increased the activity and phosphorylation of the AMPK alpha-subunit at Thr(172). Phosphorylation of the AMPK substrate, acetyl CoA carboxylase (ACC), at Ser(79) was also increased. No difference in ATP, AMP, and the calculated AMP-to-ATP ratio was observed among the different treatment groups. Since the upstream AMPK kinase, LKB1, requires an alteration of the AMP-to-ATP ratio to activate AMPK, this data showed that LKB1 might not be involved in the activation of AMPK induced by ALA. Treatment of ALA increased the intracellular Ca(2+) concentration measured by fura-2 fluorescent microscopy (P < 0.05), showing that ALA may activate AMPK through enhancing Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK) signaling. Indeed, chelation of intracellular free Ca(2+) by loading cells with 25 microM BAPTA-AM for 30 min abolished the ALA-induced activation of AMPK and, in turn, phosphorylation of ACC at Ser(79). Furthermore, inhibition of CaMKK using its selective inhibitor, STO-609, abolished ALA-stimulated AMPK activation, with an accompanied reduction of ACC phosphorylation at Ser(79). In addition, ALA treatment increased the association of AMPK with CaMKK. To further show the role of CaMKK in AMPK activation, short interfering RNA was used to silence CaMKK, which abolished the ALA-induced AMPK activation. These data show that CaMKK is the kinase responsible for ALA-induced AMPK activation in C2C12 myotubes.  相似文献   

5.
Insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding proteins-2 (IGFBP-2) function coordinately to stimulate osteoblast differentiation. Induction of AMP-activated protein kinase (AMPK) is required for differentiation and is stimulated by these two factors. These studies were undertaken to determine how these two peptides lead to activation of AMPK. Enzymatic inhibitors and small interfering RNA were utilized to attenuate calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) activity in osteoblasts, and both manipulations resulted in failure to activate AMPK, thereby resulting in inhibition of osteoblast differentiation. IGFBP-2 and IGF-I stimulated an increase in CaMKK2, and inhibition of IGFBP-2 binding its receptor resulted in failure to induce CaMKK2 and AMPK activation. Injection of a peptide that contained the IGFBP-2 receptor-binding domain into IGFBP-2−/− mice activated CaMKK2 and injection of a CaMKK2 inhibitor into normal mice inhibited both CamKK2 and AMPK activation in osteoblasts. We conclude that induction of CaMKK2 by IGFBP-2 and IGF-I in osteoblasts is an important signaling event that occurs early in differentiation and is responsible for activation of AMPK, which is required for optimal osteoblast differentiation.  相似文献   

6.
AMP-activated protein kinase (AMPK) is a serine/threonine kinase that regulates cellular and whole body energy homeostasis. In adipose tissue, activation of AMPK has been demonstrated in response to a variety of extracellular stimuli. However, the upstream kinase that activates AMPK in adipocytes remains elusive. Previous studies have identified LKB1 as a major AMPK kinase in muscle, liver, and other tissues. In certain cell types, Ca(2+) /calmodulin-dependent protein kinase kinase β (CaMKKβ) has been shown to activate AMPK in response to increases of intracellular Ca(2+) levels. Our aim was to investigate if LKB1 and/or CaMKK function as AMPK kinases in adipocytes. We used adipose tissue and isolated adipocytes from mice in which the expression of LKB1 was reduced to 10-20% of that of wild-type (LKB1 hypomorphic mice). We show that adipocytes from LKB1 hypomorphic mice display a 40% decrease in basal AMPK activity and a decrease of AMPK activity in the presence of the AMPK activator phenformin. We also demonstrate that stimulation of 3T3L1 adipocytes with intracellular [Ca(2+) ]-raising agents results in an activation of the AMPK pathway. The inhibition of CaMKK isoforms, particularly CaMKKβ, by the inhibitor STO-609 or by siRNAs, blocked Ca(2+) -, but not phenformin-, AICAR-, or forskolin-induced activation of AMPK, indicating that CaMKK activated AMPK in response to Ca(2+) . Collectively, we show that LKB1 is required to maintain normal AMPK-signaling in non-stimulated adipocytes and in the presence of phenformin. In addition, we demonstrate the existence of a Ca(2+) /CaMKK signaling pathway that can also regulate the activity of AMPK in adipocytes.  相似文献   

7.
The AMP-activated protein kinase (AMPK) is an important regulator of cellular metabolism in response to metabolic stress and to other regulatory signals. AMPK activity is absolutely dependent upon phosphorylation of AMPKalphaThr-172 in its activation loop by one or more AMPK kinases (AMPKKs). The tumor suppressor kinase, LKB1, is a major AMPKK present in a variety of tissues and cells, but several lines of evidence point to the existence of other AMPKKs. We have employed three cell lines deficient in LKB1 to study AMPK regulation and phosphorylation, HeLa, A549, and murine embryo fibroblasts derived from LKB(-/-) mice. In HeLa and A549 cells, mannitol, 2-deoxyglucose, and ionomycin, but not 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), treatment activates AMPK by alphaThr-172 phosphorylation. These responses, as well as the downstream effects of AMPK on the phosphorylation of acetyl-CoA carboxylase, are largely inhibited by the Ca(2+)/ calmodulin-dependent protein kinase kinase (CaMKK) inhibitor, STO-609. AMPKK activity in HeLa cell lysates measured in vitro is totally inhibited by STO-609 with an IC50 comparable with that of the known CaMKK isoforms, CaMKKalpha and CaMKKbeta. Furthermore, 2-deoxyglucose- and ionomycin-stimulated AMPK activity, alphaThr-172 phosphorylation, and acetyl-CoA carboxylase phosphorylation are substantially reduced in HeLa cells transfected with small interfering RNAs specific for CaMKKalpha and CaMKKbeta. Lastly, the activation of AMPK in response to ionomycin and 2-deoxyglucose is not impaired in LKB1(-/-) murine embryo fibroblasts. These data indicate that the CaMKKs function in intact cells as AMPKKs, predicting wider roles for these kinases in regulating AMPK activity in vivo.  相似文献   

8.
The PI3K-AKT, mTOR-p70S6 kinase and AMPK pathways play distinct and critical roles in metabolic regulation. Each pathway is necessary for leptin's anorexigenic effects in the hypothalamus. Here we show that these pathways converge in an integrated phosphorylation cascade to mediate leptin action in the hypothalamus. We identify serine(491) on α2AMPK as the site of convergence and show that p70S6 kinase forms a complex with α2AMPK, resulting in phosphorylation on serine(491). Blocking α2AMPK-serine(491) phosphorylation increases hypothalamic AMPK activity, food intake, and body weight. Serine(491) phosphorylation is necessary for leptin's effects on hypothalamic α2AMPK activity, neuropeptide expression, food intake, and body weight. These results identify an inhibitory AMPK kinase, p70S6 kinase, and demonstrate that AMPK is a substrate for mTOR-p70S6 kinase. This discovery has broad biologic implications since mTOR-p70S6 kinase and AMPK have multiple, fundamental and generally opposing cellular effects that regulate metabolism, cell growth, and development.  相似文献   

9.
AMP-activated kinase (AMPK) is a highly conserved heterotrimeric kinase that functions as a metabolic master switch to coordinate cellular enzymes involved in carbohydrate and fat metabolism that regulate ATP conservation and synthesis. AMPK is activated by conditions that increase AMP-to-ATP ratio, such as exercise and metabolic stress. In the present study, we probed whether AMPK was expressed in vascular smooth muscle and would be activated by metabolic stress. Endothelium-denuded porcine carotid artery segments were metabolically challenged with 2-deoxyglucose (10 mM) plus N(2) (N(2)-2DG). These vessels exhibited a rapid increase in AMPK activity by 1 min that was near maximal by 20 min. AMPK inactivation on return to normal physiological saline was approximately 50% in 1 min and fully recovered by 5 min. Immunoprecipitation of the alpha(1)- and alpha(2)-catalytic subunit followed by immunoblot analysis for [P]Thr(172)-AMPK indicates that alpha(1)-AMPK accounts for all activity. Little if any alpha(2)-AMPK was detected in carotid smooth muscle. AMPK activity was not increased by contractile agonist (endothelin-1) or by the reported AMPK activators 5-aminoimidazole-4-carboxamide ribofuranoside (2 mM), metformin (2 mM), or phenformin (0.2 mM). AMPK activation by N(2)-2DG was associated with a rapid and pronounced reduction in endothelin-induced force and reduced phosphorylation of Akt and Erk 1/2. These data demonstrate that AMPK expression differs in vascular smooth muscle compared with striated muscles and that activation and inactivation after metabolic stress occur rapidly and are associated with signaling pathways that may regulate smooth-muscle contraction.  相似文献   

10.
AMP-activated protein kinase (AMPK) is the downstream component of a kinase cascade that plays a pivotal role in energy homeostasis. Activation of AMPK requires phosphorylation of threonine 172 (T172) within the T loop region of the catalytic alpha subunit. Recently, LKB1 was shown to activate AMPK. Here we show that AMPK is also activated by Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK). Overexpression of CaMKKbeta in mammalian cells increases AMPK activity, whereas pharmacological inhibition of CaMKK, or downregulation of CaMKKbeta using RNA interference, almost completely abolishes AMPK activation. CaMKKbeta isolated from rat brain or expressed in E. coli phosphorylates and activates AMPK in vitro. In yeast, CaMKKbeta expression rescues a mutant strain lacking the three kinases upstream of Snf1, the yeast homolog of AMPK. These results demonstrate that AMPK is regulated by at least two upstream kinases and suggest that AMPK may play a role in Ca(2+)-mediated signal transduction pathways.  相似文献   

11.
AMP-activated protein kinase: balancing the scales   总被引:13,自引:0,他引:13  
Carling D 《Biochimie》2005,87(1):87-91
AMP-activated protein kinase (AMPK) is the central component of a protein kinase cascade that plays a key role in the regulation of energy control. AMPK is activated in response to an increase in the ratio of AMP:ATP within the cell. Activation requires phosphorylation of threonine 172 within the catalytic subunit of AMPK by an upstream kinase. The identity of the upstream kinase in the cascade remained frustratingly elusive for many years, but was recently identified as LKB1, a kinase that is inactivated in a rare hereditary form of cancer called Peutz-Jeghers syndrome. Once activated, AMPK initiates a series of responses that are aimed at restoring the energy balance within the cell. ATP-consuming, anabolic pathways, such as fatty acid synthesis and protein synthesis are switched-off, whereas ATP-generating, catabolic pathways, such as fatty acid oxidation and glycolysis, are switched-on. More recent studies have indicated, that AMPK plays an important role in the regulation of whole body energy metabolism. The adipocyte-derived hormones, leptin and adiponectin, activate AMPK in peripheral tissues, including skeletal muscle and liver, increasing energy expenditure. In the hypothalamus, AMPK is inhibited by leptin and insulin, hormones which suppress feeding, whilst ghrelin, a hormone that increases food intake, activates AMPK. Furthermore, direct pharmacological activation of AMPK in the hypothalamus by 5-aminoimidazole-4-carboxamide ribose increases food intake in rats, demonstrating that AMPK plays a direct role in the regulation of feeding. Taken together these findings indicate that AMPK has a pivotal role in regulating pathways that control both energy expenditure and energy intake.  相似文献   

12.
Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) plays a key role in regulating food intake and energy expenditure at least in part by its actions in hypothalamic neurons. Previously, we showed that loss of CaMKK2 protected mice from high-fat diet (HFD)-induced obesity and glucose intolerance. However, although pair feeding HFD to WT mice to match food consumption of CAMKK2-null mice slowed weight gain, it failed to protect from glucose intolerance. Here we show that relative to WT mice, HFD-fed CaMKK2-null mice are protected from inflammation in adipose and remain glucose-tolerant. Moreover, loss of CaMKK2 also protected mice from endotoxin shock and fulminant hepatitis. We explored the expression of CaMKK2 in immune cells and found it to be restricted to those of the monocyte/macrophage lineage. CaMKK2-null macrophages exhibited a remarkable deficiency to spread, phagocytose bacteria, and synthesize cytokines in response to the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS). Mechanistically, loss of CaMKK2 uncoupled the TLR4 cascade from activation of protein tyrosine kinase 2 (PYK2; also known as PTK2B). Our findings uncover an important function for CaMKK2 in mediating mechanisms that control the amplitude of macrophage inflammatory responses to excess nutrients or pathogen derivatives.  相似文献   

13.
Adiponectin has been shown to stimulate fatty acid oxidation and enhance insulin sensitivity through the activation of AMP-activated protein kinase (AMPK) in the peripheral tissues. The effects of adiponectin in the central nervous system, however, are still poorly understood. Here, we show that adiponectin enhances AMPK activity in the arcuate hypothalamus (ARH) via its receptor AdipoR1 to stimulate food intake; this stimulation of food intake by adiponectin was attenuated by dominant-negative AMPK expression in the ARH. Moreover, adiponectin also decreased energy expenditure. Adiponectin-deficient mice showed decreased AMPK phosphorylation in the ARH, decreased food intake, and increased energy expenditure, exhibiting resistance to high-fat-diet-induced obesity. Serum and cerebrospinal fluid levels of adiponectin and expression of AdipoR1 in the ARH were increased during fasting and decreased after refeeding. We conclude that adiponectin stimulates food intake and decreases energy expenditure during fasting through its effects in the central nervous system.  相似文献   

14.
AMP-activated protein kinase (AMPK) is a sensor of cellular energy state in response to metabolic stress and other regulatory signals. AMPK is controlled by upstream kinases which have recently been identified as LKB1 or Ca2+/calmodulin-dependent protein kinase kinase beta (CaMKKbeta). Our study of human endothelial cells shows that AMPK is activated by thrombin through a Ca2+-dependent mechanism involving the thrombin receptor protease-activated receptor 1 and Gq-protein-mediated phospholipase C activation. Inhibition of CaMKK with STO-609 or downregulation of CaMKKbeta using RNA interference decreased thrombin-induced AMPK activation significantly, indicating that CaMKKbeta was the responsible AMPK kinase. In contrast, downregulation of LKB1 did not affect thrombin-induced AMPK activation but abolished phosphorylation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleoside. Thrombin stimulation led to phosphorylation of acetyl coenzyme A carboxylase (ACC) and endothelial nitric oxide synthase (eNOS), two downstream targets of AMPK. Inhibition or downregulation of CaMKKbeta or AMPK abolished phosphorylation of ACC in response to thrombin but had no effect on eNOS phosphorylation, indicating that thrombin-stimulated phosphorylation of eNOS is not mediated by AMPK. Our results underline the role of Ca2+ as a regulator of AMPK activation in response to a physiologic stimulation. We also demonstrate that endothelial cells possess two pathways to activate AMPK, one Ca2+/CaMKKbeta dependent and one AMP/LKB1 dependent.  相似文献   

15.
AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca2+-dependent AMPK activation via calmodulin-dependent protein kinase kinase-β(CaMKKβ), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKKβ inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.  相似文献   

16.
The AMP-activated protein kinase (AMPK) is a critical regulator of energy balance at both the cellular and whole-body levels. Two upstream kinases have been reported to activate AMPK in cell-free assays, i.e., the tumor suppressor LKB1 and calmodulin-dependent protein kinase kinase. However, evidence that this is physiologically relevant currently only exists for LKB1. We now report that there is a significant basal activity and phosphorylation of AMPK in LKB1-deficient cells that can be stimulated by Ca2+ ionophores, and studies using the CaMKK inhibitor STO-609 and isoform-specific siRNAs show that CaMKKbeta is required for this effect. CaMKKbeta also activates AMPK much more rapidly than CaMKKalpha in cell-free assays. K(+)-induced depolarization in rat cerebrocortical slices, which increases intracellular Ca2+ without disturbing cellular adenine nucleotide levels, activates AMPK, and this is blocked by STO-609. Our results suggest a potential Ca(2+)-dependent neuroprotective pathway involving phosphorylation and activation of AMPK by CaMKKbeta.  相似文献   

17.
AMP-activated protein kinase (AMPK) functions to maintain cellular and body energy balance. Our aim was to investigate the effect of intracerebroventricular (ICV) administration of AMPK stimulator AICAR and AMPK inhibitor Compound C on food intake in lines of chickens that had undergone long-term selection from a common founder population for high (HWS) or low (LWS) body weight. AICAR caused a quadratic dose-dependent decrease in food intake in LWS but not HWS chicks. Compound C caused a quadratic dose-dependent increase in food intake in HWS but not in LWS chicks. Key aspects of the AMPK pathway, including upstream kinases mRNA expression, AMPK subunit α mRNA expression and phosphorylation, and a downstream target acetyl CoA carboxylase (ACC) phosphorylation were not affected by either AICAR or Compound C in either line. The exception was a significant inhibitory effect of AICAR on ACC phosphorylation ratio due to increased total ACC protein content without changing phosphorylated ACC protein levels. Thus, the anorexigenic effect of AICAR in LWS chicks and orexigenic effect of Compound C in HWS chicks resulted from activation or inhibition of other kinase pathways separate from AMPK. These results suggest genetic variation in feeding response for central AICAR and Compound C in chickens, which may contribute to the different body weights between the HWS and LWS lines.  相似文献   

18.
α-Melanocyte-stimulating hormone (α-MSH)-induced activation of the melanocortin-4 receptor in hypothalamic neurons increases energy expenditure and inhibits food intake. Active hypothalamic AMP-activated protein kinase (AMPK) has recently been reported to enhance food intake, and in vivo experiments suggested that intrahypothalamic injection of melanocortins decreased food intake due to the inhibition of AMPK activity. However, it is not clear whether α-MSH affects AMPK via direct intracellular signaling cascades or if the release of paracrine factors is involved. Here, we used a murine, hypothalamic cell line (GT1-7 cells) and monitored AMPK phosphorylation at Thr(172), which has been suggested to increase AMPK activity. We found that α-MSH dephosphorylated AMPK at Thr(172) and consequently decreased phosphorylation of the established AMPK substrate acetyl-coenzyme A-carboxylase at Ser(79). Inhibitory effects of α-MSH on AMPK were blocked by specific inhibitors of protein kinase A (PKA) or ERK-1/2, pointing to an important role of both kinases in this process. Because α-MSH-induced activation of ERK-1/2 was blunted by PKA inhibitors, we propose that ERK-1/2 serves as a link between PKA and AMPK in GT1-7 cells. Furthermore, down-regulation of liver kinase B-1, but not inhibition of calcium-calmodulin-dependent kinase kinase-β or TGFβ-activated kinase-1 decreased basal phosphorylation of AMPK and its dephosphorylation induced by α-MSH. Thus, we propose that α-MSH inhibits AMPK activity via a linear pathway, including PKA, ERK-1/2, and liver kinase B-1 in GT1-7 cells. Given the importance of the melanocortin system in the formation of adipositas, detailed knowledge about this pathway might help to develop drugs targeting obesity.  相似文献   

19.
20.
We investigated the importance of the two catalytic alpha-isoforms of the 5'-AMP-activated protein kinase (AMPK) in 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) and contraction-induced glucose uptake in skeletal muscle. Incubated soleus and EDL muscle from whole-body alpha2- or alpha1-AMPK knockout (KO) and wild type (WT) mice were incubated with 2.0 mm AICAR or electrically stimulated to contraction. Both AICAR and contraction increased 2DG uptake in WT muscles. KO of alpha2, but not alpha1, abolished AICAR-induced glucose uptake, whereas neither KO affected contraction-induced glucose uptake. AICAR and contraction increased alpha2- and alpha1-AMPK activity in wild type (WT) muscles. During AICAR stimulation, the remaining AMPK activity in KO muscles increased to the same level as in WT. During contraction, the remaining AMPK activity in alpha2-KO muscles was elevated by 100% probably explained by a 2-3-fold increase in alpha1-protein. In alpha1-KO muscles, alpha2-AMPK activity increased to similar levels as in WT. Both interventions increased total AMPK activity, as expressed by AMPK-P and ACCbeta-P, in WT muscles. During AICAR stimulation, this was dramatically reduced in alpha2-KO but not in alpha1-KO, whereas during contraction, both measurements were essentially similar to WT in both KO-muscles. The results show that alpha2-AMPK is the main donor of basal and AICAR-stimulated AMPK activity and is responsible for AICAR-induced glucose uptake. In contrast, during contraction, the two alpha-isoforms seem to substitute for each other in terms of activity, which may explain the normal glucose uptake despite the lack of either alpha2- or alpha1-AMPK. Alternatively, neither alpha-isoform of AMPK is involved in contraction-induced muscle glucose uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号